INOVANCE

SV630P Series Servo Drive User Guide



Preface

Introduction

Thank you for purchasing the SV630P series servo drive developed by Inovance.

It is an economical AC servo drive product, offering a power range from 0.05 kW to 7.5 kW. It comes with Modbus communication interfaces to work with the host controller for a networked operation of multiple servo drives. The servo drive supports adaptive stiffness level setting, inertia auto-tuning, and vibration suppression for easy use. It works together with Inovance ISMH series small/medium-inertia high-response servo motor configured with a 18-bit incremental encoder, making the running stable and quiet and the positioning control more accurate. The SV660P series servo drive serves to achieve quick and accurate position control, speed control, and torque control in automation equipment such as electronic manufacturing devices, manipulators, packing devices, and machine tools.

This user guide presents product information and instructions for installation, wiring, commissioning, and troubleshooting. Read and understand this user guide before first-time use. In case of any question about functions or performance, do not hesitate to contact the technical support personnel of Inovance.

More documents

Name	Data Code	Description
SV630P Series Servo Drive User Guide	19012296	Provides information on selection, installation, commissioning, function, troubleshooting and parameters of the equipment.

Revision History

Date	Version	Description
2023-03		 Optimized H0b.33 and H0b.63. Optimized the detailed description of H02.00 and H05.26. Updated information on faults according to the latest fault list.
2023-02		 Updated the motor model table. Updated the motor models in the energy data table. Minor corrections.

Date	Version	Description
2023-01	B07	 Added warranty information in the preface. Change the name of the magnetic clamp to DYR-130-B. Unified the naming rule of the fault code to Er.xxx. Changed "General Specifications" to "Product Specifications". Modified motor selection instructions. Deleted information on Al. Changed the MS1-Z motor to MS1-R motor. Added voltage data in the content related to correspondence between pulse input frequency and pulse width. Added description of high and low speed pulse reference input. Changed the resistance at the pulse interface to 200 Ω. Added a hexadecimal value for the parameters in the detailed description of parameters. Updated the list of parameters and description of parameters. Updated information on faults. Modified the description of fault logging.
2022-09	B06	Added a section on homing.Minor corrections.
2022-07	B05	 Added information on port damage due to absence of a current limiting resistor. Added information on the -PS model. Updated the list of parameters and description of parameters. Added fault E991.1.
2022-01	B04	 Modified Safety Instructions. Improved the table "Cable specifications and recommended models" in section 3.3.2.
2021-12	B03	 Improved the table in section 1.1.3. Modified the numbering and component names in section 1.2.2. Transposed sections 2.2.3 and 2.2.4. Added load inertia ratio range recommendations and adjusted the reference level of rigidity to the STune operating instructions. Added safety precautions for the encoder. Changed the default value of H0A-30 to 2. Changed the range of H09-32 to -1000-1000. Changed the default value of H00-31 to 262144. Changed the default value of H09-37 to 300. Changed the type of the power line breakage fault to No. 2 recoverable.
2021-08	B02	 Updated the model number and nameplate of the motor. Changed the default value of H0A-30 to 2. Added more recommended cable lug models.
2021-03	B01	Added section 7 Modbus Communication.

Date	Version	Description
2021-02	B00	 Added technical specifications of the drive and motor. Added information on components, servo motor selection, and cables for the servo drives above 1.8 kW. Updated the system wiring diagram. Improved sections Wiring of Power Cables and Wiring of Encoder Cables. Added section Wiring and Setup of the Braking Resistor.
2020-11	A04	Minor corrections.
2020-08	A03	Removed the customer service phone.
2020-03	A02	 Removed the M3 motor model. Modified the motor model number and nameplate in section 1. Deleted the 55B30CB motor model. Modified the category of Er.430.
2020-03	A01	 Added information on large power. Modified the description of drive terminals. Removed the S6R6 motor model. Modified the precautions of main circuit wiring in section 3.2.5. Modified the descriptions of FunIN.2, FunIN.28, FunIN.29, FunIN.32, FunIN.35, and FunIN.36. Added description for H03-60 to H03-64. Modified information on Er.130 and Er.640.
2019-07	A00	First release.

Access to the Guide

This guide is not delivered with the product. You can obtain the PDF version in the following way:

- Visit <u>http://www.inovance.com</u>, go to Support > Download, search by keyword, and then download the PDF file.
- Scan the QR code on the product with your mobile phone.

Warranty

Inovance provides warranty service within the warranty period (as specified in your order) for any fault or damage that is not caused by improper operation of the user. You will be charged for any repair work after the warranty period expires.

Within the warranty period, maintenance fee will be charged for the following damage:

- Damage caused by operations not following the instructions in the user guide
- Damage caused by fire, flood, or abnormal voltage
- Damage caused by unintended use of the product
- Damage caused by use beyond the specified scope of application of the product
- Damage or secondary damage caused by force majeure (natural disaster, earthquake, and lightning strike)

The maintenance fee is charged according to the latest Price List of Inovance. If otherwise agreed upon, the terms and conditions in the agreement shall prevail.

For details, see the Product Warranty Card.

Table of Contents

Preface1
General Safety Instructions 13
1 Selection Table
1.1 Selection
1.2 Models of MS1-R Series Motors and MS1-Z Series Motors
2 SV630P Series
2.1 Product Information
2.1.1 Description of the Model and Nameplate24
2.1.2 Components
2.1.2.1 Servo Drives in Size A (Rated Power: 0.2 kW to 0.4 kW)
2.1.2.2 Servo Drives in Size B (Rated Power: 0.75 kW)
2.1.2.3 Servo Drives in Size C and D (Rated Power: 1.0 kW to 3.0 kW)
2.1.2.4 Servo Drives in Size E (Rated Power: 5.0 kW to 7.5 kW)
2.1.3 Product Dimensions
2.2 Product Specifications
2.2.1 Electrical Specifications
2.2.2 Technical Specifications
2.2.3 Dynamic Brake Characteristics
2.2.4 Load Moment of Inertia
3 MS1-R Series Motor 40
3.1 Product Information
3.1.1 Description of the Model and Nameplate
3.1.2 Components
3.1.3 Motor Models
3.2 Product Specifications
3.2.1 Mechanical Characteristics
3.2.2 Overload Characteristics
3.2.3 Derating Characteristics
3.2.4 Temperature Curve of the Oil Seal47
3.3 Selection Instructions
3.4 Low Inertia and Small Capacity (MS1H1)48
3.4.1 MS1H1-05B30CB-T33*Z
3.4.2 MS1H1-10B30CB-T33*Z
3.4.3 MS1H1-20B30CB-T33*R51

54
56
60
61
62
63
64
65
66
67
69
69 70
69 70 70

3.7.6 MS1H4-10C30CB-T33*R	
4 Options	88
4.1 List of options	
4.2 Cables	
4.2.1 Cable Type	
4.2.2 Model Description	89
4.2.3 Cable Selection	
4.3 Electrical Peripherals	95
4.3.1 Fuse	
4.3.2 Electromagnetic Contactor	95
4.3.3 Breaker	96
4.3.4 AC input reactor	
4.3.5 EMC filter	
4.3.6 Magnetic Ring and Magnetic Buckle	100
4.4 Absolute Encoder Batteries	102
5 Installation	104
5.1 Installation of the Servo Drive	104
5.1.1 Unpacking Inspection	104
5.1.2 Installation Environment	105
5.1.3 Installation Clearance	106
5.1.4 Installation Dimensions	108
5.1.5 Installation Precautions	110
5.1.6 Installation Instructions	111
5.2 Installation of Optional Parts	112
5.2.1 Instructions for Installing the Fuse and Circuit Breaker	112
5.2.2 Instructions for Installing the AC Input Reactor	113
5.2.3 Instructions for Installing the EMC Filter	113
5.2.4 Installation of the Magnetic Ring and Ferrite Clamp	113
6 System Wiring Diagram	115
6.1 System Wiring	115
6.2 System Composition	117
7 电气接线图	119
7.1 Wiring diagram of the Position Control Mode	119
7.2 Wiring Diagram for Torque Control Mode	120
8 Wiring Terminals	121

8.2 Main Circuit Terminals	
	126
8.2.1 Wiring Precautions	126
8.2.2 Main Circuit Wiring Requirements	127
8.2.3 Recommended Cable Specifications and Models	128
8.2.4 Main circuit terminal layout	133
8.2.5 Connecting the Motor (UVW)	137
8.2.6 Wiring of External EMC Filter	140
8.2.7 Wiring of the Power Supply	.140
8.2.8 Grounding and Wiring	.143
8.3 Description of Control Terminal (CN1)	146
8.3.1 Terminal Layout	.147
8.3.2 Position Reference Input Signals	.149
8.3.3 DI/DO Signals	156
8.3.4 Encoder Frequency-Division Output Signals	159
8.3.5 Wiring of the Brake	161
8.4 Encoder Terminal CN2	162
8.4.1 Terminal Layout	162
8.4.2 Connecting the Absolute Encoder	163
8.4.3 Installing Absolute Encoder Battery Box	165
8.4.4 Encoder Cable Specifications	167
8.5 Communication Terminals CN3 and CN4	168
8.6 Wiring and Setting of the Regenerative Resistor	172
9 Commissioning Tool	173
9.1 Operating Panel	173
9.1.1 Display Panel Components	
9.1.2 Panel Display	
9.1.3 Parameter Settings	
9.2 Commissioning Software	183
9.2.1 Overview	
9.2.2 To install the fan, do as follows:	
9.2.3 Connection	. 187
9.2.4 Introduction to the Software Tool	
10 Commissioning and Operation	192
10.1 Commissioning Flowchart	
10.2 Inspection Before Commissioning	

10.3 Power-on	.93
10.4 Jog	.94
10.5 Setting Parameters	.96
10.6 Trial Run	208
10.7 Servo OFF	16
11 Adjustment	20
11.1 Overview	20
11.2 Inertia Identification	22
11.2.1 Offline Inertia Identification	223
11.2.2 Online Inertia Auto-tuning2	225
11.3 Auto Gain Tuning	27
11.3.1 ETune	
11.3.2 STune	232
11.4 Manual Gain Tuning	36
11.4.1 Basic Parameters	
11.4.2 Gain Switchover2	240
11.4.3 Comparison of Filters2	244
11.4.4 Feedforward gain2	<u>2</u> 44
11.4.5 PDFF Control2	246
11.4.6 Torque disturbance observer2	247
11.4.7 Speed Observer2	250
11.4.8 Model Tracking2	252
11.4.9 Friction Compensation	254
11.5 Parameter Adjustment in Different Control Modes	55
11.5.1 Parameter Adjustment in the Position Control Mode	255
11.5.2 Parameter Adjustment in the Speed Control Mode2	257
11.5.3 Parameter Adjustment in the Torque Control Mode	257
11.6 Vibration suppression	57
11.6.1 Mechanical Resonance Suppression2	258
11.6.2 Low-Frequency Resonance Suppression at the Mechanical End	262
11.7 Mechanical Characteristic Analysis	64
12 Function Overview	67
13 Basic Functions of the Servo Drive	69
13.1 Position control mode	69
13.1.1 Position control mode2	269

13.1.2 Block diagram of position control parameters	
13.1.3 Position Reference Input Setting	
13.1.4 Reference Frequency Division/Multiplication (Electronic Gear	Ratio)288
13.1.5 Position Reference Filter	
13.1.6 Position Deviation Clear	
13.1.7 Frequency-Division Output	
13.1.8 Motion Control/Internal Command/Positioning Completed/Pr	oximity Functions
13.1.9 Interrupt Positioning	
13.1.10 Homing	
13.2 Speed Control Mode	
13.2.1 Block Diagram of Speed Control Parameters	
13.2.2 Speed Reference Input Setting	
13.2.3 Ramp Function Setting	
13.2.4 Zero Clamp	
13.2.5 Speed Reference Limit	
13.2.6 Speed-Related DO	
13.3 Torque Control Mode	
13.3.1 Block Diagram of Torque Control Parameters	
13.3.2 Torque Reference Input Setting	
13.3.3 Torque Reference Filter	
13.3.4 Torque Reference Limit	
13.3.5 Speed limit in Torque Control Mode	
13.3.6 Torque Reach Output	
13.4 Mixed Control Mode	
13.5 Absolute System	
13.5.1 Overview	
13.5.2 Related Parameters	
13.5.3 Precautions for Use of the Battery Box	
13.6 Auxiliary Functions	
13.6.1 Software position limit	
13.6.2 Software reset	
13.6.3 Motor protection	
13.6.4 DI Filter Time Setting	
14 Communication	
14.1 Modbus通信	
14.1.1 Overview	
14.1.2 Hardware Configuration	
6	

	14.1.3 Data Frame Structure	.368
	14.1.4 Communication Parameters	.375
15	Description of Parameters	376
	15.1 H00 Servo Motor Parameters	376
	15.2 H01 Servo Drive Parameters	382
	15.3 H02 Basic Control Parameters	392
	15.4 H03 Terminal Input Parameters	402
	15.5 H04 Terminal Output Parameters	411
	15.6 H05 Position Control Parameters	415
	15.7 H06 Speed Control Parameters	436
	15.8 H07 Torque Control Parameters	446
	15.9 H08 Gain Parameters	453
	15.10 H09 Gain auto-tuning parameters	467
	15.11 H0A Fault and Protection	477
	15.12 H0B Display Parameters	488
	15.13 H0C Communication Parameters	500
	15.14 H0d Auxiliary Parameters	506
	15.15 H11 Multi-Position Function Parameters	510
	15.16 H12 Multi-Speed Operation References	529
	15.17 H17 VDO/VDI settings	543
	15.18 H1B Motor Storage Property	560
	15.19 H30 Servo status variables read through communication	562
	15.20 H31 Related variables set through communication	564
16	Parameter List	566
	16.1 Parameter Group H00	566
	16.2 Parameter Group H01	567
	16.3 Parameter Group H02	572
	16.4 Parameter Group H03	575
	16.5 Parameter Group H04	578
	16.6 Parameter Group H05	579
	16.7 Parameter Group H06	584

	16.8 Parameter Group H07	585
	16.9 Parameter Group H08	587
	16.10 Parameter Group H09	591
	16.11 Parameter Group H0A	594
	16.12 Parameter Group H0b	597
	16.13 Parameter Group H0C	602
	16.14 Parameter Group H0d	603
	16.15 Parameter Group H11	604
	16.16 Parameter Group H12	608
	16.17 Parameter Group H17	612
	16.18 Parameter Group H1B	616
	16.19 Parameter Group H30	617
	16.20 Parameter Group H31	617
17	Troubleshooting	618
	17.1 Fault Levels and Display	618
	17.2 Troubleshooting During Startup	619
	17.3 Reset Method After Troubleshooting	626
	17.4 Description of Warning Codes	627
	17.5 Description of Fault Codes	638
	17.5.1 Solutions to Faults	.638
	17.5.2 Internal Faults	.672
	17.6 List of Alarm Codes	673
	17.7 List of Fault Codes	674
18	Maintenance	677
	18.1 Routine Maintenance	677
	18.1.1 Routine Checklist	
	18.1.2 Routine Cleaning List.	
	18.2 Periodic Maintenance	
	18.2.2 Periodic Maintenance List	
	18.3 Parts Replacement	679
	18.3.1 Replacing the Motor Flat Key	
	18.3.2 Removing the Motor Oil Seal	.679

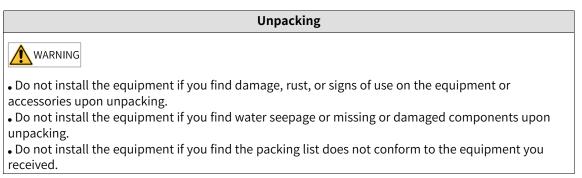
19 Appendix	681
19.1 Compliance Requirements	681
19.1.1 CE Certifications	681
19.1.1.1 Requirement for Compliance with EMC Directive	681
19.1.1.2 Requirements for Compliance with LVD	682
19.2 Solutions to Common EMC Problems	683
19.2.1 Malfunction of the Residual Current Device (RCD)	683
19.2.2 Harmonic Suppression	685
19.2.3 Control Circuit Interference	685
19.2.3.1 High-speed Pulse Interference	685
19.2.3.2 Common I/O Signal Interference	685
19.2.4 RS485&CAN Communication Interference	686
19.3 Capacity Selection Example for Servo Motor	687
19.3.1 Capacity Selection Example for Position Control	687
19.3.2 Capacity Selection Example for Speed Control	690
19.4 CANlink Enhanced Axis Control Parameters	693
19.5 DIDO Function Assignment	694
19.6 Display of Monitoring Parameters	700
19.7 Ordering	706
19.8 服务与支持	707

General Safety Instructions

Safety Precautions

- This section explains the safety precautions that need to be observed to use this product correctly. Before using this product, please read the instruction manual and correctly understand the relevant information of safety precautions. Failure to comply with the safety precautions may result in death, serious injury, or equipment damage.
- "CAUTION", "WARNING", and "DANGER" items in the guide only indicate some of the precautions that need to be followed; they just supplement the safety precautions.
- Use this equipment according to the designated environment requirements. Damage caused by improper use is not covered by warranty.
- Inovance shall take no responsibility for any personal injuries or property damage caused by improper use.

Safety Levels and Definitions


Indicates that failure to comply with the notice will result in death or severe personal injuries.

Indicates that failure to comply with the notice may result in death or severe personal injuries.

Indicates that failure to comply with the notice may result in minor or moderate personal injuries or equipment damage.

General Safety Instructions

- Drawings in the selection guide are sometimes shown without covers or protective guards. Remember to install the covers or protective guards as specified first, and then perform operations in accordance with the instructions. Install the covers or protective guards as specified, and use the equipment in accordance with the instructions described in the user guide.
- The drawings in the guide are shown for illustration only and may be different from the product you purchased.

• Check whether the packing is intact and whether there is damage, water seepage, dampness, and deformation before unpacking.

• Unpack the package by following the unpacking sequence. Do not strike the package violently.

• Check whether there is damage, rust, or injuries on the surface of the equipment and equipment accessories before unpacking.

• Check whether the package contents are consistent with the packing list before unpacking.

Storage and Transportation

Large-scale or heavy equipment must be transported by qualified professionals using specialized hoisting equipment. Failure to comply may result in personal injuries or equipment damage.
Before hoisting the equipment, ensure the equipment components such as the front cover and terminal blocks are secured firmly with screws. Loosely-connected components may fall off and result in personal injuries or equipment damage.

• Never stand or stay below the equipment when the equipment is being hoisted by the hoisting equipment.

• When hoisting the equipment with a steel rope, ensure the equipment is hoisted at a constant speed without suffering from vibration or shock. Do not turn the equipment over or let the equipment stay hanging in the air. Failure to comply may result in personal injuries or equipment damage.

AUTION

• Handle the equipment with care during transportation and mind your steps to prevent personal injuries or equipment damage.

• When carrying the equipment with bare hands, hold the equipment casing firmly with care to prevent parts from falling. Failure to comply may result in personal injuries.

• Store and transport the equipment based on the storage and transportation requirements. Failure to comply will result in equipment damage.

• Avoid storing or transporting the equipment in environments with water splash, rain, direct sunlight, strong electric field, strong magnetic field, and strong vibration.

• Avoid storing the equipment for more than three months. Long-term storage requires stricter protection and necessary inspections.

• Pack the equipment strictly before transportation. Use a sealed box for long-distance transportation.

• Never transport the equipment with other equipment or materials that may harm or have negative impacts on this equipment.

• The equipment can be operated by well-trained and qualified professionals only. Non-professionals are not allowed.

• Read through the guide and safety instructions before installation.

• Do not install this equipment in places with strong electric or magnetic fields.

• Before installation, check that the mechanical strength of the installation site can bear the weight of the equipment. Failure to comply will result in mechanical hazards.

• Do not wear loose clothes or accessories during installation. Failure to comply may result in an electric shock.

• When installing the equipment in a closed environment (such as a cabinet or casing), use a cooling device (such as a fan or air conditioner) to cool the environment down to the required temperature. Failure to comply may result in equipment over-temperature or a fire.

• Do not retrofit the equipment.

• Do not fiddle with the bolts used to fix equipment components or the bolts marked in red.

• When the equipment is installed in a cabinet or final assembly, a fireproof enclosure providing both electrical and mechanical protections must be provided. The IP rating must meet IEC standards and local laws and regulations.

• Before installing devices with strong electromagnetic interference, such as a transformer, install a shielding device for the equipment to prevent malfunction.

• Install the equipment onto an incombustible object such as a metal. Keep the equipment away from combustible objects. Failure to comply will result in a fire.

• Cover the top of the equipment with a piece of cloth or paper during installation. This is to prevent unwanted objects such as metal chippings, oil, and water from falling into the equipment and causing faults. After installation, remove the cloth or paper on the top of the equipment to prevent over-temperature caused by poor ventilation due to blocked ventilation holes.

• Resonance may occur when the equipment operating at a constant speed executes variable speed operations. In this case, install the vibration-proof rubber under the motor frame or use the vibration suppression function to reduce resonance.

Wiring

• Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed only by professionals.

• Before wiring, cut off power connections with all equipment. Residual voltage exists after power cut-off. Therefore, wait at least the time designated on the equipment warning label before further operations. Measure the DC voltage of the main circuit and make sure it is below the safe voltage, otherwise there will be the danger of electric shock.

• Do not perform wiring, remove the equipment cover, or touch the circuit board with power ON. Failure to comply will result in an electric shock.

• Check that the equipment is grounded properly. Failure to comply will result in an electric shock.

• Do not connect the input power supply to the output end of the equipment. Failure to comply will result in equipment damage or even a fire.

• When connecting a drive to the motor, check that the phase sequences of the drive and motor terminals are consistent to prevent reverse motor rotation.

• Cables used for wiring must meet cross sectional area and shielding requirements. The shield of the cable must be reliably grounded at one end.

• Fix the terminal screws with the tightening torque specified in the user guide. Improper tightening torque may overheat or damage the connecting part, resulting in a fire.

• After wiring is done, check that all cables are connected properly and no screws, washers or exposed cables are left inside the equipment. Failure to comply may result in an electric shock or equipment damage.

During wiring, follow the proper electrostatic discharge (ESD) procedure, and wear an antistatic wrist strap. Failure to comply will damage the equipment or the internal circuits of the equipment.
Use shielded twisted pairs for the control circuit. Connect the shield to the grounding terminal of the equipment for grounding purpose. Failure to comply will result in equipment malfunction.

Power-on

• Before power-on, check that the equipment is installed properly with reliable wiring and the motor can be restarted.

• Check that the power supply meets equipment requirements before power-on to prevent equipment damage or a fire.

• After power-on, do not open the cabinet door or protective cover of the equipment, touch any terminal, or disassemble any unit or component of the equipment. Failure to comply will result in an electric shock.

• Perform a trial run after wiring and parameter setting to ensure the equipment operates safely. Failure to comply may result in personal injuries or equipment damage.

Before power-on, make sure that the rated voltage of the equipment is consistent with that of the power supply. Failure to comply may resulting in a fire. Failure to comply may result in a fire.
Before power-on, check that no one is near the equipment, motor, or machine. Failure to comply may result in death or personal injuries.

Operation

ANGER

• The equipment must be operated only by professionals. Failure to comply will result in death or personal injuries.

• Do not touch any connecting terminals or disassemble any unit or component of the equipment during operation. Failure to comply will result in an electric shock.

• Do not touch the equipment casing, fan, or resistor with bare hands to feel the temperature. Failure to comply may result in personal injuries.

• Prevent metal or other objects from falling into the equipment during operation. Failure to comply may result in a fire or equipment damage.

Maintenance

• Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed only by professionals.

• Do not maintain the equipment with power ON. Failure to comply will result in an electric shock.

• Before maintenance, cut off all the power supplies of the equipment and wait for at least the time designated on the equipment warning label.

• In case of a permanent magnet motor, do not touch the motor terminals immediately after poweroff because the motor terminals will generate induced voltage during rotation even after the equipment power supply is off. Failure to comply will result in an electric shock.

• Perform routine and periodic inspection and maintenance on the equipment according to maintenance requirements and keep a maintenance record.

Repair

• Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed only by professionals.

• Do not repair the equipment with power ON. Failure to comply will result in an electric shock.

• Before inspection and repair, cut off all the power supplies of the equipment and wait for at least the time designated on the equipment warning label.

• Submit the repair request according to the warranty agreement.

• When the fuse is blown or the circuit breaker or earth leakage current breaker (ELCB) trips, wait for at least the time designated on the equipment warning label before power-on or further operations. Failure to comply may result in death, personal injuries or equipment damage.

• When the equipment is faulty or damaged, the troubleshooting and repair work must be performed by professionals that follow the repair instructions, with repair records kept properly.

• Replace quick-wear parts of the equipment according to the replacement instructions.

• Do not use damaged equipment. Failure to comply may result in death, personal injuries, or severe equipment damage.

• After the equipment is replaced, check the wiring and set parameters again.

• Dispose of retired equipment in accordance with local regulations and standards. Failure to comply may result in property damage, personal injuries, or even death.

• Recycle retired equipment by observing industry waste disposal standards to avoid environmental pollution.

Additional Precautions

Cautions for the dynamic brake

• Dynamic braking can only be used for emergency stop in case of failure and sudden power failure. Do not trigger failure or power failure frequently.

- Ensure that the dynamic braking function has an operation interval of more than 5 minutes at high speed, otherwise the internal dynamic braking circuit may be damaged.
- Dynamic braking is common in rotating mechanical structures. For example, when a motor has stopped running, it keeps rotating due to the inertia of its load. In this case, this motor is in the regenerative state and short-circuit current passes through the dynamic brake. If this situation continues, the drive, and even the motor, may be burned.

Safety Label

For safe equipment operation and maintenance, comply with the safety labels on the equipment. Do not damage or remove the safety labels. See the following table for descriptions of the safety labels.

Safety Label	Description
た陸 DANGER AALSE Hazardous Voltage 高温注意 High Temperature	 Never fail to connect Protective Earth (PE) terminal. Read the manual and follow the safety instructions before use. Do not touch terminals within 15 minutes after disconnecting the power supply to prevent the risk of electric shock. Do not touch the heatsink with power ON to prevent the risk of burn.

1 Selection Table

1.1 Selection

Servo motor					-	ervo drive SV630****I	
Motor without brake	Motor with brake	Flange Size	Capacity (kW)	Voltage Class	Size	Recommended Drive Model	No.
	Ratings of MS1H1 (n _N =3000rpm, n _{max} =6000rpm) series motors						
MS1H1-05B30CB-T330Z	MS1H1-05B30CB-T332Z	40	0.05				
MS1H1-10B30CB-T330Z	MS1H1-10B30CB-T332Z	40	0.1	Single-phase 220 V		S1R6	00002
MS1H1-20B30CB-T331R	MS1H1-20B30CB-T334R	60	0.2		A		
MS1H1-40B30CB- T331R	MS1H1-40B30CB- T334R	60	0.4	Single-phase 220 V		S2R8	00003
MS1H1-55B30CB- T331R	-	80	0.55	Single-phase 220 V	P	S5R5	00005
MS1H1-75B30CB- T331R	MS1H1-75B30CB- T334R	80	0.75	Single-phase 220 V	В	S5R5	00005
MS1H1-10C30CB- T331R	MS1H1-10C30CB- T334R	80	1.0	Single-phase/Three- phase 220 V	С	S7R6	00006
	Ratings of MS.	1H2 (n _N =3000)rpm, n _{max} =6	6000rpm/5000rpm) ser	ries motor:	S	
MS1H2-10C30CB-T331R	MS1H2-10C30CB-T334R	100	1.0	Single-phase/Three- phase 220 V	С	S7R6	00006
MS1H2-10C30CD-T331R	MS1H2-10C30CD-T334R	100	1.0	Three-phase 380 V		T3R5	10001
MS1H2-15C30CB-T331R	MS1H2-15C30CB-T334R	100	1.5	Single-phase/Three- phase 220 V	D	S012	00007
MS1H2-15C30CD-T331R	MS1H2-15C30CD-T334R	100	1.5	Three-phase 380 V	С	T5R4	10002
MS1H2-20C30CB-T331R	MS1H2-20C30CB-T334R	100	2.0	Single-phase/Three- phase 220 V	D	S012	00007
MS1H2-20C30CD-T331R	MS1H2-20C30CD-T334R	100	2.0	Three-phase 380 V	D	T8R4	10003
MS1H2-25C30CD-T331R	MS1H2-25C30CD-T334R	100	2.5	Three-phase 380 V	D	T8R4	10003
MS1H2-30C30CD-T331R	MS1H2-30C30CD-T334R	130	3.0	Three-phase 380 V	D	T012	10004
MS1H2-40C30CD-T331R	MS1H2-40C30CD-T334R	130	4.0	Three-phase 380 V		T017	10005
MS1H2-50C30CD-T331R	MS1H2-50C30CD-T334R	130	5.0	Three-phase 380 V	E	T021	10006
	Ratings	of MS1H3 (n _N	=1500rpm,n	_{max} =3000rpm) series mc	otors		
MS1H3-85B15CB-T331R	MS1H3-85B15CB-T334R	130	0.85	Single-phase/Three- phase 220 V	С	S7R6	00006
MS1H3-85B15CD-T331R	MS1H3-85B15CD-T334R	130	0.85	Three-phase 380 V		T3R5	10001
MS1H3-13C15CB-T331R	MS1H3-13C15CB-T334R	130	1.3	Single-phase/Three- phase 220 V	D	S012	00007
MS1H3-13C15CD-T331R	MS1H3-13C15CD-T334R	130	1.3	Three-phase 380 V	С	T5R4	10002
MS1H3-18C15CD-T331R	MS1H3-18C15CD-T334R	130	1.8	Three-phase 380 V	D	T8R4	10003

Servo motor				-	ervo drive SV630****I		
Motor without brake	Motor with brake	Flange Size	Capacity (kW)	Voltage Class	Size	Recommended Drive Model	No.
MS1H3-29C15CD-T331R	MS1H3-29C15CD-T334R	180	2.9	Three-phase 380 V	D	T012	10004
MS1H3-44C15CD-T331R	MS1H3-44C15CD-T334R	180	4.4	Three-phase 380 V		T017	10005
MS1H3-55C15CD-T331R	MS1H3-55C15CD-T334R	180	5.5	Three-phase 380 V	E	T021	10006
MS1H3-75C15CD-T331R	MS1H3-75C15CD-T334R	180	7.5	Three-phase 380 V		T026	10007
	MS1H	4 (n _N =300	0rpm,n _m	ax =6000rpm) rati	ngs		
MS1H4-10B30CB-T330Z	MS1H4-10B30CB-T332Z	40	0.1	Single phase 220.V		C1DC	00000
MS1H4-20B30CB-T331R	MS1H4-20B30CB-T334R	60	0.2	Single-phase 220 V	А	S1R6	00002
MS1H4-40B30CB-T331R	MS1H4-40B30CB-T334R	60	0.4	Single-phase 220 V		S2R8	00003
MS1H4-55B30CB-T331R	-	80	0.55	Single-phase 220 V		S5R5	00005
MS1H4-75B30CB-T331R	MS1H4-75B30CB-T334R	80	0.75	Single-phase 220 V	В	S5R5	00005
MS1H4-10C30CB-T331R	MS1H4-10C30CB-T334R	80	1.0	Single-phase/Three- phase 220 V	С	S7R6	00006

Note

- Servo motors match different series of servo drives, and the maximum speed and maximum torque output of the motor vary slightly. See the selection table for details.
- For servo motors designed to work with 18-bit encoders, the height of the encoder aviation connector increases by 1 mm.

1.2 Models of MS1-R Series Motors and MS1-Z Series Motors

Flange	Models without brake		Models w	vith Brake
Size	MS1-Z series motor model	MS1-R series motor model	MS1-Z series motor model	MS1-R series motor model
	MS1H1-20B30CB-A331Z	MS1H4-20B30CB-A331R	MS1H1-20B30CB-A334Z	MS1H4-20B30CB-A334R
	MS1H1-40B30CB-A331Z	MS1H4-40B30CB-A331R	MS1H1-40B30CB-A334Z	MS1H4-40B30CB-A334R
	MS1H4-40B30CB-A331Z	MS1H4-40B30CB-A331R	MS1H4-40B30CB-A334Z	MS1H4-40B30CB-A334R
	MS1H1-20B30CB-A331Z-S	MS1H4-20B30CB-A331R-S	MS1H1-20B30CB-A334Z-S	MS1H4-20B30CB-A334R-S
	MS1H1-40B30CB-A331Z-S	MS1H4-40B30CB-A331R-S	MS1H1-40B30CB-A334Z-S	MS1H4-40B30CB-A334R-S
	MS1H4-40B30CB-A331Z-S	MS1H4-40B30CB-A331R-S	MS1H4-40B30CB-A334Z-S	MS1H4-40B30CB-A334R-S
	MS1H1-20B30CB-T331Z	MS1H4-20B30CB-T331R	MS1H1-20B30CB-T334Z	MS1H4-20B30CB-T334R
60	MS1H1-40B30CB-T331Z	MS1H4-40B30CB-T331R	MS1H1-40B30CB-T334Z	MS1H4-40B30CB-T334R
	MS1H4-40B30CB-T331Z	MS1H4-40B30CB-T331R	MS1H4-40B30CB-T334Z	MS1H4-40B30CB-T334R
	MS1H1-20B30CB-T331Z X6	MS1H4-20B30CB-T331R	MS1H1-20B30CB-T334Z X6	MS1H4-20B30CB-T334R
	MS1H1-40B30CB-T331Z X6	MS1H4-40B30CB-T331R	MS1H1-40B30CB-T334Z X6	MS1H4-40B30CB-T334R
	MS1H4-40B30CB-T331Z X6	MS1H4-40B30CB-T331R	MS1H4-40B30CB-T334Z X6	MS1H4-40B30CB-T334R
	-	MS1H4-20B30CB-T331R-S	-	MS1H4-20B30CB-T334R-S
	-	MS1H4-40B30CB-T331R-S	-	MS1H4-40B30CB-T334R-S

Note

- The R version of the H4 inertia model is used to replace the Z version of the H1 and H4 inertia models.
- The H1 model, ultra-small inertia type motor added to the flange size 60 and 80 of R version, is mainly used for fast point-to-point motion control applications.

Flange	Models without brake		Models w	vith Brake
Size	MS1-Z series motor model	MS1-R series motor model	MS1-Z series motor model	MS1-R series motor model
	MS1H1-55B30CB-A331Z	MS1H4-55B30CB-A331R	MS1H1-75B30CB-A334Z	MS1H4-75B30CB-A334R
-	MS1H1-75B30CB-A331Z	MS1H4-75B30CB-A331R	MS1H4-75B30CB-A334Z	MS1H4-75B30CB-A334R
-	MS1H4-75B30CB-A331Z	MS1H4-75B30CB-A331R	MS1H1-75B30CB-A334Z-S	MS1H4-75B30CB-A334R-S
-	MS1H1-10C30CB-A331Z	MS1H4-10C30CB-A331R	MS1H4-75B30CB-A334Z-S	MS1H4-75B30CB-A334R-S
-	MS1H1-55B30CB-A331Z-S	MS1H4-55B30CB-A331R-S	MS1H1-75B30CB-T334Z	MS1H4-75B30CB-T334R
-	MS1H1-75B30CB-A331Z-S	MS1H4-75B30CB-A331R-S	MS1H4-75B30CB-T334Z	MS1H4-75B30CB-T334R
-	MS1H4-75B30CB-A331Z-S	MS1H4-75B30CB-A331R-S	MS1H1-75B30CB-T334Z X6	MS1H4-75B30CB-T334R
-	MS1H1-10C30CB-A331Z-S	MS1H4-10C30CB-A331R-S	MS1H4-75B30CB-T334Z X6	MS1H4-75B30CB-T334R
-	MS1H1-55B30CB-T331Z	MS1H4-55B30CB-T331R	-	MS1H4-10C30CB-A334R
80	MS1H1-75B30CB-T331Z	MS1H4-75B30CB-T331R	-	MS1H4-10C30CB-A334R-S
-	MS1H4-75B30CB-T331Z	MS1H4-75B30CB-T331R	-	MS1H4-10C30CB-T334R
-	MS1H1-10C30CB-T331Z	MS1H4-10C30CB-T331R	-	MS1H4-75B30CB-T334R-S
-	MS1H1-55B30CB-T331Z X6	MS1H4-55B30CB-T331R	-	MS1H4-10C30CB-T334R-S
-	MS1H1-75B30CB-T331Z X6	MS1H4-75B30CB-T331R	-	-
-	MS1H4-75B30CB-T331Z X6	MS1H4-75B30CB-T331R	-	-
-	MS1H1-10C30CB-T331Z X6	MS1H4-10C30CB-T331R	-	-
	-	MS1H4-55B30CB-T331R-S	-	-
	-	MS1H4-75B30CB-T331R-S	-	-
	-	MS1H4-10C30CB-T331R-S	-	-

Note

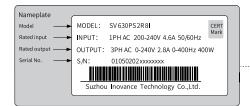
- The R version of the H4 inertia model is used to replace the Z version of the H1 and H4 inertia models.
- The H1 model, ultra-small inertia type motor added to the flange size 60 and 80 of R version, is mainly used for fast point-to-point motion control applications.

Flange	Models without brake		Models w	ith Brake
Size	MS1-Z series motor model	MS1-R series motor model	MS1-Z series motor model	MS1-R series motor model
	MS1H2-10C30CB-A331Z	MS1H2-10C30CB-A331R	MS1H2-10C30CB-A334Z	MS1H2-10C30CB-A334R
	MS1H2-10C30CD-A331Z	MS1H2-10C30CD-A331R	MS1H2-10C30CD-A334Z	MS1H2-10C30CD-A334R
	MS1H2-15C30CB-A331Z	MS1H2-15C30CB-A331R	MS1H2-15C30CD-A334Z	MS1H2-15C30CD-A334R
	MS1H2-15C30CD-A331Z	MS1H2-15C30CD-A331R	MS1H2-15C30CB-A334Z	MS1H2-15C30CB-A334R
	MS1H2-20C30CD-A331Z	MS1H2-20C30CD-A331R	MS1H2-20C30CD-A334Z-S4	MS1H2-20C30CD-A334R
	MS1H2-25C30CD-A331Z	MS1H2-25C30CD-A331R	MS1H2-25C30CD-A334Z-S4	MS1H2-25C30CD-A334R
100	MS1H2-10C30CB-T331Z	MS1H2-10C30CB-T331R	MS1H2-10C30CB-T334Z	MS1H2-10C30CB-T334R
	MS1H2-10C30CD-T331Z	MS1H2-10C30CD-T331R	MS1H2-10C30CD-T334Z	MS1H2-10C30CD-T334R
-	MS1H2-15C30CB-T331Z	MS1H2-15C30CB-T331R	MS1H2-15C30CD-T334Z	MS1H2-15C30CD-T334R
	MS1H2-15C30CD-T331Z	MS1H2-15C30CD-T331R	MS1H2-15C30CB-T334Z	MS1H2-15C30CB-T334R
	MS1H2-20C30CD-T331Z	MS1H2-20C30CD-T331R	MS1H2-20C30CD-T334Z-S4	MS1H2-20C30CD-T334R
	MS1H2-25C30CD-T331Z	MS1H2-25C30CD-T331R	MS1H2-25C30CD-T334Z-S4	MS1H2-25C30CD-T334R
	MS1H2-30C30CD-A331Z	MS1H2-30C30CD-A331R	MS1H2-30C30CD-A334Z-S4	MS1H2-30C30CD-A334R
	MS1H2-40C30CD-A331Z	MS1H2-40C30CD-A331R	MS1H2-40C30CD-A334Z-S4	MS1H2-40C30CD-A334R
	MS1H2-50C30CD-A331Z	MS1H2-50C30CD-A331R	MS1H2-50C30CD-A334Z-S4	MS1H2-50C30CD-A334R
130	MS1H2-30C30CD-T331Z	MS1H2-30C30CD-T331R	MS1H2-30C30CD-T334Z-S4	MS1H2-30C30CD-T334R
-	MS1H2-40C30CD-T331Z	MS1H2-40C30CD-T331R	MS1H2-40C30CD-T334Z-S4	MS1H2-40C30CD-T334R
	MS1H2-50C30CD-T331Z	MS1H2-50C30CD-T331R	MS1H2-50C30CD-T334Z-S4	MS1H2-50C30CD-T334R
	MS1H3-85B15CB-A331Z	MS1H3-85B15CB-A331R	MS1H3-85B15CB-A334Z	MS1H3-85B15CB-A334R
	MS1H3-85B15CD-A331Z	MS1H3-85B15CD-A331R	MS1H3-85B15CD-A334Z	MS1H3-85B15CD-A334R
	MS1H3-13C15CB-A331Z	MS1H3-13C15CB-A331R	MS1H3-13C15CB-A334Z	MS1H3-13C15CB-A334R
	MS1H3-13C15CD-A331Z	MS1H3-13C15CD-A331R	MS1H3-13C15CD-A334Z	MS1H3-13C15CD-A334R
	MS1H3-18C15CD-A331Z	MS1H3-18C15CD-A331R	MS1H3-18C15CD-A334Z	MS1H3-18C15CD-A334R
	MS1H3-85B15CB-T331Z X6	MS1H3-85B15CB-T331R	MS1H3-85B15CB-T334Z X6	MS1H3-85B15CB-T334R
	MS1H3-85B15CD-T331Z X6	MS1H3-85B15CD-T331R	MS1H3-85B15CD-T334Z X6	MS1H3-85B15CD-T334R
	MS1H3-13C15CB-T331Z X6	MS1H3-13C15CB-T331R	MS1H3-13C15CB-T334Z X6	MS1H3-13C15CB-T334R
130	MS1H3-13C15CD-T331Z X6	MS1H3-13C15CD-T331R	MS1H3-13C15CD-T331Z X6	MS1H3-13C15CD-T331R
	MS1H3-18C15CD-T331Z X6	MS1H3-18C15CD-T331R	MS1H3-13C15CD-T334Z X6	MS1H3-13C15CD-T334R
	MS1H3-85B15CB-T331Z	MS1H3-85B15CB-T331R	MS1H3-18C15CD-T334Z X6	MS1H3-18C15CD-T334R
	MS1H3-85B15CD-T331Z	MS1H3-85B15CD-T331R	MS1H3-85B15CB-T334Z	MS1H3-85B15CB-T334R
	MS1H3-85B15CD-T334Z	MS1H3-85B15CD-T334R	MS1H3-85B15CD-T334Z	MS1H3-85B15CD-T334R
	MS1H3-13C15CB-T331Z	MS1H3-13C15CB-T331R	MS1H3-13C15CB-T334Z	MS1H3-13C15CB-T334R
	MS1H3-13C15CD-T331Z	MS1H3-13C15CD-T331R	MS1H3-13C15CD-T334Z	MS1H3-13C15CD-T334R
	MS1H3-18C15CD-T331Z	MS1H3-18C15CD-T331R	MS1H3-18C15CD-T334Z	MS1H3-18C15CD-T334R

Flange	Models wit	hout brake	Models with Brake		
Size	MS1-Z series motor model	MS1-R series motor model	MS1-Z series motor model	MS1-R series motor model	
	MS1H3-29C15CD-A331Z	MS1H3-29C15CD-A331R	MS1H3-29C15CD-A334Z	MS1H3-29C15CD-A334R	
	MS1H3-44C15CD-A331Z	MS1H3-44C15CD-A331R	MS1H3-44C15CD-A334Z	MS1H3-44C15CD-A334R	
	MS1H3-55C15CD-A331Z	MS1H3-55C15CD-A331R	MS1H3-55C15CD-A334Z	MS1H3-55C15CD-A334R	
	MS1H3-75C15CD-A331Z	MS1H3-75C15CD-A331R	MS1H3-75C15CD-A334Z	MS1H3-75C15CD-A334R	
180	MS1H3-29C15CD-T331Z	MS1H3-29C15CD-T331R	MS1H3-29C15CD-T334Z	MS1H3-29C15CD-T334R	
	MS1H3-44C15CD-T331Z	MS1H3-44C15CD-T331R	MS1H3-44C15CD-T334Z	MS1H3-44C15CD-T334R	
	MS1H3-55C15CD-T331Z	MS1H3-55C15CD-T331R	MS1H3-55C15CD-T334Z	MS1H3-55C15CD-T334R	
	MS1H3-75C15CD-T331Z	MS1H3-75C15CD-T331R	MS1H3-75C15CD-T334Z	MS1H3-75C15CD-T334R	

2 SV630P Series

2.1 **Product Information**


2.1.1 Description of the Model and Nameplate

Description of the Model

① Product series	④ Rated output	t current	5 Installation Mode
SV660: SV660 series servo drive			I: Base plate-mounted
SV630: SV630 series servo drive			
SV635: SV635 series servo drive			
② Product type	S: 220 V	1R6: 1.6 A	6 Non-standard features
P: Pulse type		2R8: 2.8A	Blank: standard
A: CANlink type		5R5: 5.5A	FH: High protection
C: CANopen type		7R6: 7.6A	
		012: 11.6A	
③ Voltage class	T: 380 V	3R5: 3.5A	
S: 220 V		5R4: 5.4A	
T: 380 V		8R4: 8.4A	
		012: 11.9A	
		017: 16.5A	
		021: 20.8A	
		026: 25.7A	

 $\underbrace{ \underline{\mathsf{SV630}}}_{\textcircled{1}} \, \underbrace{ \overset{P}{\textcircled{2}}}_{\textcircled{3}} \, \underbrace{ \overset{S}{\textcircled{3}}}_{\textcircled{4}} \, \underbrace{ \overset{P}{\textcircled{5}}}_{\textcircled{5}} \, \underbrace{ \overset{P}{\textcircled{FH}}}_{\textcircled{6}}$

Nameplate

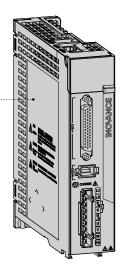


Figure 2-1 Nameplate

Encryption of the production serial number

 $\frac{01050202}{1}$ $\frac{4}{2}$ $\frac{P}{3}$ $\frac{7}{4}$ $\frac{00001}{5}$

	1 234 5	
① Internal code	③ Year	⑤ Lot number
Material code	9: 2009	00001: 1st in current month
	A: 2010	00002: 2nd in current month
		00003: 3rd in current month
	N: 2021	
	P: 2022	Range: 00001 to 99999
	Note: I/L/O/Q is not used.	
② Manufacturer code	④ Month	
4: Suzhou Inovance	1: January	
	2: February	
	A: October	
	B: November	
	C: December	

Example: The S/N 010502024P700001 indicates the drive is manufactured in July, 2022.

2.1.2 Components

1 1 25929292 1999292 ହୃତ୍ତୁତ୍ର 2 INOVANICE 3 4 (5) (6) 20 1 00 8 9 **G**e h (12) 10

2.1.2.1 Servo Drives in Size A (Rated Power: 0.2 kW to 0.4 kW)

Figure 2-2 Components (SV630PS1R6I, SV630PS2R8I)

Table 2–1 Description	of components	(SV630PS1R6L	SV630PS2R8I)
Tuble 2 I Description	or components	(310301 31100)	510501 521(01)

No.	Name	Description
1	5-digit LED display	The 5-digit 8-segment LED display is used to show servo system's running state and parameter setting.
		MODE: Used to switch parameters in sequence.
		riangle: Used to increase the value of the blinking bit.
		\bigtriangledown : Used to decrease the value of the blinking bit.
2	Keys	⊲: Used to shift the blinking bit leftwards.
		(Hold down: Turning to the next page when the displayed number exceeds five digits)
		SET: Used to save modifications and enter the next menu.
3	CN1 (control terminal)	Used by reference input signals and other I/O signals.
(4)	CN2 (terminal for connecting the encoder)	Connected to the motor encoder terminal.
(5)	CHARGE (bus voltage indicator)	Indicates the electric charge is present in the bus capacitor. When the indicator turns on, charges possibly still exist in the internal capacitor of the servo unit, even if the power supply of the main circuit is OFF.
	mulcatory	To prevent electric shock, do not touch the power supply terminals when this indicator lights up.
6	L1, L2 (power input terminals)	See the nameplate for the rated voltage class.

No.	Name	Description
	$P \oplus$ and $N \ominus$ (servo bus terminals)	Used by the common DC bus for multiple servo drives.
1	P⊕, C (terminals for connecting external regenerative resistor)	If an external regenerative resistor is needed, connect it between terminals $P\oplus$ and C.
8	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.
9	Motor grounding terminal	Connected to the grounding terminal of the motor for grounding purpose.
10	Battery location	Used to hold the battery box of the absolute encoder.
11	CN3, CN4 (communication terminals)	Connected to RS232 and RS485 host controllers in parallel.
12	Servo drive grounding terminal	Connected to the grounding terminal of the power supply for grounding purpose.

Note

The built-in regenerative resistor or jumper bar is not available in models S1R6 and S2R8. If an external regenerative resistor is needed for these models, connect it between terminals P⊕ and C.

2.1.2.2 Servo Drives in Size B (Rated Power: 0.75 kW)

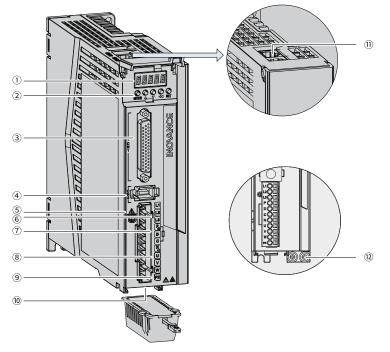


Figure 2-3 Components (SV630PS5R5I)

No.	Name	Description
1	5-digit LED display	The 5-digit 8-segment LED display is used to show servo system's running state and parameter setting.
		MODE: Used to switch parameters in sequence.
		riangle: Used to increase the value of the blinking bit.
		\bigtriangledown : Used to decrease the value of the blinking bit.
2	Keys	\lhd : Used to shift the blinking bit leftwards.
		(Hold down: Turning to the next page when the displayed number exceeds five digits)
		SET: Used to save modifications and enter the next menu.
3	CN1 (control terminal)	Used by reference input signals and other I/O signals.
4	CN2 (terminal for connecting the encoder)	Connected to the motor encoder terminal.
(5)	CHARGE (bus voltage	Indicates the electric charge is present in the bus capacitor. When the indicator turns on, charges possibly still exist in the internal capacitor of the servo unit, even if the power supply of the main circuit is OFF.
	indicator)	To prevent electric shock, do not touch the power supply terminals when this indicator lights up.
	L1, L2, L3 (power input terminals)	See the nameplate for the rated voltage class.
6		Note: S5R5 (0.75kW) models support single-phase 220 V input only, with a 220 V power supply connected between terminals L1 and L2.
	P⊕ and N⊖ (servo bus terminals)	Used by the common DC bus for multiple servo drives.
7	P⊕, D, C (terminals for connecting external regenerative resistor)	Remove the jumper bar between terminals $P \oplus$ and D before connecting an external regenerative resistor between terminals $P \oplus$ and C.
8	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.
9	Motor grounding terminal	Connected to the grounding terminal of the motor for grounding purpose.
10	Battery location	Used to hold the battery box of the absolute encoder.
11	CN3, CN4 (communication terminals)	Connected to RS232 and RS485 host controllers in parallel.
12	Servo drive grounding terminal	Connected to the grounding terminal of the power supply for grounding purpose.

Table 2–2 Descriptio	n of components	(SV630PS5R5I)
		(

2.1.2.3 Servo Drives in Size C and D (Rated Power: 1.0 kW to 3.0 kW)

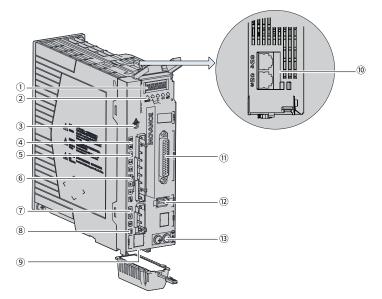


Figure 2-4 Components (SIZE C:SV630PS7R6I/SIZE D:SV630PS012I)

Table 2-3 Description of Components	(SIZE C:SV630PS7R6I/SIZE D:SV630PS012I)
Table 2-3 Description of Components	(312L C.3V030F31R01/312L D.3V030F30121)

No.	Name	Description					
1	5-digit LED display	The 5-digit 8-segment LED display is used to show servo system's running state and parameter setting.					
		MODE: Used to switch parameters in sequence.					
		riangle: Used to increase the value of the blinking bit.					
		\bigtriangledown : Used to decrease the value of the blinking bit.					
2	Keys	⊲: Used to shift the blinking bit leftwards.					
		(Hold down: Turning to the next page when the displayed number exceeds five digits)					
		SET: Used to save modifications and enter the next menu.					
3	CHARGE (bus voltage indicator)	Indicates the electric charge is present in the bus capacitor. When the indicator turns on, charges possibly still exist in the internal capacitor of the servo unit, even if the power supply of the main circuit is OFF.					
	indicator)	To prevent electric shock, do not touch the power supply terminals when this indicator lights up.					
(4)	L1C, L2C (control circuit power input terminals)	See the nameplate for the rated voltage class.					
(5)	L1, L2, L3 (main circuit power input terminals)	Used as the power input terminals for a three-phase 220V servo drive. See the nameplate for the rated voltage class.					
6	P⊕, D, C (terminals for connecting external regenerative resistor)	Remove the jumper bar between terminals $P\oplus$ and D before connecting an external regenerative resistor between terminals $P\oplus$ and C.					
	P⊕ and N⊖ (servo bus terminals)	Used by the common DC bus for multiple servo drives.					
(7)	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.					
8	Motor grounding terminal	Connected to the grounding terminal of the motor for grounding purpose.					
9	Battery location	Used to hold the battery box of the absolute encoder.					

No.	Name	Description
(10)	CN3, CN4 (communication terminals)	Connected to RS232 and RS485 host controllers in parallel.
11	CN1 (control terminal)	Used by reference input signals and other I/O signals.
12	CN2 (terminal for connecting the encoder)	Connected to the motor encoder terminal.
13	Servo drive grounding terminal	Connected to the grounding terminal of the power supply for grounding purpose.

Note

- The main circuits of models S7R6 and S012 can be connected to a single-phase or a three-phase power supply, depending on which one is available on site.
- No derating is required when a single-phase power supply is used for models S7R6 and S012.

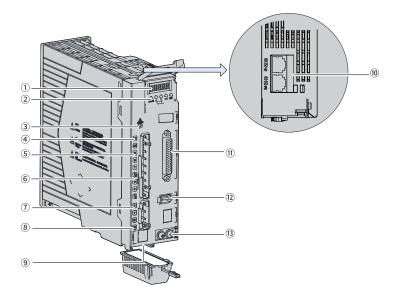


Figure 2-5 Components of servo drives in size C and size D (size C: SV630PT3R5I and SV630PT5R4I; size D: SV630PT8R4I and SV630PT012I)

Table 2–4 Description of components (Size C: SV630PT3R5I and SV630PT5R4I; size D: SV630PT8R4I and SV630PT012I)

No.	Name	Description				
1	5-digit LED display	The 5-digit 8-segment LED display is used to show servo system's running state and parameter setting.				
2	Keys	MODE: Used to switch parameters in sequence.				
		riangle: Used to increase the value of the blinking bit.				
		\bigtriangledown : Used to decrease the value of the blinking bit.				
		⊲: Used to shift the blinking bit leftwards.				
		(Hold down: Turning to the next page when the displayed number exceeds five digits)				
		SET: Used to save modifications and enter the next menu.				

No.	Name	Description
3	CHARGE (bus voltage indicator)	Indicates the electric charge is present in the bus capacitor. When the indicator turns on, charges possibly still exist in the internal capacitor of the servo unit, even if the power supply of the main circuit is OFF.
		To prevent electric shock, do not touch the power supply terminals when this indicator lights up.
4	L1C, L2C (control circuit power input terminals)	See the nameplate for the rated voltage class.
5	R, S, T (main circuit power input terminals)	Used as the power input terminals for a three-phase 380 V servo drive. See the nameplate for the rated voltage class.
6	P⊕, D, C (terminals for connecting external regenerative resistor)	Remove the jumper bar between terminals $P\oplus$ and D before connecting an external regenerative resistor between terminals $P\oplus$ and C.
	P⊕ and N⊖ (servo bus terminals)	Used by the common DC bus for multiple servo drives.
1	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.
8	Motor grounding terminal	Connected to the grounding terminal of the motor for grounding purpose.
9	Battery location	Used to hold the battery box of the absolute encoder.
(10)	CN3, CN4 (communication terminals)	Connected to RS232 and RS485 host controllers in parallel.
11	CN1 (control terminal)	Used by reference input signals and other I/O signals.
12	CN2 (terminal for connecting the encoder)	Connected to the motor encoder terminal.
13	Servo drive grounding terminal	Connected to the grounding terminal of the power supply for grounding purpose.

2.1.2.4 Servo Drives in Size E (Rated Power: 5.0 kW to 7.5 kW)

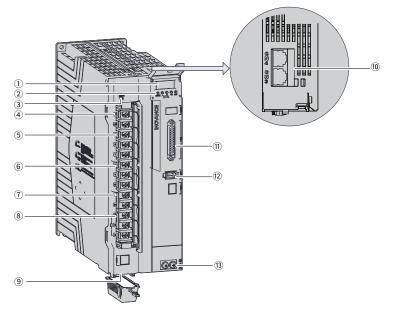
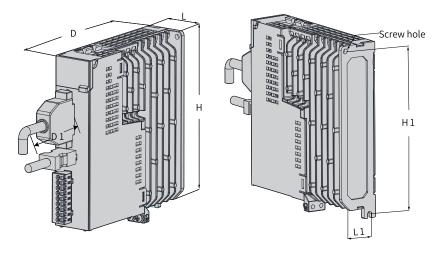



Figure 2-6 Components of servo drives in size E (SV630PT017I, SV630PT021I, SV630PT026I)

No.	Name	Description
1	5-digit LED display	The 5-digit 8-segment LED display is used to show servo system's running state and parameter setting.
		MODE: Used to switch parameters in sequence.
		riangle: Used to increase the value of the blinking bit.
		\bigtriangledown : Used to decrease the value of the blinking bit.
2	Keys	\lhd : Used to shift the blinking bit leftwards.
		(Hold down: Turning to the next page when the displayed number exceeds five digits)
		SET: Used to save modifications and enter the next menu.
3	CHARGE (bus voltage	Indicates the electric charge is present in the bus capacitor. When the indicator turns on, charges possibly still exist in the internal capacitor of the servo unit, even if the power supply of the main circuit is OFF.
	indicator)	To prevent electric shock, do not touch the power supply terminals when this indicator lights up.
4	L1C, L2C (control circuit power input terminals)	See the nameplate for the rated voltage class.
(5)	R, S, T (main circuit power input terminals)	Used as the power input terminals for a three-phase 380 V servo drive. See the nameplate for the rated voltage class.
6	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.
1	N2, N1 (terminals for connecting external reactor)	Terminals N1 and N2 are jumpered by default. To suppress harmonics in the power supply, remove the jumper between terminals N1 and N2 first and connect an external DC reactor between terminals N1 and N2.
8	P⊕, D, C (terminals for connecting external regenerative resistor)	Remove the jumper bar between terminals P⊕ and D before connecting an external regenerative resistor between terminals P⊕ and C.
9	Battery location	Used to hold the battery box of the absolute encoder.
10	CN3, CN4 (communication terminals)	Connected to RS232 and RS485 host controllers in parallel.
11	CN1 (control terminal)	Used by reference input signals and other I/O signals.
12	CN2 (terminal for connecting the encoder)	Connected to the motor encoder terminal.
13	Servo drive grounding terminal	Connected to the grounding terminal of the power supply for grounding purpose.

Table 2–5 Components	(SV630PT017L	SV630PT0211	SV630PT026I)

2.1.3 **Product Dimensions**

	L	н	D	L1	H1	D1		Tightening Torque	Mass
Size				Screw Hole	Unit:	Unit:			
			Unit: mm		N·m	kg (lb.)			
	40	170	150	28	161	75		0.6 to 1.2	0.8
A	(1.57)	(6.69)	(5.91)	(1.10)	(6.34)	(2.95)	2-M4		(1.76)
	50	170	173	37	161	75		0.6 to 1.2	1.0
В	(1.97)	(6.69)	(6.81)	(1.46)	(6.34)	(2.95)	2-M4		(2.20)
	55±1	170	173±1	44	160	75		0.6 to 1.2	1.3
С	(2.17±0.04)	(6.69)	(6.81±0.04)	(1.73)	(6.30)	(2.95)	2-M4		(2.87)
	80±1	170	183	71	160	75			1.8
D	(3.15±0.04)	(6.69)	(7.20)	(2.80)	(6.30)	(2.95)	3-M4	0.6 to 1.2	(3.97)
_	90	250	230	78	240.5	75			3.6
E	(3.54)	(9.84)	(9.06)	(3.07)	(9.47)	(2.95)	4-M4	0.6 to 1.2	(7.94)

2.2 Product Specifications

2.2.1 Electrical Specifications

• Single-phase 220 V drive

ltem	Size A		Size B	Size C	Size D
Servo Drive Model	S1R6	S2R8	S5R5	S7R6	S012
Drive Power (kW)	0.2	0.4	0.75	1	1.5
Max. applicable motor capacity (kW)	0.2	0.4	0.75	1	1.5
Power supply equipment capacity (kVA)	1.4	2.8	4.6	6.0	8.0
Continuous output current (Arms)	1.6	2.8	5.5	7.6	11.6

Item		Size A		Size B	Size C	Size D		
Max. output current (Arms)		5.8	10.1	16.9	23.0	32.0		
Main circuit	Continuous input current (Arms)	2.3	4.0	7.9	9.6	12.8		
	Main circuit power supply	Single-phase 200 VAC-240 VAC, -10% to +10%, 50 Hz/60 Hz						
	Energy Loss (W)[1]	10.21	23.8	38.2	47.32	69.84		
circuit	Control circuit power supply	Powered up by the bus, sharing the same power supply and rectification part with the main circuit						
	Energy Loss (W)[1]	16						
Braking resistor	Resistance (Ω)	-	-	50	25			
	Resistor power (W)	-	-	50	0 80			
	Min resistance of external resistor (Ω)	40	45	40	20	15		
	Max. braking energy absorbed by capacitor (J)	9.3	26.29	22.41	26.70	26.70		
	Braking resistor	All models in the series support built-in and external braking resistors. But Size A does not come with a built-in braking resistor as standard						
Cooling method		Self-cooling		Air cooling				
Overvoltage class		Ш						

• Three-phase 220V drive

Item		Size C	Size D			
Servo Drive Model		S7R6	S012			
Drive Power (kW)		1	1.5			
Max. applicable motor capacity (kW)		1	1.5			
Power supply equipment capacity (kVA)		5.05	6.68			
Continuous output current (Arms)		7.6	11.6			
Max. output current (Arms)		23	32			
Main circuit	Continuous input current (Arms)	5.1	8.0			
	Main circuit power supply	3-phase 200 VAC–240 VAC, -10% to +10%, 50 Hz/60 Hz				
	Energy Loss (W)[1]	47.32	69.84			
Control circuit	Control circuit power supply	Single-phase 200 VAC-240 VAC, -10% to +10%, 50 Hz/60 Hz				
	Energy Loss (W)[1]	16				
	Resistance (Ω)	25				
Braking resistor	Resistor power (W)	80				
	Min resistance of external resistor (Ω)	20	15			
	Max. braking energy absorbed by capacitor (J)	26.70	26.70			
	Braking resistor	Built-in and external	Built-in and external resistor is supported			
Cooling mode		Air cooling				
Overvoltage class		111				

• Three-phase 380 V drive

ltem		Size C		Size D		Size E		
Servo Drive Model		T3R5	T5R4	T8R4	T012	T017	T021	T026
Drive Power (kW)		1	1.5	2	3	5	6	7.5
Max. applicable motor capacity (kW)		1	1.5	2	3	5	6	7.5
Power supply equipment capacity (kVA)		6.05	9.08	10.23	15.15	22.25	25.0	31.25
Continuous output current (Arms)		3.5	5.4	8.4	11.9	16.5	20.8	25.7
Max. output current (Arms)		11	14	20	29.75	41.25	52.12	64.25
Main circuit	Continuous input current (Arms)	2.4	3.6	5.6	8.0	12.0	16.0	21.0
	Main circuit power supply	3-phase 380 VAC-440 VAC, -10% to +10%, 50 Hz/60 Hz						
	Energy Loss (W)[1]	39.5	63.25	94.82	135.47	187.62	228.28	258.63
Control	Control circuit power supply	Single-phase 380 VAC-440 VAC, -10% to +10%, 50 Hz/60 Hz						
circuit	Energy Loss (W)[1]	16						
Braking resistor	Resistance (Ω)	100	100	50	50	35	35	35
	Resistor power (W)	80	80	80	80	100	100	100
	Min resistance of external resistor (Ω)	80	60	45	40	35	25	25
	Max. braking energy absorbed by capacitor (J)	34.28	34.28	50.41	50.41	82.67	100.82	100.82
	Braking resistor	Built-in and external resistor is supported						
Cooling mode		Air cooling						
Overvoltage class		m						

Note

- [1] Main circuit energy loss refers to the energy loss under rated output current of the servo drive.
- Select the external regenerative resistor according to actual operating conditions.

2.2.2 Technical Specifications

Item				Description	
				IGBT PWM control, sine wave current drive mode	
	Control ı	Control mode		220 V, 380 V: single/three-phase full pulse rectification	
	Encoder feedback			18-bit multi-turn absolute encoder, which can be used as an incremental encoder in absence of the battery	
		Operating/Storage temperature [1]		0°C to 55 °C (average load ratio not exceeding 80% in ambient temperatures between 45°C to 55°C) (non-freezing)/ -20°C to +70 °C	
Gener		Operating/Sto	orage humidity	Below 90%RH (without condensation)	
al Specifi		Vibration resistance		4.9m/s ²	
Specifi cations	Condi	Impact resista	ince	19.6 m/s ²	
	tions	IP rating		IP20	
	for use	Pollution degree		PD2	
		Altitude		Max. 2000m	
				For altitudes not higher than 1000 m, derating is not required	
				For altitude above 1000 m, derate 1% for every additional 100 m. For altitude above 2000m, contact Inovance.	
	Per for mance	[_]	Load change ratio	Below 0.5% at 0–100% load (under rated speed)	
			Voltage change ratio	0.5% at rated voltage \pm 10% (under rated speed)	
			Temperature change ratio	Below 0.5% at 25 \pm 25°C (under rated speed).	
Speed torque control		Speed control range		1:6000 (Under the rated torque load, the servo drive keeps running as long as the lower limit of the speed control range is not exceeded.)	
mode		Soft startup ti	me setting	0s to 65s (Acceleration and deceleration can be set separately.)	
	Input	Speed DI signal		Speed 0 to 15 selectable through DI signal combination	
	signal	Torque reference DI signal		-	

Item				Description
	Per	Feedforward compensation		0% to 100.0% (resolution: 0.1%)
	for mance	e Timing window		1–65535 encoder unit
		Input pulse form		Three forms: direction+pulse, phase A + phase B quadrature pulse, CW/ CCW pulse
		Pulse	Input form	Differential input; open collector
Posi tion	Input signal	reference	Input pulse frequency	Differential input: single: 4 Mpps, quadrature: 8 Mpps, pulse width \ge 0.125 us Open collector: max. single pulse frequency: 200 Kpps, pulse width must not be less than 2.5 us
control mode	0	Power supply for built-in open collector [3]		+24 V (built-in 2.4 kΩ resistor)
		Multi-position reference selection		Position 0 to position 15 selectable through DI signal combination (Other terminals can be assigned with this function.)
	Posi	Output mode		Phase A, phase B: differential output
	tion output			Phase Z: differential output or open collector output
		Frequency division ratio		Any frequency division
		DI signal function assignment		7 DIs
				DI1 to DI5: Max. input frequency is 1 kHz (decreasing when current limit resistance is greater than 2.4 k Ω); DI8 to DI9: signal input hardware delay is less than 1 ms (current limit resistance is 2.4 k Ω)
Input/ Output signal	DI signal			The DI functions are as follows: Servo enable, alarm reset, gain switching, reference switching, Mode switching, zero clamp enable, position reference inhibit, pulse reference inhibit, Forward overtravel, reverse overtravel, speed limit, torque limit, Forward and reverse jog, step enable, hand wheel switching, electronic gear selection, reference direction setting, home switch, homing enable, current position as home, emergency stop, multi-position, interrupt positioning, axis control command, position deviation clearing, positioning and command completion signal clearing
				5 DOs. With-load capacity: 50 mA; Voltage range: 5 V to 30 V
	Digital output signal	Output signal function selection		The DO function is as follows: Servo ready, motor rotation signal, zero speed signal, speed consistent, speed attained, torque attained, positioning completed, positioning proximity, torque limit, speed limit, braking, warning output, fault output, warning or fault output, interrupt positioning completed, homing completed, electrical homing completed, enable completed, internal command completed, allow to write next command, and internal motion completed

	Item		Description	
	Stop at limit switch		The servo drive stops immediately when P-OT or N-OT is active	
	Electronic gear ratio		0.001 ≤ B/A ≤ 104857.6	
	Protection		Including protections against overcurrent, overvoltage, undervoltage, overload, main circuit detection error, heatsink overheat, power phase loss, overspeed, encoder error, CPU error, and parameter error	
	LED display		Main circuit CHARGE indicator, 5-digit LED display	
	Vibration Suppression		5 notches (including two adaptive notches) available, 50 Hz to 8000Hz	
Built-in func	Usability functions		One-key parameter tuning, adaptive parameter tuning, speed observer, and model tracking	
tions	Commu nica	Software commissioning	RJ45 Modbus	
		Multi-station communication	RS485	
		Number of multi-station communication axes	Up to 32 for RS485	
	tion	Axis address setting	No physical knob, set through the software	
		Function	Including status display, user parameter setting, monitored value display, fault tracing display, JOG and auto-tuning, speed/torque reference signal observation, and communication and motion control command setting	
	Others		Gain tuning, alarm log, JOG	

- [1] Install the servo drive within the allowable ambient temperature range. When it is installed inside a control cabinet, the temperature inside the cabinet must also be within this range.
- [2] The speed change ratio is defined by the following formula: Speed change ratio = (No-load speed Full-load speed) ÷ Rated speed x 100%.
- The voltage change and temperature change may result in amplifier deviation, which causes the calculated resistance value to change. Such changes is reflected by the speed change. Speed changes caused by the voltage change and the temperature change will be indicated respectively by a percentage to the rated speed.
- [3] The internal open collector power supply is not electrically insulated from the control circuit in the servo drive.

2.2.3 Dynamic Brake Characteristics

According to the motor model, initial speed and load inertia, the dynamic braking distance can be estimated. The approximate value of the dynamic braking distance can be calculated by the following formula. For the accurate value, please use the dynamic braking calculation function provided by our software.

Maximum braking distance s (turn) is:

$$s = \frac{V_0}{60} (t_e^{+} (\tau_1^{+} \tau_2^{-} V_0^{-2}) (1 + \frac{J_L}{J_M}))$$

The coefficient is as follows:

$$\tau_1 = \frac{2R_sJ}{3p_n^{-2}\Psi_f^{-2}} = \frac{10000\pi^2R_sJ}{9K_e^{-2}}$$

$$\tau_{2} = \frac{\pi^{2}L_{d}^{2}J}{4050R_{s}\Psi_{f}^{2}} = \frac{100L_{d}^{2}\pi^{4}P_{n}^{2}J}{243R_{s}K_{e}^{2}}$$
$$\Psi_{f} = \frac{\sqrt{6}K_{e}}{100\pi P_{n}}$$

- V₀: Maximum feedback speed
- t_e: Dynamic brake program and relay delay
- J L: Load moment of inertia
- J_M : Motor moment of inertia
- P_n: Number of motor pole pairs
- R_s : Stator resistance (Ω)
- L_q, L_d: q-axis inductance (mH), d-axis inductance (mH).

2.2.4 Load Moment of Inertia

The load moment of inertia represents the inertia of the load. The larger the load moment of inertia is, the weaker the responsiveness is. An excessively high inertia may result in unstable motion. The allowable load moment of inertia of the motor is restricted. This value is provided strictly as a guideline and varies with the motor driving conditions.

An overvoltage warning may occur during deceleration if the load moment of inertia exceeds the allowable value. For servo drives with a built-in regenerative resistor, an overload alarm my be present. In case of such alarms, take one of the following measures:

- Reduce the torque limit values.
- Reduce the deceleration rate.
- Reduce the maximum speed.
- Install an external braking resistor if the alarm cannot be cleared using the above measures.

- Check the drive selection guide for the built-in brake.
- Even you use a built-in resistor, the energy generated in some conditions will exceed the allowable capacity loss (W) of the resistor. In this case, an external braking resistor is required.

3 MS1-R Series Motor

3.1 **Product Information**

3.1.1 Description of the Model and Nameplate

Model Description

1 MS1 series servo motor	② Inertia and capacity	③ Rated power (W)
	H1: low inertia, small capacity	One letter and two digits
	H2: low inertia, medium capacity	B: x 10
	H3: medium inertia, medium	C: x 100
	capacity	Example: 75B: 750 W
	H4: medium inertia, small capacity	
④ Rated speed (rpm)	⑤ Voltage class (V)	6 Encoder type
One letter and two digits	B: 220	One letter and one digit
B: x 10	D: 380	A6: 26-bit multi-turn absolute
C: x 100		encoder
Example: 30C: 3,000 rpm		S6: 26-bit multi-turn absolute encoder of functional safety type
		A3: 23-bit multi-turn absolute encoder
		T3: 18-bit multi-turn absolute encoder
0 Shaft connection mode	(8) Brake, reducer, oil seal ^[1]	(9) Series
3: Solid shaft with key and	0: Without oil seal + without brake	R: R version
threaded hole	1: With oil seal + without brake	10 Non-standard functions
	2: Without oil seal + with brake	_: Standard
	4: With oil seal + with brake	S: Flying leads type
		-**: Other non-standard function

$\underbrace{\mathsf{MS1}}_{\bigcirc} \; \underbrace{\mathsf{H1}}_{\bigcirc} - \underbrace{\mathsf{75B}}_{\bigcirc} \; \underbrace{\mathsf{30C}}_{\textcircled{4}} \; \underbrace{\mathsf{B}}_{\textcircled{5}} \quad \underbrace{\mathsf{A3}}_{\textcircled{6}} \; \underbrace{\mathsf{31R}}_{\textcircled{789}} \stackrel{\star}{\textcircled{10}}$

Note

• [1] The standard configuration of the motor in flange size 40 does not include the oil seal. Motors of other models carry the oil seal as standard.

Nameplate description

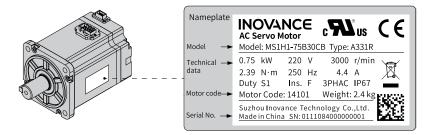


Figure 3-1 Description of the model and nameplate

3.1.2 Components

Motor (Flange sizes 40&60&80)

• Servo motors with terminal box

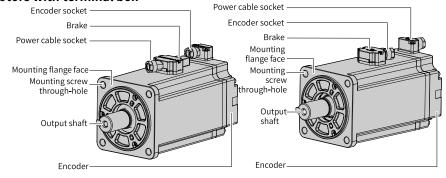


Figure 3-2 Components of motors with terminal box (left: front outlet; right: rear outlet)

• Servo motors with flying leads

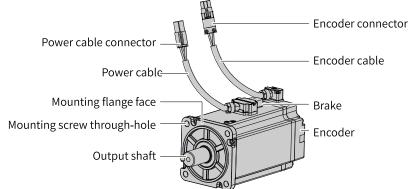


Figure 3-3 Components of motors with flying leads

Motor (Flange sizes 100&130&180)

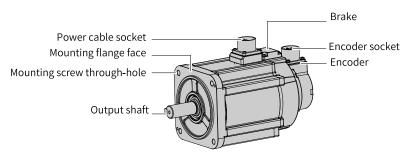


Figure 3-4 Components of servo motors in flange sizes 100/130/180

3.1.3 Motor Models

Motor type		Rated Output Capacity (kW)	Rated speed (max. speed) (RPM)	Encoder	IP rating of the enclosure
Low inertia, small capacity	MS1H1	0.05, 0.1, 0.2, 0.4, 0.55, 0.75, 1.0	3000 (6000)	T3: 18-bit multi-turn absolute encoder	IP67
Low inertia, medium capacity	MS1H2	1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0	3000 (6000)	T3: 18-bit multi-turn absolute encoder	IP67
Medium inertia, medium capacity	MS1H3	0.85, 1.3, 1.8, 2.9, 4.4, 5.5, 7.5	1500 (3000)	T3: 18-bit multi-turn absolute encoder	IP67
Medium inertia, small capacity	MS1H4	0.1, 0.2, 0.4, 0.55, 0.75, 1.0	3000 (6000)	T3: 18-bit multi-turn absolute encoder	IP67

Note

40机座MS1-R系列伺服电机规划中,敬请期待!

3.2 Product Specifications

3.2.1 Mechanical Characteristics

Item	Description
Duty type	S1(Continuous duty)
Vibration level ^[1]	V15

ltem		Description
Insulation resistar	nce	500 VDC, above 10 MΩ
Excitation mode		Permanent magnetic
Installation metho	bd	Flange type
Heat resistance le	vel	F
Insulation voltage		1500 VAC, 1 min (220 V class)
Insulation voltage		1800 VAC, 1 min (380 V class)
IP rating of the en	closure	IP67 (excluding shaft opening and flying leads type motor connectors)
Direction of rotation		Rotates counterclockwise when viewed from the shaft extension side with the forward run command.
	Ambient	0°C to 40°C (non-freezing) (Derate based on the derating curve for
	temperature	temperatures above 40°C.)
	Ambient humidity	20%-80% (no condensation)
Operating conditions	Installation location	 Free from corrosive or explosive gases Well ventilated and with minimum amount of dust, waste and moisture Convenient for inspection and cleanup Derating required only for altitudes above 1000 m <i>"3.2.3 Derating</i> <i>Characteristics" on page 46</i> Away from sources that may generate strong magnetic field Away from heating sources such as a heating stove Use the motor with oil seal in places with grinding fluid, oil mist, iron powders or cuttings. The oil seal is only dust-proof. It cannot withstand the intrusion of oil in a long term. No applicable to vacuum environment Not applicable to inching condition, which may result in stuck The motor with brake may generate a pattering sound. Coupler type and installation alignment requirements The system should avoid continuous operation at natural frequency. Exceeding the allowable vibration value may damage the system.
	Storage environment	 Observe the following requirements for keeping a de-energized motor. Temperature: -20°C to +60°C (non-freezing) Humidity: 20% to 80% RH (no condensation)
	Shock acceleration	
Shock resistance [2]	(taking flange side as standard)	490 m/s²
	Times of shock	2
Vibration	Vibration acceleration	49 m/s ²
resistance ^[3]	(taking flange side as standard)	

- [1]Vibration level V15 indicates that the vibration amplitude is less than 15 μm when a single servo motor rotates at rated values.
- [2] The resistance for shock in the vertical direction when the servo motor is mounted with the shaft in a horizontal position is shown in the preceding table.
- [3] For a servo motor shaft mounted horizontally, the vibration resistance level in the up/down, left/right, and front/rear directions is shown in the preceding table.
- The strength of the vibration that the servo motor can withstand depends on the application. Check the vibration acceleration rate applied to the servo motor through the actual product.

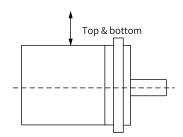


Figure 3-5 Shock applied on the motor

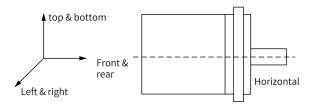


Figure 3-6 Vibration applied on the motor

3.2.2 Overload Characteristics

The equipment is compliant with NEC and CEC requirements and equipped with protective functions against overload and overtemperature.

For effective protection of different load motors, set the motor overload protection gain according to the motor overload capacity. Use the default gains in general conditions, however, when one of the following condition occurs, change the gains based on the temperature rise condition of the motor:

- The motor operates in environments with high temperature.
- The motor is in cyclic motion featuring a short motion cycle and frequent acceleration/ deceleration.
- The thermal overload protection only occurs during continuous operation. In this case, power off the drive to check the motor temperature.

The motor overload protection curve is shown in the following figure.

MS1H1/MS1H4

Load ratio (%)	Operating time (s)
120	230
130	80
140	40
150	30
160	20

Load ratio (%)	Operating time (s)
170	17
180	15
190	12
200	10
210	8.5
220	7
230	6
240	5.5
250	5
300	3
350	2

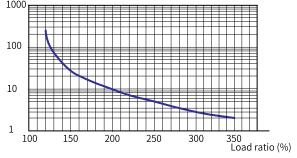


Figure 3-7 MS1H1 and MS1H4 series motor overload curves

The maximum torque of MS1H1 and MS1H4 models is 3.5 times the rated torque.

• MS1H2/MS1H3

Load ratio (%)	Operating time (s)
115	6000
121.4	2000
127.8	1000
134.2	800
140.6	500
147	300
153.4	150
159.8	100
166.2	80
172.6	60
179.0	50
185.4	45
191.8	40
198.2	36
204.6	32
211.0	28
217.4	23
223.8	22
230.2	19
236.6	18
243.0	15

Load ratio (%)	Operating time (s)
249.4	14
255.8	13
262.2	11
268.6	10
275.0	9
281.4	8
287.8	7
294.2	6

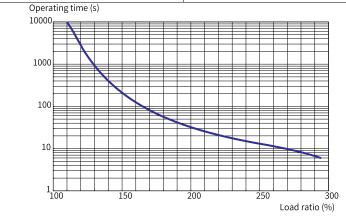
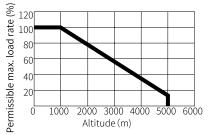
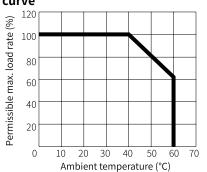
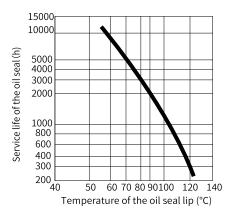



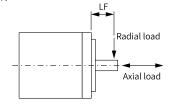
Figure 3-8 MS1H2 and MS1H3 series motor overload curves


- The maximum torque of H2 models is three times the rated torque.
- The maximum torque of H3 models is 2.5 times the rated torque.

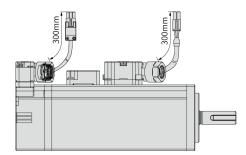
3.2.3 Derating Characteristics


• Altitude-based derating curve

• Temperature-based derating curve



3.2.4 Temperature Curve of the Oil Seal


3.3 Selection Instructions

- Description of the torque-speed characteristics curve:
 - Technical data and torque/speed characteristic values in the following tables are applicable to motors working with Inovance servo drives with the the armature coil temperature being 20°C.
 - Continuous working area: refers to a series of states in which the motor can operate safely and continuously, and the actual torque must be located in this area.
 - Short-time working area: refers to a series of states in which the motor can run in a short time when the actual torque is greater than the rated torque.
- The characteristic parameter values are obtained in cases where the motor is installed with the following heatsink:
 - MS1H1/MS1H4: 250 × 250 × 6 (mm) (aluminum)
 - MS1H2-10C to 25C: 400 × 400 × 20 (mm) (steel)
 - MS1H2-30C to 50C: 400 × 400 × 20 (mm) (steel)
 - MS1H3-85B to 18C: 400 × 400 × 20 (mm) (steel)
 - MS1H3-29C to 55C: 550 × 550 × 30 ((mm) (aluminum)
 - MS1H3-75C: 700 × 700 × 30 (mm) (aluminum)
- Radial and axial loads of the motor:

• Dimensions of flying leads type motors

The 40/60/80-flange flying leads type motor (with "-S") provides a drain wire of about 300 mm long, as shown in the following figure.

• MS1H3 (130-flange and 180-flange) comes with a key slot. When the operating speed is above 3000 rpm, the motor must run with the key. If you need to run the motor without the key, you can ask for customization from Inovance.

Note

- The data in the () is the value of the servo motor with the brake.
- The motor with oil seal must be derated by 10% during use.
- It is recommended that the cross sectional area of brake cables is above 0.5 mm².
- The brake must not share the power supply with other electrical devices. This is to prevent a malfunction of the brake due to a drop in the voltage or current when other electrical devices work in tandem.
- The holding brake cannot be used for braking purpose.
- The release time and operation time of the brake depend on the discharge circuit. Be sure to confirm the operation delay of your equipment before use.
- You need to prepare the 24 VDC power supply yourself.
- The MS1–R series motor encoder is T3 (18-bit single-turn absolute encoder) KA2 = 74 mm.
- The tightening tension for terminal screws must be between **0.19** N·m to **0.21** N·m, exceeding of which may damage the terminal.

3.4 Low Inertia and Small Capacity (MS1H1)

3.4.1 MS1H1-05B30CB-T33*Z

Motor s	pecifications	Torque-Speed characteristics	
Flange size (mm) 40		A Continuous duty zone	
Inertia, capacity	Low inertia, small capacity		
Rated power (kW)	0.05	E 4000	
Rated voltage	220	B 3000 B 2000	
Rated torque (N · m)	0.16		
Maximum torque (N · m)	0.56	Torque (N·m)	
Rated current (Arms)	1.3	Heatsink-based derating curve	

Motor s	pecifications		Torque-Speed characteristics
Maximum current (Arms)	4.70		ê 120
Rated speed (rpm)	3000		100 E
Maximum speed (rpm)	6000		Pe 80 e) 60 e) 40
Torque coefficient (N · m/Arms)	0.15		
Rotor moment of inertia (kg·cm²)	Motor without brake 0.026		0 50 100 150 200 250 300 Heatsink dimensions (mm)
Rotor moment of mertia (kg·cm ⁻)	Motor with brake	0.028	

Electrical specifications of the motor with brake

Holding torque (N · m)	Supply voltage (VDC) ±10%	Rated power (W)	Coil resistance (Ω)(±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
0.32	24	6.1	94.4	0.25	≤ 40	≤ 20	≤ 1.5

Allowable load

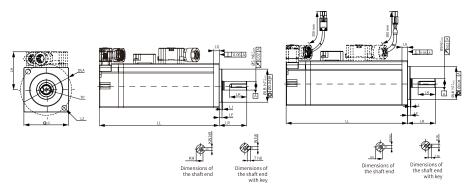
LF (mm)	Allowable radial load (N)	Allowable axial load (N)
20	78	54

Dimensions (mm)

LL	LC	LR	LA	LZ	LH	LG	LE	LJ
65.4 (96)	40	25±0.3	46	2-Ø4.5	34.3	5	2.5±0.5	0.5±0.35
S	LB	TP	LK	КН	KW	W	Т	Weight (kg)
8	Ø30h7 ⁰ -0.021	M3x6	15.5	6.2- ⁰ 0.1	3	3	3	0.39 (0.50)

3.4.2 MS1H1-10B30CB-T33*Z

Motor s	pecifications	Torque-Speed characteristics		
Flange size (mm)	40	A Continuous duty zone		
Inertia, capacity	Low inertia, small capacity			
Rated power (kW)	0.1	Ē 5000		
Rated voltage	220	8 3000 8 2000		
Rated torque (N · m)	0.32			
Maximum torque (N · m)	1.12	Torque (N · m)		
Rated current (Arms)	1.3	Heatsink-based derating curve		


Motor s	pecifications		Torque-Speed characteristics
Maximum current (Arms)	4.70		£120
Rated speed (rpm)	3000		100 E
Maximum speed (rpm)	6000		<u>♀</u>
Torque coefficient (N · m/Arms)	0.26		
Rotor moment of inertia (kg·cm²)	Motor without brake 0.041		0 50 100 150 200 250 300 Heatsink dimensions (mm)
(kg·ciii)	Motor with brake	0.043	

Electrical specifications of the motor with brake

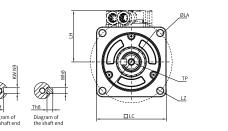
Holding torque (N · m)	Supply voltage (VDC) ±10%	Rated power (W)	Coil resistance $(\Omega)(\pm7\%)$	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
0.32	24	6.1	94.4	0.25	≤ 40	≤ 20	≤ 1.5

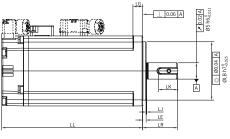
Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
20	78	54

LL	LC	LR	LA	LZ	LH	LG	LE	LJ
78.4	40	25±0.3	46	2-Ø4.5	34.3	5	2.5±0.5	0.5±0.35
(110)	40	25±0.5	0	2-04.3	57.5	5	2.5 - 0.5	0.5±0.55
S	LB	TP	LK	КН	KW	W	т	Weight (kg)
				_				0.45
8	Ø30h7 ⁰ -0.021	M3x6	15.5	6.2 ⁰ -0.1	3	3	3	(0.64)

3.4.3 MS1H1-20B30CB-T33*R


Motor specifications			Torque-Speed characteristics		
Flange size (mm)	60		A Continuous duty zone		
Inertia, capacity	Low inertia, smal	capacity	8000		
Rated power (kW)	0.2				
Voltage (V)	220		5 4000 3 3000 2 2000		
Rated torque (N · m)	0.64				
Maximum torque (N · m)	2.24		Torque (N·m)		
Rated current (Arms)	1.5		Heatsink-based derating curve		
Maximum current (Arms)	5.8				
Rated speed (rpm)	3000				
Maximum speed (rpm)	7000				
Torque coefficient (N · m/Arms)	0.46				
Rotor moment of inertia (kg·cm²)	Motor without brake	0.094	₹ 0 50 100 150 200 250 300		
	Motor with brake 0.106		Heatsink dimensions (mm)		


Electrical specifications of the motor with brake

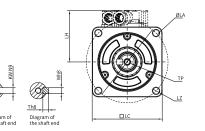
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
1.5	24	7.6	75.79	0.32	≤ 60	≤ 20	≤ 1.5

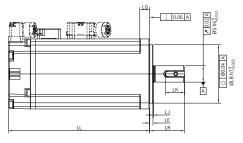
Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)		
25	245	74		

LC	LL	LR	LA	LZ	LH	LG	LE	LJ
60	75.5 (103)	30±0.5	70	4- Ø 5.5	44	8.0	3±0.5	0.5±0.35
LB	S	TP	LK	КН	KW	W	Т	Weight (kg)
Ø50h7 ⁰ -0.025	14	M5x8	16.5	11 ⁰ -0.1	5	5	5	0.80

3.4.4 MS1H1-40B30CB-T33*R

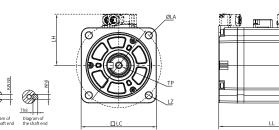

Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	60		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Low inertia, small	capacity	
Rated power (kW)	0.4		
Voltage (V)	220		
Rated torque (N · m)	1.27 4.45		
Maximum torque (N · m)			Torque (N·m)
Rated current (Arms)	2.5		Heatsink-based derating curve
Maximum current (Arms)	9.8		
Rated speed (rpm)	3000		
Maximum speed (rpm)	7000		
Torque coefficient (N · m/Arms)	0.53		(a) 120 a) 100 b) 100 b) 0 b) 0 c) 0 c)
Rotor moment of inertia (kg·cm ²)	Motor without brake	0.145	₩ 0 50 100 150 200 250 300
Rotor moment of mertia (kg·cm)	Motor with brake	0.157	Heatsink dimensions (mm)

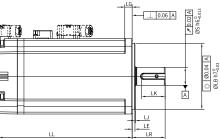

Electrical specifications of the motor with brake

Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
1.5	24	7.6	75.79	0.32	≤ 60	≤ 20	≤ 1.5

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
25	245	74


LC	LL	LR	LA	LZ	LH	LG	LE	LJ
60	93 (121)	30 ± 0.5	70	4- Ø 5.5	44	8.0	3 ± 0.5	0.5±0.35
LB	S	TP	LK	КН	KW	W	т	Weight (kg)
Ø50h7 ⁰ -0.025	14	M5x8	16.5	11 ⁰ -0.1	5	5	5	1.11 (1.48)


3.4.5 MS1H1-55B30CB-T331R

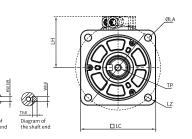
Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	80		A Continuous duty zone
Inertia, capacity	Low inertia, sma	ll capacity	8000
Rated power (kW)	0.55		<u>e</u>
Voltage (V)	220		4000 G 3000 2000
Rated torque (N·m)	1.75 6.13		
Maximum torque (N · m)			Torque (N·m)
Rated current (Arms)	3.9		Heatsink-based derating curve
Maximum current (Arms)	15		⁽⁸⁾ 120
Rated speed (rpm)	3000		
Maximum speed (rpm)	7000		
Torque coefficient (N · m/Arms)	0.49		120 120 100 </td
Rotor moment of inertia (kg·cm ²)	Motor without brake	0.55	0 50 100 150 200 250 300 Heatsink dimensions (mm)
(kg clif)	Motor with brake	-	

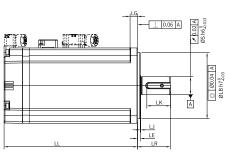
Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
35	392	147

LC	LL	LR	LA	LZ	LH	LG	LE	LJ
80	96.7	25±0.5	90	4- Ø 7	54	7.5	3±0.5	0.5±0.35
LB	S	TP	LK	КН	KW	W	т	Weight (kg)
Ø70h7 ⁰ -0.03	19	M6 x 20	26	15.5 ⁰ -0.1	6	6	6	1.88

3.4.6 MS1H1-75B30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	80		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Low inertia, small	capacity	8000
Rated power (kW)	0.75		
Voltage (V)	220		B 4000
Rated torque (N · m)	2.39		
Maximum torque (N · m)	8.37		0 0 2.5 5 7.5 10 Torque (N ⋅ m)
Rated current (Arms)	4.4		Heatsink-based derating curve
Maximum current (Arms)	16.9		
Rated speed (rpm)	3000		e 100 80 80 80 80 80 80 80 80 80
Maximum speed (rpm)	7000		
Torque coefficient (N · m/Arms)	0.58		E 120 E 120 E 100 B 80 B 90 B 9
Rotor moment of inertia (kg·cm²)	Motor without brake	0.68	€ 0 50 100 150 200 250 300 Heatsink dimensions (mm)
	Motor with brake	0.71	


Electrical specifications of the motor with brake

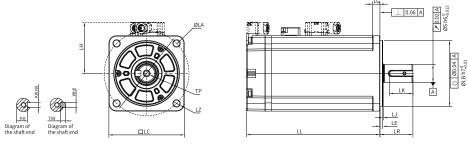
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
3.2	24	10	57.6	0.42	≤ 60	≤ 40	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
35	392	147

LC	LL	LR	LA	LZ	LH	LG	LE	LJ
80	107.3 (141.5)	25±0.5	90	4- Ø 7	54	7.5	3±0.5	0.5±0.35
LB	S	TP	LK	KH	KW	W	т	Weight (kg)
Ø70h7 ⁰ _0.03	19	M6 imes 20	26	15.5 ⁰ -0.1	6	6	6	2.22
210111 -0.03	15	110 / 20	20	10.0 -0.1	5	5	5	(2.88)

3.4.7 MS1H1-10C30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics		
Flange size (mm)	80		A Continuous duty zone		
Inertia, capacity	Low inertia, small capacity		8000		
Rated power (kW)	1.0				
Voltage (V)	220		9 3000 2000		
Rated torque (N · m)	3.18				
Maximum torque (N · m)	11.13		Torque (N·m)		
Rated current (Arms)	6.2		Heatsink-based derating curve		
Maximum current (Arms)	24				
Rated speed (rpm)	3000				
Maximum speed (rpm)	7000				
Torque coefficient (N · m/Arms) 0.46			(e) 120 e) 100 e) 200 e) 200 e) 100 e) 10		
Rotor moment of inertia (kg·cm²)	Motor without brake 0.82		₩ 0 50 100 150 200 250 300 Heatsink dimensions (mm)		
	Motor with brake	0.87			

Electrical specifications of the motor with brake

Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
3.2	24	10	57.6	0.42	≤ 60	≤ 40	≤ 1

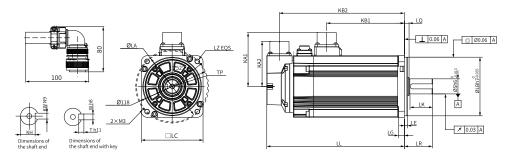
Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
35	392	147

LC	LL	LR	LA	LZ	LH	LG	LE	LJ
80	119.2 (153.4)	25±0.5	90	4- Ø 7	54	7.5	3 ± 0.5	0.5±0.35
LB	S	TP	LK	КН	KW	W	Т	Weight (kg)
Ø 70h7 ⁰ _0.03	19	M6 × 20	26	15.5 ⁰ -0.1	6	6	6	2.61
								(3.27)

3.5 Low Inertia and Medium Capacity (MS1H2)

3.5.1 MS1H2-10C30CB-T33*R


Motor sp	pecifications		Torque-Speed characteristics
Flange size (mm)	100		A Continuous duty zone
Inertia, capacity	Low inertia, medium capacity		
Rated power (kW)	1.0		
Voltage (V)	220		ğ 3000 2000
Rated torque (N · m)	3.18		
Maximum torque (N · m)	9.54		Torque (N·m)
Rated current (Arms)	6.4		Heatsink-based derating curve
Maximum current (Arms)	23		£ 120
Rated speed (rpm)	3000		8 120 100 8 80
Maximum speed (rpm)	6000		
Torque coefficient (N · m/Arms)	0.54		B 80 60 60 60 60 60 60 60 60 60 60 60 60 60
Poter memory of inertia (kg, cm ²)	Motor without brake 1.78		₩ 0 50 100 150 200 250 300 350 Heatsink dimensions (mm)
Rotor moment of inertia (kg·cm ²)	Motor with brake	2.6	

Electrical specifications of the motor with brake

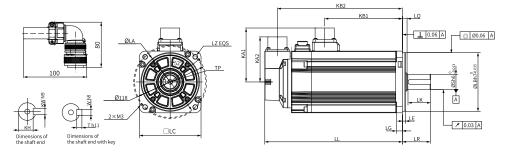
Holding (N•1	•	. Rated power (W)		Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
8		24	17.6	32.73	0.73	≤ 100	≤ 40	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
45	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	144							123.5		
100	(172)	45±1	115	4-Ø7	88	75	74	(151.5)	10	5±0.3
LQ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
										3.85
7.5±0.75	Ø95h7	⁰ -0.035	24	M8x16	36	20 ⁰ -0.2	8	8	7	(4.9)

3.5.2 MS1H2-10C30CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	100		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Low inertia, medium capacity		
Rated power (kW)	1.0		(iii) 5000 4000 9 3000 5 2000
Voltage (V)	380 3.18		월 3000 중 2000
Rated torque (N · m)			
Maximum torque (N · m)	9.54		Torque (N · m)
Rated current (Arms)	3.3		Heatsink-based derating curve
Maximum current (Arms)	11		ê 120
Rated speed (rpm)	3000		
Maximum speed (rpm)	6000		
Torque coefficient (N · m/Arms)	1.07		(%) 120 e 120 e 120 e 100 e 100
Rotor moment of inertia (kg·cm²)	Motor without brake 1.78		∰ 0 50 100 150 200 250 300 350 Heatsink dimensions (mm)
(kg·ciii)	Motor with brake	2.6	

Electrical specifications of the motor with brake

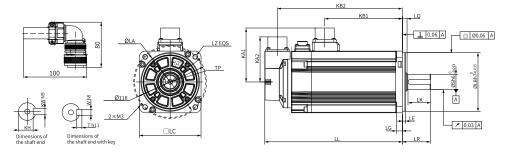
Holding torque (N∙m)	Rated power (W)		Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
8	24	17.6	32.73	0.73	≤ 100	≤ 40	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
45	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	144							123.5		
100	(172)	45±1	115	4-Ø7	88	75	74	(151.5)	10	5±0.3
LQ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
		0				0	_	_	_	3.85
7.5±0.75	Ø95h7	⁰ -0.035	24	M8x16	36	20 ⁰ -0.2	8	8	7	(4.9)

3.5.3 MS1H2-15C30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics		
Flange size (mm)	100		A Continuous duty zone B Intermittent duty zone		
Inertia, capacity	Low inertia, medium capacity		6000		
Rated power (kW)	1.5		E 4000		
Voltage (V)	220		- B 3000		
Rated torque (N · m)	4.9				
Maximum torque (N · m)	14.7		- 0 <u>0 2 4 6 8 10 12 14 1</u> 6 Torque (N·m)		
Rated current (Arms)	8.6		Heatsink-based derating curve		
Maximum current (Arms)	32		§ 120		
Rated speed (rpm)	3000		8) 120 100 100 100 100 100 100 100		
Maximum speed (rpm)	5000				
Torque coefficient (N · m/Arms)	0.62		B0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Poter moment of inertia (1/2 cm ²)	Motor without brake	2.35	₹ 0 50 100 150 200 250 300 350 Heatsink dimensions (mm)		
Rotor moment of inertia (kg·cm ²)	Motor with brake	3.17			

Electrical specifications of the motor with brake

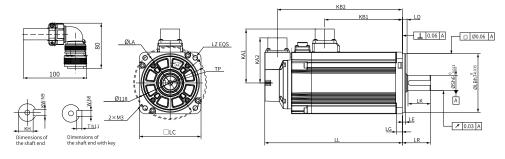
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
8	24	17.6	32.73	0.73	≤ 100	≤ 40	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
45	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	161							140.5		
100	(189)	45±1	115	4-Ø7	88	92	74	(168.5)	10	5±0.3
LQ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
						_				4.65
7.5±0.75	Ø95h7	⁰ -0.035	24	M8x16	36	20 ⁰ -0.2	8	8	7	(5.75)

3.5.4 MS1H2-15C30CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	100		A Continuous duty zone
Inertia, capacity	Low inertia, medium capacity		6000
Rated power (kW)	1.5		<u>5</u> 4000
Voltage (V)	380 4.9		च 3000 से 2000
Rated torque (N · m)			
Maximum torque (N · m)	14.7		Torque (N · m)
Rated current (Arms)	4.2		Heatsink-based derating curve
Maximum current (Arms)	14		[©] 120
Rated speed (rpm)	3000		8 120 8 80
Maximum speed (rpm)	5000		
Torque coefficient (N · m/Arms)	1.28		80 60 40 20 0 50 100 150 200 0 50 100 150 200 0 50 300 350
Rotor moment of inertia (kg·cm²)	Motor without brake	2.35	6 50 100 150 200 250 300 350 Heatsink dimensions (mm)
	Motor with brake	3.17	

Electrical specifications of the motor with brake

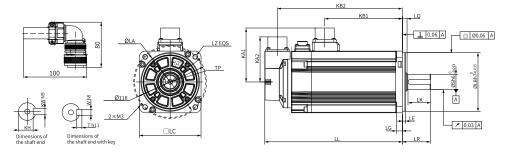
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
8	24	17.6	32.73	0.73	≤ 100	≤ 40	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
45	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	161							140.5		
100	(189)	45±1	115	4-Ø7	88	92	74	(168.5)	10	5±0.3
LQ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
		0				0	_	_	_	4.65
7.5±0.75	Ø95h7	⁰ -0.035	24	M8x16	36	20 ⁰ -0.2	8	8	7	(5.75)

3.5.5 MS1H2-20C30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	100		A Continuous duty zone
Inertia, capacity	Low inertia, medium capacity		6000
Rated power (kW)	2.0		E 5000
Voltage (V)	220		B 3000 G 2000 1000
Rated torque (N · m)	6.36		
Maximum torque (N · m)	15.5		Torque (N · m)
Rated current (Arms)	11.3		Heatsink-based derating curve
Maximum current (Arms)	32		ê 120
Rated speed (rpm)	3000		
Maximum speed (rpm)	5000		
Torque coefficient (N · m/Arms)	0.60		8 120 100 100 100 100 100 100 100
Rotor moment of inertia (kg·cm ²)	Motor without brake	2.92	6 50 100 150 200 250 300 350 Heatsink dimensions (mm)
Notor moment of mertia (kg·cm)	Motor with brake	3.74	

Electrical specifications of the motor with brake

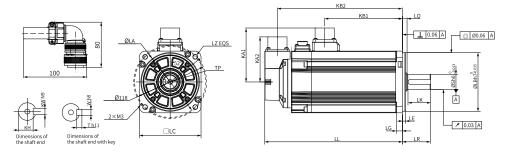
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
8	24	17.6	32.73	0.73	≤ 100	≤ 40	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
45	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	177							156.5		
100	(205)	45±1	115	4-Ø7	88	108	74	(184.5)	10	5±0.3
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
						0				5.5
7.5±0.75	Ø95h7	⁰ –0.035	24	M8x16	36	20 ⁰ -0.2	8	8	7	(6.55)

3.5.6 MS1H2-20C30CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	100		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Low inertia, mediu	m capacity	6000
Rated power (kW)	2.0		5000 E. 4000
Voltage (V)	380		g 3000 G 2000
Rated torque (N · m)	6.36		
Maximum torque (N · m)	19.1		Torque (N·m)
Rated current (Arms)	5.6		Heatsink-based derating curve
Maximum current (Arms)	20		£ 120
Rated speed (rpm)	3000		e 80
Maximum speed (rpm)	5000		
Torque coefficient (N · m/Arms)	ent (N · m/Arms) 1.19		I 20 et al 100 80 60 60 40 70 70 100
Rotor moment of inertia (kg·cm²)	Motor without brake	2.92	∰ 0 50 100 150 200 250 300 350 Heatsink dimensions (mm)
	Motor with brake	3.74	

Electrical specifications of the motor with brake

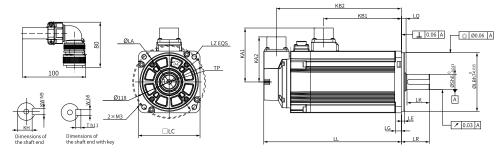
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
8	24	17.6	32.73	0.73	≤ 100	≤ 40	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
45	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	177							156.5		
100	(205)	45±1	115	4-Ø7	88	108	74	(184.5)	10	5±0.3
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
	7.5±0.75 Ø95h7 ⁰ -0.035				36	0	_	_	_	5.5
7.5±0.75			24	24 M8x16		20 ⁰ –0.2	8	8	7	(6.55)

3.5.7 MS1H2-25C30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	100		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Low inertia, mediur	n capacity	6000
Rated power (kW)	2.5		E 5000 E 4000 R 3000
Voltage (V)	220		3000 2000 1000
Rated torque (N · m)	7.96		
Maximum torque (N · m)	23.9		Torque (N · m)
Rated current (Arms)	14.7		Heatsink-based derating curve
Maximum current (Arms)	53		ê 120
Rated speed (rpm)	3000		
Maximum speed (rpm)	5000		
Torque coefficient (N · m/Arms)	que coefficient (N · m/Arms) 0.60		Image: Weight of the second
Rotor moment of inertia (kg·cm ²)	Motor without brake	3.49	0 50 100 150 200 250 300 350 Heatsink dimensions (mm)
(kg·ciii)	Motor with brake 4.3		

Electrical specifications of the motor with brake

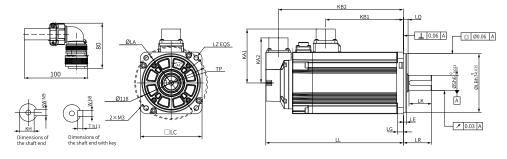
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
8	24	17.6	32.73	0.73	≤ 100	≤ 40	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
45	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2 [Note]	KB2	LG	LE
100	195	45±1	115	4-Ø7	88	126	73	174.5	10	5±0.3
100	(223)	45±1	115	4-01	00	120	15	(202.5)	10	5±0.5
LQ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
										6.3
7.5±0.75	Ø95h7	⁰ -0.035	24	M8x16	36	20 ⁰ -0.2	8	8	7	(7.35)

3.5.8 MS1H2-25C30CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	100		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Low inertia, mediu	n capacity	6000
Rated power (kW)	2.5		(4000 9 3000 9 2000
Voltage (V)	380		2 2000 1000
Rated torque (N · m)	7.96		
Maximum torque (N · m)	23.9		Torque (N · m)
Rated current (Arms)	7.2		Heatsink-based derating curve
Maximum current (Arms)	26		£ 120
Rated speed (rpm)	3000		e 80
Maximum speed (rpm)	5000		
Torque coefficient (N · m/Arms)	rque coefficient (N · m/Arms) 1.18		I 20 B0 B0 </td
Rotor moment of inertia (kg·cm ²)	Motor without brake	3.49	
	Motor with brake	4.3	

Electrical specifications of the motor with brake

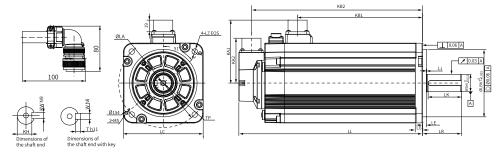
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
8	24	17.6	32.73	0.73	≤ 100	≤ 40	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
45	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	195							174.5		
100	(223)	45±1	115	4-Ø7	88	126	74	(202.5)	10	5±0.3
LQ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
	7.5±0.75 Ø95h7 ⁰ -0.035					0	_	_	_	6.3
7.5±0.75			24 M8x16		36	20 ⁰ -0.2	8	8	7	(7.35)

3.5.9 MS1H2-30C30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	130		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Low inertia, mediur	n capacity	6000
Rated power (kW)	3.0		
Voltage (V)	220		3000 2000
Rated torque (N · m)	9.8		
Maximum torque (N · m)	24.5		Torque (N·m)
Rated current (Arms)	16.6		Heatsink-based derating curve
Maximum current (Arms)	55		8 120 100
Rated speed (rpm)	3000		
Maximum speed (rpm)	5000		
Torque coefficient (N · m/Arms)	0.67		B0 80 0 60 40 0 150 200 150 300 350 400
Rotor moment of inertia (kg·cm²)	Motor without brake 6.4		100 150 200 250 300 350 400 450 Heatsink dimensions (mm)
	Motor with brake 9.38		

Electrical specifications of the motor with brake

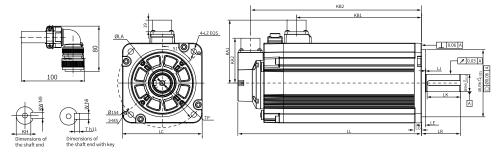
Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
63	1176	392

LC	LL	LR	LA	LZ	KA1	KB1	KA2 ^[Note]	KB2	LG	LE
	198							177.5	10	
130	(223)	63±1	145	4-Ø9	102.4	127.5	73	(202.5)	12	6±0.3
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
						0				10.0
0.5±0.75	Ø110h7 ⁰ _{-0.035}		28	28 M8 × 20	54	24 ⁰ -0.2	8	8	7	(11.9)

3.5.10 MS1H2-30C30CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	130		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Low inertia, mediu	m capacity	6000
Rated power (kW)	3.0		E 5000 9 3000 9 2000
Voltage (V)	380		호 2000 1000
Rated torque (N · m)	9.8		
Maximum torque (N · m)	29.4		Torque (N · m)
Rated current (Arms)	8.9		Heatsink-based derating curve
Maximum current (Arms)	29		
Rated speed (rpm)	3000		
Maximum speed (rpm)	6000		
Torque coefficient (N · m/Arms)	rque coefficient (N · m/Arms) 1.25		80 120 100 100 100 100 100 100 10
Rotor moment of inertia (kg·cm²)	Motor without brake6.4Motor with brake9.38		₩ 100 150 200 250 300 350 400 450 Heatsink dimensions (mm)
			· · · · · · · · · · · · · · · · · · ·

Electrical specifications of the motor with brake

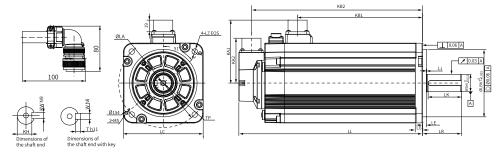
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)		
63	1176	392		

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	198							177.5		
130	(223)	63±1	145	4-Ø9	102.4	127.5	74	(202.5)	12	6±0.3
LJ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
						0				10.0
0.5±0.75	Ø110h7	7 ⁰ –0.035	28	M8 × 20	54	24 ⁰ -0.2	8	8	7	(11.9)

3.5.11 MS1H2-40C30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics	
Flange size (mm)	130		A Continuous duty zone	
Inertia, capacity	Low inertia, mediur	n capacity		
Rated power (kW)	4.0			
Voltage (V)	220			
Rated torque (N · m)	12.6			
Maximum torque (N · m)	31.5		Torque (N · m)	
Rated current (Arms)	22		Heatsink-based derating curve	
Maximum current (Arms)	67.5			
Rated speed (rpm)	3000			
Maximum speed (rpm)	5000			
Torque coefficient (N · m/Arms)	rque coefficient (N · m/Arms) 0.65		(e) a) b) b) b) b) b) b) b) b) b) b	
Potor moment of inartia (kg. cm ²)	Motor without brake9Motor with brake11.98		100 150 200 250 300 350 400 450 Heatsink dimensions (mm)	
Rotor moment of inertia (kg·cm ²)			reations of the solution of th	

Electrical specifications of the motor with brake

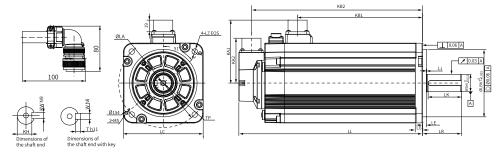
Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
63	1176	392

LC	LL	LR	LA	LZ	KA1	KB1	KA2 ^[Note]	KB2	LG	LE
100	236							215.5	10	
130	(261)	63±1	145	4-Ø9	102.4	165.5	73	(240.5)	12	6±0.3
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
		-0	⁹ -0.035 28 M8 × 20				8	8	7	13.2
0.5±0.75	Ø110h7 ⁰ _{-0.035}				54	24 ⁰ -0.2				(15.1)

3.5.12 MS1H2-40C30CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	130		A Continuous duty zone
Inertia, capacity	Low inertia, mediu	m capacity	6000
Rated power (kW)	4.0		4000
Voltage (V)	380		g 3000 g 2000 1000 1000
Rated torque (N · m)	12.6		
Maximum torque (N · m)	37.8		Torque (N · m)
Rated current (Arms)	13.5		Heatsink-based derating curve
Maximum current (Arms)	42.5		ê 9 120
Rated speed (rpm)	3000		
Maximum speed (rpm)	5000		9 120 100 app e go ad
Torque coefficient (N · m/Arms)	cient (N · m/Arms) 1.06		
Rotor moment of inertia (kg·cm ²)	Motor without brake9Motor with brake11.98		20 100 150 200 250 300 350 400 450 Heatsink dimensions (mm)
(kg.cli)			

Electrical specifications of the motor with brake

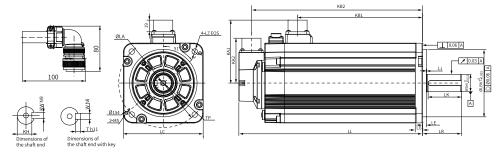
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
63	1176	392

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	236							215.5		
130	(261)	63±1	145	4-Ø9	102.4	165.5	74	(240.5)	12	6±0.3
LJ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
		0				0	_	_	_	13.2
0.5±0.75	Ø110h7	7 ⁰ -0.035	28	M8 × 20	54	24 ⁰ -0.2	8	8	7	(15.1)

3.5.13 MS1H2-50C30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	130		A Continuous duty zone
Inertia, capacity	Low inertia, mediu	n capacity	6000
Rated power (kW)	5.0		E 5000 3000 3000 2000
Voltage (V)	220		
Rated torque (N · m)	15.8		
Maximum torque (N · m)	39.5		Torque (N·m)
Rated current (Arms)	22		Heatsink-based derating curve
Maximum current (Arms)	67.5		چ ب 120
Rated speed (rpm)	3000		
Maximum speed (rpm)	5000		(%) 120 120 100 00 00 00 00 00 00 00 00
Torque coefficient (N · m/Arms)	ue coefficient (N·m/Arms) 0.81		
Rotor moment of inertia (kg·cm²)	Motor without brake 11.6		100 150 200 250 300 350 400 450 Heatsink dimensions (mm)
	Motor with brake 14.58		

Electrical specifications of the motor with brake

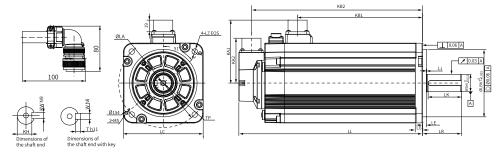
Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
63	1176	392

LC	LL	LR	LA	LZ	KA1	KB1	KA2 ^[Note]	KB2	LG	LE
100	274							253.5	10	
130	(299)	63±1	145	4-Ø9	102.4	203.5	73	(278.5)	12	6±0.3
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
						0	_	_	_	16.35
0.5±0.75	Ø110h	7 ⁰ -0.035	28	M8 × 20	54	24 ⁰ -0.2	8	8	7	(18.25)

3.5.14 MS1H2-50C30CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	130		A Continuous duty zone
Inertia, capacity	Low inertia, mediu	im capacity	6000
Rated power (kW)	5.0		(E 5000 E 4000
Voltage (V)	380		B 3000 B 2000 1000
Rated torque (N · m)	Rated torque (N·m) 15.8		
Maximum torque (N · m)	47.4		Torque (N∙m)
Rated current (Arms)	17		Heatsink-based derating curve
Maximum current (Arms)	52.5		چ به 120
Rated speed (rpm)	3000		
Maximum speed (rpm)	5000		9 120 100 apple to add the second se
Torque coefficient (N · m/Arms)	Torque coefficient (N · m/Arms) 1.04		
Rotor moment of inertia (kg·cm ²)	Motor without brake11.6Motor with brake14.58		× 0 100 150 200 250 300 350 400 450 ₩ Heatsink dimensions (mm)
Rotor moment of hertia (kg+cm-)			

Electrical specifications of the motor with brake

Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤ 1

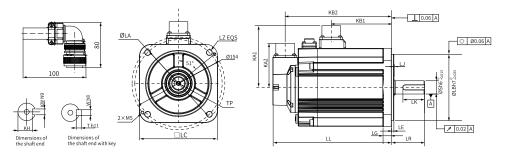
Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
63	1176	392

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	274							253.5		
130	(299)	63±1	145	4-Ø9	102.4	203.5	74	(278.5)	12	6±0.3
LJ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
		0				0				16.35
0.5±0.75	Ø110h7	7 ⁰ -0.035	28	M8 × 20	54	24 ⁰ -0.2	8	8	7	(18.25)

3.6 Medium Inertia and Medium Capacity (MS1H3)

3.6.1 MS1H3-85B15CB-T33*R


Motor sp	pecifications	Torque-Speed characteristics	
Flange size (mm)	130		A Continuous duty zone
Inertia, capacity	Medium inertia, mediu	ım capacity	4000
Rated power (kW)	0.85		(E 3000
Voltage (V)	220		B 2000
Rated torque (N · m)	5.39		
Maximum torque (N · m)	13.5		Torque (N·m)
Rated current (Arms)	6.6		Heatsink-based derating curve
Maximum current (Arms)	17.2		⁽²⁾
Rated speed (rpm)	1500		
Maximum speed (rpm)	3000		
Torque coefficient (N · m/Arms)	0.93		(a) 120 100 b) 10
Deter memory of inartia (l/g, cm ²)	Motor without brake	13.56	100 150 200 250 300 350 400 450 Heatsink dimensions (mm)
Rotor moment of inertia (kg·cm ²)	Motor with brake	15.8	

Electrical specifications of the motor with brake

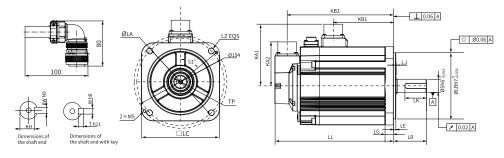
Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
55	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	142							121.5		
130	(167)	55±1	145	4-Ø9	103	70	74	(146.5)	14	4
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
										5.8
0.5±0.75	Ø110h	7 ⁰ -0.035	22	$M6 \times 20$	36	18 ⁰ -0.2	8	8	7	(7.7)

3.6.2 MS1H3-85B15CD-T33*R


Motor s	pecifications		Torque-Speed characteristics			
Flange size (mm)	130		A Continuous duty zone			
Inertia, capacity	Medium inertia, med	dium capacity	4000			
Rated power (kW)	0.85		(Ê 3000 B 2000			
Voltage (V)	380		B 2000 G 1000			
Rated torque (N · m)	5.39					
Maximum torque (N · m)	13.5		Torque (N · m)			
Rated current (Arms)	3.5		Heatsink-based derating curve			
Maximum current (Arms)	8.5		2 120			
Rated speed (rpm)	1500					
Maximum speed (rpm)	3000					
Torque coefficient (N · m/Arms)	1.84		8 120 100 100 100 100 100 100 100 100 100 100			
Rotor moment of inertia (kg·cm ²)	Motor without brake	13.56	∰ 100 150 200 250 300 350 400 450 Heatsink dimensions (mm)			
(votor moment or mertia (kg·CIII)	Motor with brake	15.8	``'			

Electrical specifications of the motor with brake

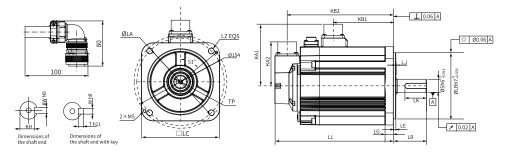
Holding torque (N∙m)	Supply voltage (VDC)±10%		Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
55	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	142							121.5		
130	(167)	55±1	145	4-Ø9	103	70	74	(146.5)	14	4
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
		0				0				5.8
0.5±0.75	Ø110h	7 ⁰ -0.035	22	$M6 \times 20$	36	18 ⁰ -0.2	8	8	7	(7.7)

3.6.3 MS1H3-13C15CB-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	130		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Medium inertia, med	ium capacity	4000
Rated power (kW)	1.3		
Voltage (V)	220		B 2000 0 1000
Rated torque (N · m)			
Maximum torque (N · m)			Torque (N · m)
Rated current (Arms)	10.5		Heatsink-based derating curve
Maximum current (Arms)	27.3		[©] 120
Rated speed (rpm)	1500		
Maximum speed (rpm)	3000		
Torque coefficient (N · m/Arms)	0.89		8 120 100 100 100 100 100 100 100
Rotor moment of inertia (kg·cm²)	Motor without brake	19.25	100 150 200 250 300 350 400 450 Heatsink dimensions (mm)
	Motor with brake 21.5		

Electrical specifications of the motor with brake

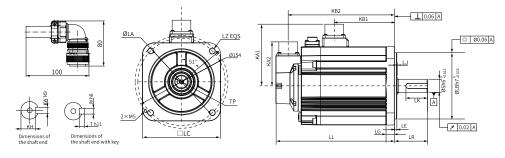
Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
55	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	157							136.5		
130	(182)	55±1	145	4-Ø9	103	85	74	(161.5)	14	4
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
						0				7.1
0.5±0.75	Ø110h	7 ⁰ -0.035	22	M6 × 20	36	18 ⁰ -0.2	8	8	7	(8.9)

3.6.4 MS1H3-13C15CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	130		A Continuous duty zone
Inertia, capacity	Medium inertia, med	ium capacity	4000
Rated power (kW)	1.3		
Voltage (V)	380		B 2000 M 1000
Rated torque (N · m)	8.34		
Maximum torque (N · m)	20.85		Torque (N·m)
Rated current (Arms)	5.1		Heatsink-based derating curve
Maximum current (Arms)	12.6		ê 120
Rated speed (rpm)	1500		
Maximum speed (rpm)	3000		
Torque coefficient (N · m/Arms)	1.85		120 100 1
Rotor moment of inertia (kg·cm ²)	Motor without brake19.25Motor with brake21.5		∰ 100 150 200 250 300 350 400 450 Heatsink dimensions (mm)
Kotor moment of mertia (kg·cm)			

Electrical specifications of the motor with brake

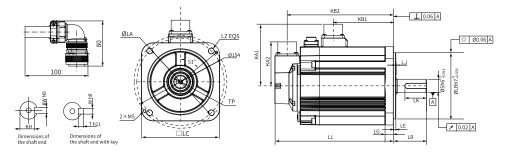
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)		
55	686	196		

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	157							136.5		
130	(182)	55±1	145	4-Ø9	103	85	74	(161.5)	14	4
LJ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
	_									7.1
0.5±0.75	Ø110h	7 ⁰ -0.035	22	$M6 \times 20$	36	18 ⁰ -0.2	8	8	7	(8.9)

3.6.5 MS1H3-18C15CB-T33*R


Motor s	pecifications		Torque-Speed characteristics			
Flange size (mm)	130		A Continuous duty zone B Intermittent duty zone			
Inertia, capacity	Medium inertia, medi	um capacity	4000			
Rated power (kW)	1.8		Ē 3000			
Voltage (V)	220		B 2000 G 1000			
Rated torque (N · m)	11.5					
Maximum torque (N · m)	28.75		Torque (N · m)			
Rated current (Arms)	11.9		Heatsink-based derating curve			
Maximum current (Arms)	32.2		ê 120 <u></u>			
Rated speed (rpm)	1500		별 100			
Maximum speed (rpm)	3000					
Torque coefficient (N · m/Arms)	1.05		80 90 90 90 90 90 90 90 90 90 9			
Rotor moment of inertia (kg·cm²)	Motor without brake	24.9	€ 100 150 200 250 300 350 400 450 Heatsink dimensions (mm)			
otor moment of inertia (kg·cm ⁻)	Motor with brake 27.2					

Electrical specifications of the motor with brake

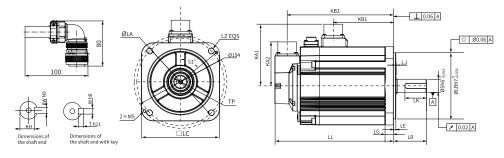
Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)	
16	24	24	24	1	≤ 120	≤ 60	≤1	

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)		
55	686	196		

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	172							151.5		
130	(197)	55±1	145	4-Ø9	103	100	74	(176.5)	14	4
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
						0				8.5
0.5±0.75	Ø110h	7 ⁰ -0.035	22	$M6 \times 20$	36	18 ⁰ -0.2	8	8	7	(10.3)

3.6.6 MS1H3-18C15CD-T33*R


Motor sp	pecifications		Torque-Speed characteristics
Flange size (mm)	130		A Continuous duty zone
Inertia, capacity	Medium inertia, medium capacity		4000
Rated power (kW)	1.8		E 3000 B 2000 B 1000
Voltage (V)	380 11.5		2000 00 1000
Rated torque (N · m)			
Maximum torque (N · m)	28.75		Torque (N · m)
Rated current (Arms)	6.75		Heatsink-based derating curve
Maximum current (Arms)	17.7		[©] 120
Rated speed (rpm)	1500		100 International Internationa
Maximum speed (rpm)	3000		
Torque coefficient (N · m/Arms)	1.87		80 60 40 20 20 300
Rotor moment of inertia (kg·cm ²)	Motor without brake24.9Motor with brake27.2		₹ 100 150 200 250 300 350 400 450 Heatsink dimensions (mm)

Electrical specifications of the motor with brake

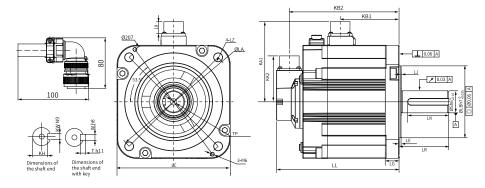
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
16	24	24	24	1	≤ 120	≤ 60	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
55	686	196

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	172							151.5		
130	(197)	55±1	145	4-Ø9	103	100	74	(176.5)	14	4
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
		0				0				8.5
0.5±0.75	Ø110h	7 ⁰ -0.035	22	M6 × 20	36	18 ⁰ -0.2	8	8	7	(10.3)

3.6.7 MS1H3-29C15CB-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	180		A Continuous duty zone
Inertia, capacity	Medium inertia, medi	um capacity	3500
Rated power (kW)	2.9		ق 2500
Voltage (V)	220		9 2000 9 1500 9 1000
Rated torque (N · m)	18.6		
Maximum torque (N · m)	46.5		Torque (N·m)
Rated current (Arms)	18		Heatsink-based derating curve
Maximum current (Arms)	52.5		[€] 120
Rated speed (rpm)	1500		
Maximum speed (rpm)	3000		
Torque coefficient (N · m/Arms)	1.16		(%) 120 av 100 by 100 <t< td=""></t<>
Potor moment of inertia (kg. cm ²)	Motor without brake	44.7	0 100 200 300 400 500 600 Heatsink dimensions (mm)
Rotor moment of inertia (kg·cm ²)	Motor with brake 52.35		

Electrical specifications of the motor with brake

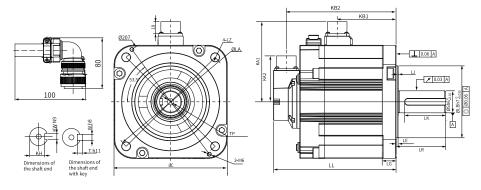
Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
50	24	31	18.58	1.29	≤ 200	≤ 100	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
79	1470	490

LC	LL	LR	LA	LZ	KA1	KB1	KA2 ^[Note]	KB2	LG	LE
180	161 (194.8)	79±1	200	4-Ø13.5	127.4	93.5	73	140.5 (174.3)	22	3.2±0.3
LJ	L	В	S	TP	LK	КН	KW	W	т	Weight (kg)
0.5±0.75	Ø114.3h	17 ⁰ -0.035	35	M12x25	65	30 ⁰ -0.2	10	10	8	13.8 (17.9)

3.6.8 MS1H3-29C15CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	180		A Continuous duty zone
Inertia, capacity	Medium inertia, medi	um capacity	3500
Rated power (kW)	2.9 380		ق 2500 <u></u>
Voltage (V)			9 1500 9 1500 9 1000
Rated torque (N · m)	18.6		
Maximum torque (N · m)	46.5		Torque (N · m)
Rated current (Arms)	10.5		Heatsink-based derating curve
Maximum current (Arms)	29.75		£ 120,
Rated speed (rpm)	1500		80 80 80 80 80 80 80 80 80 80 80 80 80 8
Maximum speed (rpm)	3000		
Torque coefficient (N · m/Arms)	1.94		(a) 120 a) 100 b) 100 <t< td=""></t<>
Rotor moment of inertia (kg·cm ²)	Motor without brake44.7Motor with brake52.35		80 0 100 200 300 400 500 600 ₩ Heatsink dimensions (mm)

Electrical specifications of the motor with brake

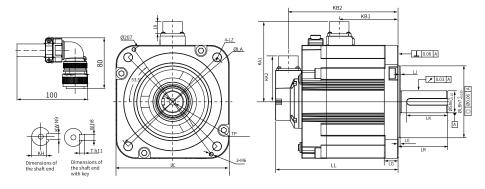
Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
50	24	31	18.58	1.29	≤ 200	≤ 100	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
79	1470	490

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
180	161	79±1	200	4-Ø13.5	127.4	93.5	74	140.5	22	3.2±0.3
	(194.8)							(174.3)		
LJ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
										13.8
0.5±0.75	Ø114.3h	17 ⁰ -0.035	35	M12x25	65	30 ⁰ -0.2	10	10	8	(17.9)

3.6.9 MS1H3-44C15CB-T33*R


Motor s	pecifications		Torque-Speed characteristics				
Flange size (mm)	180		A Continuous duty zone B Intermittent duty zone				
Inertia, capacity	Medium inertia, medi	um capacity	3500				
Rated power (kW)	4.4		<u>ق</u> 2500				
Voltage (V)	220		9 2000 9 1500 9 1000				
Rated torque (N · m)	28.4						
Maximum torque (N · m)	71.1		Torque (N · m)				
Rated current (Arms)	25.5		Heatsink-based derating curve				
Maximum current (Arms)	67		[®] 120				
Rated speed (rpm)	1500		ê 100 8 80				
Maximum speed (rpm)	3000						
Torque coefficient (N · m/Arms)	que coefficient (N·m/Arms) 1.25		(a) 120 a) 100 b) 100 <t< td=""></t<>				
Poter moment of inertia (ka, cm^2)	Motor without brake	64.9	8 0 100 200 300 400 500 600 Heatsink dimensions (mm)				
otor moment of inertia (kg∙cm²)	Motor with brake 72.55						

Electrical specifications of the motor with brake

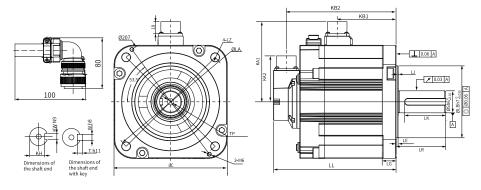
Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
50	24	31	18.58	1.29	≤ 200	≤ 100	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
79	1470	490

LC	LL	LR	LA	LZ	KA1	KB1	KA2 [Note]	KB2	LG	LE
180	184.5 (218.3)	79±1	200	4-Ø13.5	127.4	117	73	164 (197.8)	22	3.2±0.3
LJ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
0.5±0.75	75 Ø114.3h7 ⁰ -0.035		35	M12x25	65	30 ⁰ -0.2	10	10	8	17.4
		-								(21.9)

3.6.10 MS1H3-44C15CD-T33*R


Motor sp	pecifications		Torque-Speed characteristics
Flange size (mm)	180		A Continuous duty zone
Inertia, capacity	Medium inertia, medi	um capacity	3500
Rated power (kW)	4.4		(a) 3000 (b) 2500 (c) 25
Voltage (V)	380		
Rated torque (N · m)	28.4		
Maximum torque (N · m)	71.1		Torque (N+m)
Rated current (Arms)	16		Heatsink-based derating curve
Maximum current (Arms)	42		[€] 120
Rated speed (rpm)	1500		
Maximum speed (rpm)	3000		
Torque coefficient (N · m/Arms)	1.96		Image: Second state sta
Rotor moment of inertia (kg·cm ²)	Motor without brake64.9Motor with brake72.55		≥ 0 100 200 300 400 500 600 Heatsink dimensions (mm)
Rotor moment or mertia (kg·cm)			

Electrical specifications of the motor with brake

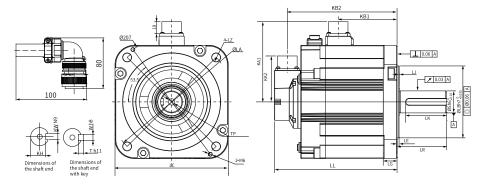
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
50	24	31	18.58	1.29	≤ 200	≤ 100	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
79	1470	490

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
180	184.5 (218.3)	79±1	200	4-Ø13.5	127.4	117	74	164 (197.8)	22	3.2±0.3
LJ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
0.5±0.75 Ø114.3h7 ⁰		70 0.005	35	M12x25	65	30 ⁰ -0.2	10	10	Q	17.4
0.5±0.75	114.311	-0.035	55	WI12X23	05	30 -0.2	10	10	8	(21.6)

3.6.11 MS1H3-55C15CD-T33*R


Motor s	pecifications		Torque-Speed characteristics		
Flange size (mm)	180		A Continuous duty zone B Intermittent duty zone		
Inertia, capacity	Medium inertia, med	ium capacity	3500		
Rated power (kW)	5.5		<u>E</u> . 2500		
Voltage (V)	380		9 2000 9 1500 9 1000		
Rated torque (N · m)	35				
Maximum torque (N · m)	87.6		Torque (N · m)		
Rated current (Arms)	20.7		Heatsink-based derating curve		
Maximum current (Arms)	52		§ 120		
Rated speed (rpm)	1500		ë 100 8 80		
Maximum speed (rpm)	3000				
Torque coefficient (N · m/Arms)	/Arms) 1.92		Image: Second		
Rotor moment of inertia (kg·cm ²)	Motor without brake	86.9	8 0 100 200 300 400 500 600 Heatsink dimensions (mm)		
Kotor moment of mertia (kg·cm)	Motor with brake 94.55				

Electrical specifications of the motor with brake

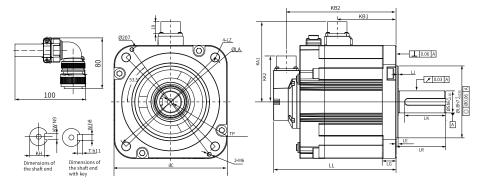
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
50	24	31	18.58	1.29	≤ 200	≤ 100	≤ 1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
113	1764	588

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
	208				107.4			187.5		
180	(241.8)	113±1	200	4-Ø13.5	127.4	140.5	74	(221.3)	22	3.2±0.3
LJ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
										21.7
0.5±0.75	Ø114.3h	17 ⁰ -0.035	42	M16x32	97	37 ⁰ -0.2	12	12	8	(25.9)

3.6.12 MS1H3-75C15CD-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	180		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Medium inertia, medium capacity		3500
Rated power (kW)	7.5		B 2000 B 2500 B 2000 B 1000
Voltage (V)	380		1000
Rated torque (N · m)	48 119		
Maximum torque (N · m)			Torque (N·m)
Rated current (Arms)	25		Heatsink-based derating curve
Maximum current (Arms)	65		Ê 120
Rated speed (rpm)	1500		ë 100 R 80
Maximum speed (rpm)	3000		
Torque coefficient (N · m/Arms)	Motor without brake 127.5		120 at product 100 at product 100 <t< td=""></t<>
Rotor moment of inertia (kg·cm ²)			8 0 100 200 300 400 500 600 Heatsink dimensions (mm)
(kg cm)	Motor with brake	135.15	

Electrical specifications of the motor with brake

ing torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
50	24	31	18.58	1.29	≤ 200	≤ 100	≤1

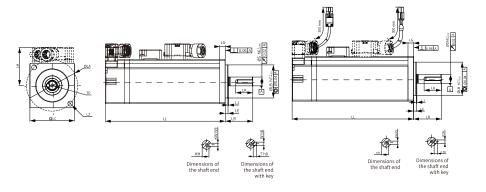
Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
113	1764	588

LC	LL	LR	LA	LZ	KA1	KB1	KA2	KB2	LG	LE
180	255 (288.8)	113±1	200	4-Ø13.5	127.4	187.5	74	234.5 (234.5)	22	3.2±0.3
LJ	L	В	S	TP	LK	КН	KW	W	Т	Weight (kg)
0.5±0.75	75 Ø114.3h7 ⁰ -0.035		42	M16x32	97	37 ⁰ -0.2	12	12	8	29
0.5±0.75	0114.31	-0.035	42	M10X32	91	57 -0.2	12	12	0	(33.2)

3.7 Medium Inertia and Small Capacity (MS1H4)

3.7.1 MS1H4-10B30CB-T33*Z


Motor sp	pecifications		Torque-Speed characteristics		
Flange size (mm)	40		A Continuous duty zone B Intermittent duty zone		
Inertia, capacity	Low inertia, small capacity				
Rated output (kW)	0.1				
Voltage (V)	220		च 3000 स 2000		
Rated torque (N · m)	0.32				
Maximum torque (N · m)	1.12		Torque (N · m)		
Rated current (Arms)	1.3		Heatsink-based derating curve		
Maximum current (Arms)	4.70		[®] 120		
Rated speed (rpm)	3000				
Maximum speed (rpm)	6000				
Torque coefficient (N · m/Arms)	0.26		(e) 120 b) 12		
Poter memory of inertia (kg. cm ²)	Motor without brake 0.102		0 50 100 150 200 250 300 Heatsink dimensions (mm)		
Rotor moment of inertia (kg·cm ²)	Motor with brake	0.104			

Electrical specifications of the motor with brake

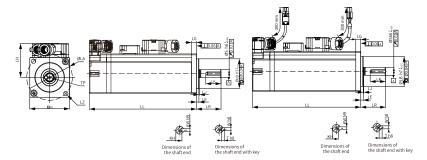
Holding torque (N · m)	e Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
0.32	24	6.1	94.4	0.25	≤ 40	≤ 20	≤ 1.5

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
20	78	54

LL	LC	LR	LA	LZ	LH	LG	LE	LJ
91 (121.5)	40	25±0.5	46	2-Ø4.5	34.3	5	2.5±0.5	0.5±0.35
S	LB	TP	LK	КН	kW	W	Т	Weight (kg)
8	Ø30h7 ⁰ -0.021	M3x6	15.5	6.2 ⁰ -0.1	3	3	3	0.45 (0.64)

3.7.2 MS1H4-20B30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	60		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Medium inertia, lo	w capacity	7000
Rated power (kW)	0.2		E 6000 5000 9 3000 2 2000
Voltage (V)	220		2000
Rated torque (N · m)	0.64		
Maximum torque (N · m)	2.24		Torque (N · m)
Rated current (Arms)	1.3		Heatsink-based derating curve
Maximum current (Arms)	5.3		§ 120
Rated speed (rpm)	3000		100 Re 80
Maximum speed (rpm)	6000		
Torque coefficient (N · m/Arms)	0.46		
Rotor moment of inertia (kg·cm ²)	Motor without brake	0.22	× 0 50 100 150 200 250 300
Kotor moment of mertia (kg·cm)	Motor with brake	0.23	Heatsink dimensions (mm)

Electrical specifications of the motor with brake

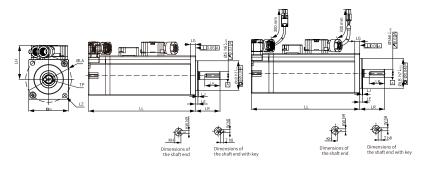
Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
1.5	24	7.6	75.79	0.32	≤ 60	≤ 20	≤ 1.5

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
25	245	74

LC	LL	LR	LA	LZ	LH	LG	LE	LJ
60	73.5 (101.1)	30±0.5	70	4-Ø5.5	44	8.0	3±0.5	0.5±0.35
LB	S	TP	LK	КН	KW	W	т	Weight (kg)
Ø50h7 ⁰ -0.025	14	M5x8	16.5	11 ⁰ -0.1	5	5	5	0.78
	- '		10.0	0.1	,	5	5	(1.16)

3.7.3 MS1H4-40B30CB-T33*R

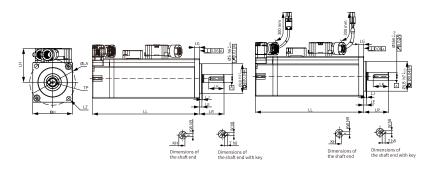

Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	60		A Continuous duty zone
Inertia, capacity	Medium inertia, lo	ow capacity	
Rated power (kW)	0.4		Ê 5000
Voltage (V)	220		E 5000 4000 B 3000
Rated torque (N · m)	1.27		2000
Maximum torque (N · m)	4.45		1000 0 0 1.2 2.4 3.6 4.8 Torque (N·m)
Rated current (Arms)	2.4		Heatsink-based derating curve
Maximum current (Arms)	9.2		
Rated speed (rpm)	3000		te 100 Re 80
Maximum speed (rpm)	6000		
Torque coefficient (N · m/Arms)	0.53		(%) 120 100 100 100 100 100 100 100
Rotor moment of inertia (kg·cm²)	Motor without brake0.43Motor with brake0.44		€ 0 50 100 150 200 250 300
Kotor moment or mertia (kg·CIII)			Heatsink dimensions (mm)

Electrical specifications of the motor with brake

Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
1.5	24	7.6	75.79	0.32	≤ 60	≤ 20	≤ 1.5

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)		
25	245	74		


LC	LL	LR	LA	LZ	LH	LG	LE	LJ
60	92 (119.8)	30±0.5	70	4-Ø5.5	44	8.0	3±0.5	0.5±0.35
LB	S	TP	LK	КН	KW	W	Т	Weight (kg)
Ø50h7 ⁰ -0.025	14	M5x8	16.5	11 ⁰ -0.1	5	5	5	1.11
								(1.48)

3.7.4 MS1H4-55B30CB-T331R

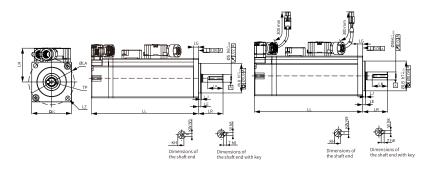
Motor s	pecifications	Torque-Speed characteristics
Flange size (mm)	80	A Continuous duty zone
Inertia, capacity	Medium inertia, low capacity	6000
Rated power (kW)	0.55	
Voltage (V)	220	g 3000
Rated torque (N · m)	1.75	2000
Maximum torque (N · m)	6.13	0 1.6 3.2 4.8 6.4 Torque (N·m)
Rated current (Arms)	3.3	Heatsink-based derating curve
Maximum current (Arms)	13.2	
Rated speed (rpm)	3000	80 100 100 100 100 100 100 100 100 100 1
Maximum speed (rpm)	6000	
Torque coefficient (N · m/Arms)	0.49	Image: state
Rotor moment of inertia (kg·cm ²)	Motor without brake 1.12	₩ 0 50 100 150 200 250 300 Heatsink dimensions (mm)
(kg·ciii)	Motor with brake -	. ,

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)		
35	392	147		

LC	LL	LR	LA	LZ	LH	LG	LE	LJ
80	96.7	25±0.5	90	4- Ø 7	54	7.5	3±0.5	0.5±0.35
LB	S	TP	LK	КН	KW	W	т	Weight (kg)
Ø70h7 ⁰ –0.03	19	M6 x 20	26	15.5 ⁰ -0.1	6	6	6	1.85

3.7.5 MS1H4-75B30CB-T33*R


Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	80		A Continuous duty zone B Intermittent duty zone
Inertia, capacity	Medium inertia, lo	w capacity	6000
Rated power (kW)	0.75		
Voltage (V)	220		(E. 5000)) 4000 99 3000
Rated torque (N · m)	2.39		
Maximum torque (N · m)	8.37		0 2.5 5 7.5 10 Torque (N·m)
Rated current (Arms)	4.4		Heatsink-based derating curve
Maximum current (Arms)	16.9		
Rated speed (rpm)	3000		
Maximum speed (rpm)	6000		
Torque coefficient (N · m/Arms)	0.58		Image: state
Rotor moment of inertia (kg·cm ²)	Motor without brake	1.46	₩ 0 50 100 150 200 250 300 Heatsink dimensions (mm)
Notor moment of mertia (kg·cm·)	Motor with brake	1.51	

Electrical specifications of the motor with brake

Holding torque (N∙m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
3.2	24	10	57.6	0.42	≤ 60	≤ 40	≤1

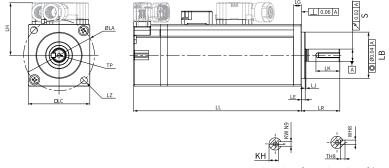
Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)		
35	392	147		

LC	LL	LR	LA	LZ	LH	LG	LE	LJ
80	107.3 (140.5)	25±0.5	90	4-Ø7	54	7.5	3±0.5	0.5±0.35
LB	S	TP	LK	КН	KW	W	Т	Weight (kg)
070-70	10	MC X 20	20	15 50	C	C	C	2.18
Ø70h7 ⁰ -0.03	19	M6 × 20	26	15.5 ⁰ -0.1	6	6	6	(2.82)

3.7.6 MS1H4-10C30CB-T33*R

Motor s	pecifications		Torque-Speed characteristics
Flange size (mm)	80		A Continuous duty zone
Inertia, capacity	Medium inertia, lov	w capacity	7000
Rated power (kW)	1.0		(m 6000 b 5000 b 4000 g 3000 y 2000
Voltage (V)	220		2000
Rated torque (N · m)	3.18		
Maximum torque (N · m)	11.13		Torque (N⋅m)
Rated current (Arms)	6.5		Heatsink-based derating curve
Maximum current (Arms)	24		2 120
Rated speed (rpm)	3000		
Maximum speed (rpm)	6000		
Torque coefficient (N · m/Arms)	0.46		8 120 9 120 9 100 9 60 9 60 9 60 9 60 9 60 9 60 9 60 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7
Rotor moment of inertia (kg·cm²)	Motor without brake 1.87		₩ 0 50 100 150 200 250 300 Heatsink dimensions (mm)
Rotor moment of mertia (kg·cm)	Motor with brake	1.97	


Electrical specifications of the motor with brake

Holding torque (N · m)	Supply voltage (VDC)±10%	Rated power (W)	Coil resistance (Ω) (±7%)	Exciting current (A)	Apply time (ms)	Release time (ms)	Backlash (°)
3.2	24	10	57.6	0.42	≤ 60	≤ 40	≤1

Allowable load

LF (mm)	Allowable radial load (N)	Allowable axial load (N)
35	392	147

Dimensions (mm)

Dimensions of Dimensions of the shaft end shaft end with key

LC	LL	LR	LA	LZ	LH	LG	LE	LJ
80	118.7 (153.2)	25±0.5	90	4-Ø7	54	7.5	3 ± 0.5	0.5±0.35
LB	S	TP	LK	КН	KW	W	Т	Weight (kg)
Ø70h7 ⁰ -0.03	19	M6 x 20	26	15.5 ⁰ -0.1	6	6	6	2.55
-0.03	13	MO X 20	20	10.5 -0.1	0	0	0	(2.9)

4 Options

4.1 List of options

Туре	Name	Installation	Applicable AC	Description
		Position	Drive Model	
Peripheral Electrical Components	Fuse and circuit breaker	Input side of the servo drive		To comply with EN 61800-5-1 standards, install a fuse/circuit breaker on the input side of the servo drive to prevent accidents caused by short circuit in the internal circuit.
	AC input reactor	Input side of the servo drive		It is used to eliminate the higher harmonics of the input side effectively and improve the power factor of the input side.
	EMC filter	Input side of the servo drive		It is used to reduce external conduction and radiation interference of the drive.
	Magnetic ring and	Output side of the drive		Reduces interferences to the outside and the bearing current.
	ferrite clamp	Signal cable		Improves the anti-interference performance of signals.

4.2 Cables

4.2.1 Cable Type

Regular cables

Do not bend or move regular cables during use. Bending or moving regular cables may damage the cables and lead to a series of cable-related faults such as poor contact. Secure regular cables by binding them with ties or similar. During binding, reserve certain bending radius for the cables to prevent stress.

Flexible cables

Flexible cables can move along with the drag chain without a high risk of abrasion.

Note

- Do not twist or wind the cables in the drag chain.
- Ensure cables can move freely within the bending radius. Relative movement must be allowed between cables or between cables and the guiding device.
- Cables in the drag chain can be fixed or bundled through the two unmovable ends of the drag chain.

Oil-resistant cables

Oil-resistant cables apply to applications requiring shielded power cables, such as machine tools, cutting fluids, and cutting compounds.

More information

Cables of MS1–R series motors are the same as MS1–Z series motors.

Power cables and encoder cables for terminal-type motors must be installed with specialized devices and jigs. Order the finished cables from distributors authorized by Inovance.

For more cable information, see "Cable Specifications and Models" in the hardware manual for the servo drive.

4.2.2 Model Description

Power cable

③ Cross sectional area (mm ²)	⑤ Cable length (m)
0: Flange size 25/40/60/80	3.0: 3 m
1: Flange size 100/130/180	5.0: 5 m
2: Flange size 180 (motors of 4.4	10.0: 10 m
kW and above)	
④ Connector type at motor side	6 Special requirements
0: 6-core plastic connector	T: Drag chain
1: 9-core aviation connector	TS: Shielded flexible cable
2: 6-core aviation connector	
7: SDC-06T series aviation	
· · ·	
	 ③ Cross sectional area (mm²) 0: Flange size 25/40/60/80 1: Flange size 100/130/180 2: Flange size 180 (motors of 4.4 kW and above) ④ Connector type at motor side 0: 6-core plastic connector 1: 9-core aviation connector 2: 6-core aviation connector

$\frac{\text{S6-L-M}}{1} \underbrace{\begin{smallmatrix} 0 & 0 & 0 \\ \overline{2} & \overline{3} & \overline{4} \end{smallmatrix}}_{\overline{5}} - \frac{1}{\overline{6}}$

Model of encoder cables

$\underbrace{\underline{\mathsf{S6-L-P}}}_{(1)} \underbrace{\begin{smallmatrix} 0 & 0 & 0 \\ \overline{(2)} & \overline{(3)} \\ \overline{(4)} & \overline{(5)} \\ \overline{(5)} & \overline{(6)} \\ \hline \end{array}$

① Cable type	③ Encoder	⑤ Cable length (m)
S6-L-P: Motion control encoder	1: Communication-type	3.0: 3 m
cable	incremental encoder	5.0: 5 m
	2: Communication-type multi-turn absolute encoder	10.0: 10 m
② Connector type at drive side	④ Connector type at motor side	6 Special requirements
0: DB9	0: 9-core plastic connector	T: Drag chain
1: USB	1: 9-core aviation connector	TS: Shielded flexible cable
	4: SDC-06T series aviation	
	connector (front outlet)	
	5: SDC-06T series aviation connector (rear outlet)	

Model of communication cables

$$\underbrace{\frac{\text{S6N-L-T}}{1}}_{\textcircled{2}} \underbrace{\begin{array}{c}00\\\hline\textcircled{3}\end{array}}_{\textcircled{3}} + \underbrace{\begin{array}{c}3.0\\\hline\textcircled{3}\end{array}}_{\textcircled{3}}$$

① Cable type	② Cable type	③ Cable length (m)
S6-L-T: Motion control	00: Servo drive to PC	3.0: 3 m
communication cable	communication cable	5.0: 5 m
S6N-L-T: IS620F motion control encoder cable (only for servo drive	01: Servo drive communication cable (CAN&RS485)	10.0: 10 m
PC communication cable)	02: Servo drive to PLC communication cable	
	03: Servo drive termination resistor cable	
	04: Servo drive communication cable (EtherCAT)	

4.2.3 Cable Selection

Power cable

Motor Model	Cable	e Name	Cable Model	L Cable Length (mm)	Tolerance (T) (mm)	Illustration
		Power	S6-L-M107-3.0	3000	(-30.30)	
		cable for motor	S6-L-M107-5.0	5000	(-30.50)	
	Front	without brake	S6-L-M107-10.0	10000	(-30.80)	L±T
	outlet		S6-L-B107-3.0	3000	(-30.30)	55±5mm
		Brake	S6-L-B107-5.0	5000	(-30.50)	200±10mm
MS1H1/ MS1H4		Drane	S6-L-B107-10.0	10000	(-30.80)	L±T
terminal- type		Power	S6-L-M108-3.0	3000	(-30.30)	+ 55±5mm
motor		cable for	S6-L-M108-5.0	5000	(-30.50)	
	Rear	motor without Rear brake	S6-L-M108-10.0	10000	(-30.80)	L±T
	outlet	utlet Brake	S6-L-B108-3.0	3000	(-30.30)	// 55±5mm //
			S6-L-B108-5.0	5000	(-30.50)	
			S6-L-B108-10.0	10000	(-30.80)	L ± T
			S6-L-M100-3.0	3000	(-30.30)	-+ +- 55±5mm
MS1H1/		ver cable for tor without brake	S6-L-M100-5.0	5000	(-30.50)	30mm
MS1H1/ MS1H4 lead-	bı		S6-L-M100-10.0	10000	(-30.80)	L±T
type (-S)			S6-L-B100-3.0	3000	(-30.30)	++55±5mm
motor	Ві	rake	S6-L-B100-5.0	5000	(-30.50)	30mm
			S6-L-B100-10.0	10000	(-30.80)	L±T
MS1H2		-	S6-L-M111-3.0	3000	(-30.30)	55±5mm ++++
motor		cable for	S6-L-M111-5.0	5000	(-30.50)	
rated 3 ^m kW or below/		without rake	S6-L-M111-10.0	10000	(-30.80)	L±T
MS1H3			S6-L-B111-3.0	3000	(-30.30)	55±5mm
motor rated 1.8	-		S6-L-B111-5.0	5000	(-30.50)	
kW or below	Bi	rake	S6-L-B111-10.0	10000	(-30.80)	<u>+ 130mm</u> − L±T

Motor Model	Cable Name	Cable Model	L Cable Length (mm)	Tolerance (T) (mm)	Illustration
	Davian aabla fan	S6-L-M011-3.0	3000	(-30.30)	55±5mm + +
	Power cable for motor without	S6-L-M011-5.0	5000	(-30.50)	Somm
MS1H2	brake	S6-L-M011-10.0	10000	(-30.80)	L±T
motor rated 4		S6-L-B011-3.0	3000	(-30.30)	55±5mm +++
kW/5 kW		S6-L-B011-5.0	5000	(-30.50)	
	Brake	S6-L-B011-10.0	10000	(-30.80)	L±T
	Power cable for motor without brake	S6-L-M112-3.0	3000	(-30.30)	55±5mm ++++
		S6-L-M112-5.0	5000	(-30.50)	
MS1H3 motor		S6-L-M112-10.0	10000	(-30.80)	L±T
rated 2.9		S6-L-B112-3.0	3000	(-30.30)	55±5mm
kW	Brake	S6-L-B112-5.0	5000	(-30.50)	
	DIake	S6-L-B112-10.0	10000	(-30.80)	L±T
	_	S6-L-M022-3.0	3000	(-30.30)	55±5mm + +
	Power cable for motor without	S6-L-M022-5.0	5000	(-30.50)	Somm
MS1H3 motor	brake	S6-L-M022-10.0	10000	(-30.80)	L+T
rated 4.4		S6-L-B022-3.0	3000	(-30.30)	55±5mm
kW or above	Dut	S6-L-B022-5.0	5000	(-30.50)	2017 2017 50mm
	Brake	S6-L-B022-10.0	10000	(-30.80)	C

Encoder cable

Motor Model	Cabl	e Name	Cable Model	L Cable Length (mm)	Tolerance (T) (mm)	Illustration
	Front	Single-turn	S6-L-P114-3.0	3000	(-30.30)	55±5mm + ++-
		absolute	S6-L-P114-5.0	5000	(-30.50)	
		encoder cable	S6-L-P114-10.0	10000	(-30.80)	L±T
	outlet	Multi-turn	S6-L-P124-3.0	3000	(-30.30)	55±5mm
		absolute	S6-L-P124-5.0	5000	(-30.50)	
MS1H1/ MS1H4		encoder cable	S6-L-P124-10.0	10000	(-30.80)	A <u></u>
terminal- type		Single-turn	S6-L-P115-3.0	3000	(-30.30)	55±5mm +++
motor		absolute	S6-L-P115-5.0	5000	(-30.50)	
	Rear		S6-L-P115-10.0	10000	(-30.80)	L±T B ►
	outlet		S6-L-P125-3.0	3000	(-30.30)	55±5mm
			S6-L-P125-5.0	5000	(-30.50)	
			S6-L-P125-10.0	10000	(-30.80)	<u>A -↓ 200±10mm ↓ B</u> L±T
		Single-turn absolute encoder cable	S6-L-P110-3.0	3000	(-30.30)	
			S6-L-P110-5.0	5000	(-30.50)	
	/MS1H4		S6-L-P110-10.0	10000	(-30.80)	L±T
lead-ty	vpe (-S) otor	Multi-turn	S6-L-P120-3.0	3000	(-30.30)	
		absolute	S6-L-P120-5.0	5000	(-30.50)	
		encoder cable	S6-L-P120-10.0	10000	(-30.80)	L±T
		Single-turn	S6-L-P111-3.0	3000	(-30.30)	
	MS1H2/MS1H3 motor	absolute	S6-L-P111-5.0	5000	(-30.50)	
MG1UD		encoder cable	S6-L-P111-10.0	10000	(-30.80)	L±T
		3	S6-L-P121-3.0	3000	(-30.30)	
		Multi-turn absolute	S6-L-P121-5.0	5000	(-30.50)	
		encoder cable	S6-L-P121-10.0	10000	(-30.80)	240±10mm

Communication cables

Cable Name	Cable Model	Cable Length (mm)	Tolerance (T) (mm)	Illustration
Drive-PC communication cable	S6-L-T00-3.0	3000	(-30.30)	
Multi-drive communication cable	S6-L-T01-0.3	300	(-10.10)	
Servo drive to host controller communication cable	S6-L-T02-2.0	2000	(-20.20)	<u>,5mm</u>
Servo drive termination resistor connector	S6-L-T03-0.0	-	-	

Connector Kit

Name	Model	Outline Drawing
Battery kit	S6-C4A	
CN1 terminal (DB44)	S6-C8	1 15 31 15 44 Soldering side face of the enclosure
MS1H1 lead-type (-S) motor connector	S6-C26	6-pin Receptacle 9-pin Receptacle Insulated connector Crimp connector
MS1H2/MS1H3 motor connector (1.8 kW and below)	S6-C29	6-pin male connector 6-pin male connector 6-pin male connector 6-pin male connector 6-pin male connector 6-pin male connector 6-pin male connector 6-pin 6-pin
MS1H3 motor connector (2.9 kW and above)	S6-C39	Heat shrinkable sleeve Heat shrinkable sleeve Circular connector connector

4.3 Electrical Peripherals

4.3.1 Fuse

To prevent accidents caused by short circuit, install a fuse on the input side of the drive.

	Drive Model	Rated Input	Recommended Fuse							
Size	SV630P****I Current		Manufacturer	Rated Current (A)	Model					
	Single-phase 220 V									
•	S1R6	2.3		15	FWP-15B					
A	S2R8	4		20	FWP-20B					
В	S5R5	7.9	Bussmann	35	FWP-35C					
С	S7R6	9.6		40	FWP-40C					
D	S012	12.8		40	FWP-40C					
	Three-phase 220 V									
С	S7R6	5.1	Bussmann	50	FWP-50C					
D	S012	8	DUSSIIIdIIII	50	FWP-50C					
		Three-ph	ase 380 V							
С	T3R5	2.4		15	FWP-15B					
C	T5R4	3.6		20	FWP-20B					
D	T8R4	5.6		20	FWP-20B					
U	T012	8	Bussmann	50	FWP-50C					
	T017	12		50	FWP-50C					
E	T021	16		70	FWP-70C					
	T026	21		125	FWP-125C					

Table 4–1 List of recommended fuses

4.3.2 Electromagnetic Contactor

Table 4–2 Recommended electromagnetic contactor models

<i></i>	Drive Model	Rated Input	Re	commended Contac	ctor					
Size	SV630P****I	Current	Manufacturer	Current (A)	Model					
	Single-phase 220 V									
Α	S1R6	2.3		9	LC1 D09					
A	S2R8	4		9	LC1 D09					
В	S5R5	7.9	Schneider	9	LC1 D09					
С	S7R6	9.6		12	LC1 D12					
D	S012	12.8		18	LC1 D18					
	Three-phase 220 V									
С	S7R6	5.1	Schneider	9	LC1 D09					
D	S012	8	Schneider	9	LC1 D09					
		Three-p	hase 380 V							
С	T3R5	2.4		9	LC1 D09					
C	T5R4	3.6		9	LC1 D09					
D	T8R4	5.6		9	LC1 D09					
U	T012	8	Schneider	9	LC1 D09					
	T017	12		12	LC1 D12					
E	T021	16		18	LC1 D18					
	T026	21		25	LC1 D25					

4.3.3 Breaker

Size	Drive Model	Rated Input	R	ecommended Ci	rcuit Breaker				
Size	SV630P****I	Current (A)	Manufacturer	Current (A)	Model				
	Single-phase 220 V								
Α	S1R6	2.3		4	OSMC32N2C4				
A	S2R8	4	-	6	OSMC32N2C6				
В	S5R5	7.9	Schneider	16	OSMC32N2C16				
С	S7R6	9.6		16	OSMC32N2C16				
D	S012	12.8		20	OSMC32N2C20				
		Three-p	hase 220 V						
С	S7R6	5.1	Schneider	10	OSMC32N3C10				
D	S012	8	Schneider	16	OSMC32N3C16				
		Three-p	hase 380 V						
С	T3R5	2.4		4	OSMC32N3C4				
C	T5R4	3.6		6	OSMC32N3C6				
D	T8R4	5.6		10	OSMC32N3C10				
D	T012	8	Schneider	16	OSMC32N3C16				
	T017	12		20	OSMC32N3C20				
E	T021	16		25	OSMC32N3C25				
	T026	21		32	OSMC32N3C32				

Table 4–3 Recommended circuit breaker models

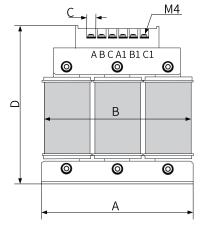
If a residual current device (RCD) is needed, select the RCD according to the following requirements:

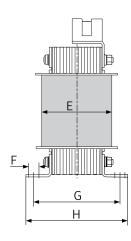
- Use a B-type RCD because the drive may generate DC leakage current in the protective conductor.
- For each drive, use an RCD whose tripping current is not lower than 100 mA to prevent RCD malfunction due to high-frequency leakage current generated by the drive.
- When multiple drives are connected in parallel and share one RCD, select an RCD whose tripping current is not lower than 300 mA.
- Use Chint or Schneider RCDs (recommended).

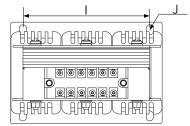
4.3.4 AC input reactor

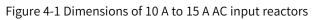
Selection

An AC input reactor is optional and mainly used to reduce harmonics in the input current. Install an external reactor as needed in actual applications. The following table lists the recommended manufacturers and models of input reactors.


Size	Drive Model SV630P****I	Rated Input Current	Applicable Reactor	Inductance (mH)				
	Three-phase 220 V							
С	S7R6	5.1	MD-ACL-10-5-4T	5				
D	S012	8	MD-ACL-10-5-4T	5				
		Three-phase 380 V						
C	T3R5	2.4	MD-ACL-10-5-4T	5				
	T5R4	3.6	MD-ACL-10-5-4T	5				


Table 4-4 AC input reactor model selection


Size	Drive Model SV630P****I	Rated Input Current	Applicable Reactor	Inductance (mH)
D	T8R4	5.6	MD-ACL-10-5-4T	5
U	T012	8	MD-ACL-10-5-4T	5
	T017	12	MD-ACL-15-3-4T	3
E	T021	16	MD-ACL-40-1.45-4T	1.45
	T026	21	MD-ACL-40-1.45-4T	1.45


Dimensions

• Inovance input reactors



Figure 4-2 Dimensions of 40 A (1.45 mH) AC input reactors

Model	А	В	С	D	E	F	G	Н	I	J
MD-ACL-10-5-4T	150±2	155	8	160	80	10	85±2	100±2	125±1	Φ7 x 10
MD-ACL-15-3-4T	150±2	155	8	160	80	10	85±2	100±2	125±1	Φ7 x 10
MD-ACL-40-1.45-4T	180±2	185	16	200	105	10	95±2	117±2	150±1	Φ7 x 10

4.3.5 EMC filter

Selection

To comply with EN IEC 61800-3 requirements in terms of radiated and conducted emission, install an EMC filter listed in the following table. EMC filter options are FN2090 and FN 3258 series EMC filters manufactured by Schaffner. Select the EMC filter according to the rated input current of the servo drive, as shown in the following table.

Filte	r Model	Appearance
	FN 2090 series	
Schaffner	FN3258 series	

Table 4–6 Standard EMC filter model and appearance

Table 4–7 Filter model selection (Schaffner)

Size	Servo drive model SV630P****I	Rated Input Current	Applicable Filter						
Single-phase 220 V									
А	S1R6	2.3	FN 2090-3-06						
A	S2R8	4	FN 2090-4-06						
В	S5R5	7.9	FN 2090-8-06						
С	S7R6	9.6	FN 2090-10-06						
D	S012	12.8	FN 2090-16-06						
	Three-ph	ase 220 V							
С	S7R6	5.1	FN 3258-7-44						
D	S012	8	FN 3258-16-44						
	Three-ph	ase 380 V							
С	T3R5	2.4	FN 3258-7-44						
C	T5R4	3.6	FN 3258-7-44						
D	T8R4	5.6	FN 3258-7-44						
U	T012	8	FN 3258-16-44						
	T017	12	FN 3258-16-44						
E	T021	16	FN 3258-16-44						
	T026	21	FN 3258-30-44						

Dimensions

• Dimensions of Schaffner FN 2090 series filters

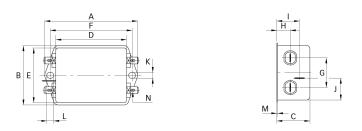


Figure 4-3 Dimensions of FN 2090 series filters (unit: mm)

Rated Current (A)	A	В	С	D	E	F	G	Н	I	J	К	L	М	N
3														
4	85	54	30.3	64.8	49.8	75	27	12.3	20.8	19.9	5.3	6.3	0.7	6.3 x 0.8
6														
8	113.5±1	57.5±1	45.4±1	94±1	56	103	25	12.4	32.4	15.5	4.4	6	1	6.3 x 0.8

Table 4-8 Dimensions of FN 2090 series filters (unit: mm)

• Dimensions of Schaffner FN 3287 series filters

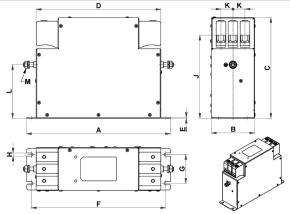


Figure 4-4 Dimension drawing of FN 3287 series filters (unit: mm)

Table 4–9 Dimensions of FN3287 filters (in mm)

Rated Current (A)	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	F (mm)	G (mm)	H (mm)	J±2 (mm)	K (mm)	L±1 (mm)	М
10	180	40	112	153	0.8	170	20	4.5	94	11	68	M5
16	200	45	112	170	0.8	185	25	5.4	102	11	76	M5
25	205	45	132	173	0.8	190	25	5.4	113	13	83	M5

4.3.6 Magnetic Ring and Magnetic Buckle

The magnetic ring is intended to be installed on the input or output side of the drive. Install the magnetic ring as close to the drive as possible. Installing the magnetic ring on the input side suppresses the noise in the input power supply system of the drive. When it is installed on the output side, it can reduce the interference generated by the drive to external devices and the bearing current.

In applications with leakage current and signal cable interference, install a magnetic ring or a ferrite clamp.

Selection

- Amorphous magnetic ring: featuring a high permeability within 1 MHz and excellent antiinterference performance, but not as low-cost as the ferrite clamp. See for details. "*Dimensions*" on page 101
- Ferrite clamp: featuring a good interference suppression performance within a frequency band above 1MHz, applicable to low-power servo drives and signal cables, low-cost and easy to install

Magnetic ring an	d ferrite clamp	Appearance
Magnetic ring	DY644020H	0
	DY805020H	
ferrite clamp	DYR-130-B	

Dimensions

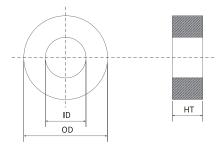


Figure 4-5 Dimensions of the magnetic ring

Table 4–10 Dimensions of the magnetic ring
--

Model	Size (OD×ID×HT) (mm)
DY644020H	$64 \times 40 \times 20$
DY805020H	$80 \times 50 \times 20$

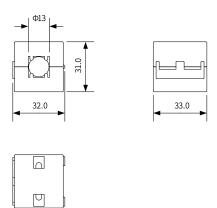


Figure 4-6 Dimensions of the ferrite clamp

Table 4–11 Dimensions of the ferrite clamp

Model	Size (Length $ imes$ OD $ imes$ ID) (mm)
DYR-130-B	$32.0 \times 31 \times 13$

4.4 Absolute Encoder Batteries

Model selection

Select an appropriate battery according to the following table.

Battery		Rated Values			
Specifications	ltem	Min. Value	Typical Value	Max. Value	Condition
	External battery voltage (V)	3.2	3.6	5	In standby state ^[1]
	Circuit fault voltage (V)	-	2.6	-	In standby state
	Battery alarm voltage (V)	2.85	3	3.15	-
Output: 3.6 V, 2500	Current consumed by the circuit (uA)	-	2	-	In normal operation ^[2]
mAh		-	10	-	In standby state, shaft at standstill
		-	80	-	In standby state, shaft rotating
	Ambient temperature (°C)	0	-	40	Same as the motor.
	Storage temperature (°C)	-20	-	60	Same as the motor.

The preceding values are obtained under an ambient temperature of 20°C.

Note

- [1]: The "standby state" means the encoder counts the multi-turn data by using the power from the external battery when the servo drive power supply is not switched on. In this case, data transceiving stops.
- [2]: During normal operation, the absolute encoder supports one-turn or multi-turn data counting and transceiving. Power on the servo drive after connecting the absolute encoder properly. The encoder starts data transceiving after a short delay of about 5s upon power-on. The motor speed must be lower than or equal to 10 rpm during transition from the standby state to the normal operation state (upon power-on). Otherwise, Er.740 (Encoder fault) may occur. In this case, you need to power off and on the servo drive again.

Design life of the battery

The following calculation only covers the current consumed by the encoder.

Assume that the drive works normally for T1 in a day, the motor rotates for T2 after the drive is powered off, and the motor stops rotating for T3 after power-off [unit: hour (H)].

Example:

Item	Schedule 1	Schedule 2
Working Days in Different Operating	313 52	
Conditions in 1 Year		
T1 (h)	8	0
T2 (h)	0.1	0
T3 (h)	15.9	24

Table 4–13 Design life of the absolute encoder battery

Capacity consumed in 1 year = (8 h \times 2 uA + 0.1 h \times 80 uA + 15.9 h \times 10 uA) x 313 + (0 h \times 2 uA + 0 h \times 80 uA +24 h \times 10 uA) x 52 \approx 70 mAh

Design life = Battery capacity \div Capacity consumed in 1 year = 2600 mAh \div 70 mAh = 37.1 years

5 Installation

Read through the safety instructions in Chapter "Fundamental Safety Instructions". Failure to comply may result in serious consequence.

Caution

- Observe the installation direction described in this chapter. Failure to comply may result in equipment fault or damage.
- Do not install or operate damaged or defective equipment. Failure to comply can result in personal injury.
- Do not install the equipment in environments exposed to water splashes or corrosive gases. Failure to comply can result in equipment fault.
- Do not install the equipment near inflammable gases or combustible objects. Failure to comply can result in a fire or electric shock.
- Install the equipment inside a fire-proof cabinet that provides electrical protection. Failure to comply may result in a fire.
- Ensure the specified clearance is reserved among the servo drive, the interior surface of the control cabinet, and other machines. Failure to comply can result in a fire or equipment fault.
- Do not put heavy objects on the equipment. Failure to comply may result in personal injury or equipment damage.
- Do not subject the equipment to strong shock. Failure to comply may result in equipment damage.
- Do not block the air inlet/outlet of the equipment or allow unwanted objects to fall into the equipment. Failure to comply may result in a fire or equipment fault.

5.1 Installation of the Servo Drive

5.1.1 Unpacking Inspection

Check the following items upon unpacking.

Item	Description
Check whether the delivered product is consistent with your order.	Check whether the servo drive model and specifications comply with your order. See the dimensions of the packing box in <i>"Table 5–1" on page 104</i> . The deliverables include the product, cushion, carton box, and screw bag, as shown in <i>"Figure 5–1" on page 105</i> .
Check whether the product is intact.	Check whether the product delivered is in good condition. If there is any missing or damage, contact Inovance or your supplier immediately.

Table 5–1	Dimensions	of the outer	packing box
TUDIC D I	Dimensions	or the outer	pucking box

SIZE	Servo Drive Model SV630****I	Outer Width (mm)	Outer Height (mm)	Outer Depth (mm)	Weight (kg)
A	S1R6, S2R8	250.0	90.0	195	0.96
В	S5R5	225.0	90	205.0	1.17
С	S7R6, T3R5, T5R4	235.0	105.0	215.0	1.48
D	S012, T8R4, T012	235.0	130.0	225.0	2.02
E	T017, T021, T026	320.0	150.0	280.0	3.94

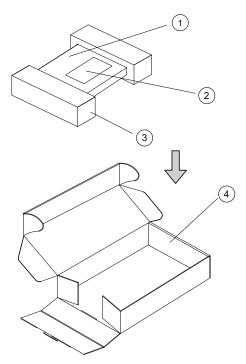


Figure 5-1 Contents inside the packing box

No.	Parameter Name
1	Product
2	Terminal accessories (varying with product models)
3	Cushion
4	Carton box

5.1.2 Installation Environment

Item	Requirement
Installation location	Indoors
Grid overvoltage	Overvoltage Class III (OVC III).
Altitude	 The maximum altitude is 2000 m. For altitudes not higher than 1000 m, derating is not required. Derating is required for altitudes above 1000 m (derate 1% for every additional 100 m). For altitudes above 2000 m, contact Inovance.
Temperature	 Mounting/Operating temperature: 0°C to 55°C For temperatures between 0°C to 45°C, derating is not required. For temperatures above 45°C, derate 2% for every additional 1°C. Storage/Transportation temperature: -20°C to +70°C. To improve the reliability of the machine, use the servo drive in environments without dramatic temperature change. When installing the servo drive into an enclosed environment such as a control cabinet, use a cooling fan or air conditioner to keep the temperature of the inlet air below 45°C. Failure to comply will result in overheat or fire. Install the servo drive on the surface of an incombustible object and leave sufficient surrounding space for heat dissipation. Take measures to prevent the servo drive from being frozen.
Ambient humidity	Below 90% RH (no condensation)

Item	Requirement
Storage humidity	Below 90% RH (no condensation)
Vibration	 Below 4.9m/s² During transportation with packing box: compliant with EN 60721-3-2 Class 2M3. During installation without packing box: compliant with ISTA 1H.
Shock	Below 19.6m/s ²
IP rating	IP20.
Environment	 Pollution Degree 2 and below Install the servo drive in a place that meets the following requirements: Free from direct sunlight, dust, corrosive gas, explosive and inflammable gas, oil mist, vapor, water drop, and salty element Insusceptible to vibration (away from equipment that may generate strong vibration, such as a punch press) Free from unwanted objects such as metal powder, oil, and water inside the servo drive Free from radioactive substances, combustible materials, harmful gases and liquids, and salt corrosion Away from combustible materials such as wood Do not use the equipment in vacuum.

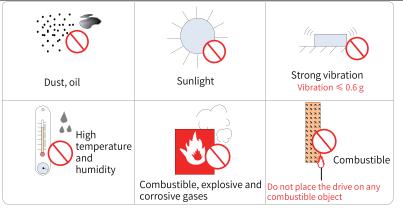


Figure 5-2 Environment requirements

5.1.3 Installation Clearance

Servo drives in different power ratings require different installation clearances. When installing multiple servo drives side by side, it is recommended to reserve a clearance of at least 10 mm (0.39 in.) between every two servo drives and a clearance of at least 50 mm (1.97 in.) above and below each servo drive for heat dissipation.

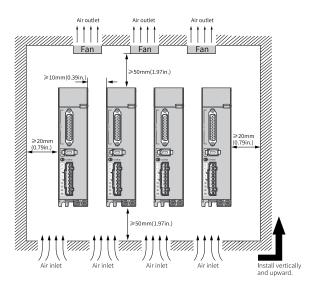


Figure 5-3 Clearance for side-by-side installation

Servo drives rated at 0.2 kW to 0.75 kW (SIZE A and SIZE B) support compact installation, in which a clearance of at least 1 mm (0.04 in.) must be reserved between every two servo drives. When adopting compact installation, derate the load rate to 75%.

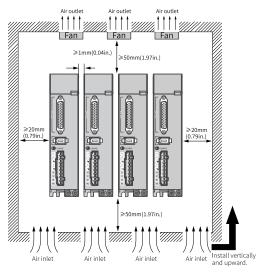


Figure 5-4 Clearance for compact installation

Servo drives in sizes C and D (rated power: 1.0 kW to 3 kW) support zero-clearance installation between every two servo drives, without derating.

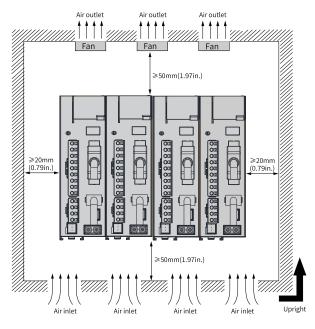


Figure 5-5 Zero-clearance installation

5.1.4 Installation Dimensions

Drives in Size A (rated Power: 0.2 kW to 0.4 kW): SV630PS1R6I, SV630PS2R8I

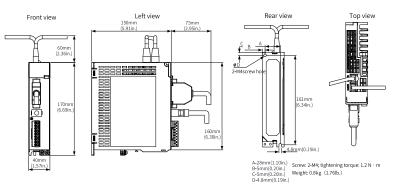


Figure 5-6 Dimension drawing of servo drives in size A

Drives in Size B (rated Power: 0.75 kW: SV630PS5R5I

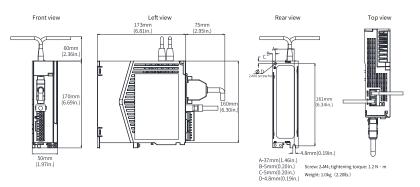


Figure 5-7 Dimension drawing of servo drives in size B

Servo drives in size C (rated power: 1.0 kW to 1.5 kW): SV630PS7R6I, SV630PT3R5I, and SV630PT5R4I

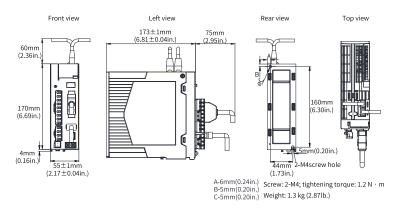


Figure 5-8 Dimension drawing of servo drives in size C

Servo drives in size D (rated power: 1.5 kW to 3.0 kW): SV630PS012I, SV630PT8R4I, and SV630PT012I

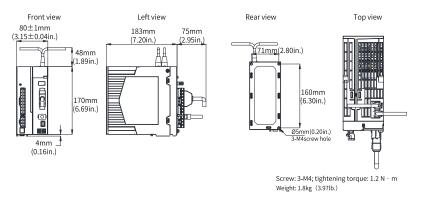


Figure 5-9 Dimension drawing of servo drives in size D

Servo drives in size E (rated power: 5.0 kW to 7.5 kW): SV630PT017I, SV630PT021I, and SV630PT026I

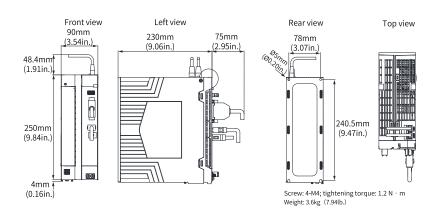


Figure 5-10 Dimension drawing of servo drives in size E

5.1.5 Installation Precautions

Item	Description
Installation Method	 Install the servo drive vertically and upward to facilitate heat dissipation. For installation of multiple servo drives inside the cabinet, install them side by side. For dual-row installation, install an air guide plate. Make sure the servo drive is installed vertically to the wall. Cool the servo drive down with natural convection or a cooling fan. Secure the servo drive to the mounting surface through two to four mounting holes (the number of mounting holes depends on the capacity of the servo drive). Install the servo drive vertically to the wall, with its front (actual mounting face) facing the operator. The mounting bracket (if needed) must be made of incombustible materials.
Cooling	As shown in <i>"5.1.3 Installation Clearance" on page 106</i> , reserve sufficient space around the servo drive to ensure a good heat dissipation through the cooling fan or natural convection. Take the heat dissipated by other devices inside the cabinet into consideration. Install a cooling fan to the upper part of the servo drive to avoid excessive temperature rise in a certain area, keeping an even temperature inside the control cabinet.
Grounding	Ground the grounding terminal properly. Failure to comply may result in electric shock or malfunction due to interference.

Item	Description				
	As shown in the figure below, route the servo drive cables downwards to prevent				
	liquid from flowing into the servo drive along the cables.				
Wiring requirements	Route the servo drive cables downwards.				
	Insert the dust-proof cover into the communication port (CN3/CN4) not in use. This is to prevent unwanted objects, such as solids or liquids, from falling into the servo drive and resulting in faults.				
	Each servo drive is delivered with two dust-proof covers inserted into the communication ports by default. You can place an order for more dust-proof covers as needed (model: NEX-02-N2B; manufacturer: PINGOOD).				
Dust-proof cover (included in the standard configuration)	Dust plug Light de				
	Note:				
	 Dust-proof cover: Prevents unwanted objects, such as solids or liquids, from falling into the servo drive and resulting in faults. Dust-proof covers are delivered along with the servo drive. Keep the dust-proof covers in a proper place. 				

5.1.6 Installation Instructions

The servo drive supports backplate mounting only.

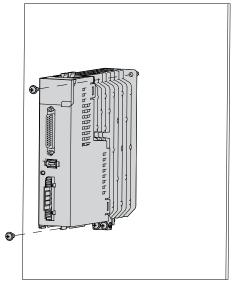


Figure 5-11 Backplate mounting

Servo drives in sizes A, B, and C are secured by two screws, with one screw on the top and the other one at the bottom. Servo drives in size D are secured by three screws, with two screws on the top and another one at the bottom. Servo drives in size E are secured by four screws, with two screws on the top and the other two at the bottom.

5.2 Installation of Optional Parts

5.2.1 Instructions for Installing the Fuse and Circuit Breaker

To prevent electric shock, when the fuse is blown or the circuit breaker trips, wait for at least the time designated on the warning label before powering on the drive or operating peripheral devices. Failure to comply can result in death, severe personal injury, or equipment damage.

To comply with EN 61800-5-1, install a fuse/circuit breaker on the input side of the drive to prevent accidents caused by short circuit in the internal circuit.

5.2.2 Instructions for Installing the AC Input Reactor

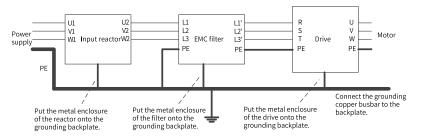


Figure 5-12 Installing the AC input reactor

5.2.3 Instructions for Installing the EMC Filter

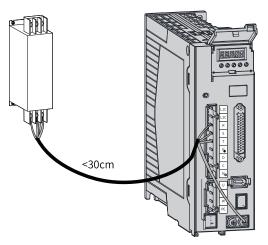


Figure 5-13 Installing the AC input reactor

5.2.4 Installation of the Magnetic Ring and Ferrite Clamp

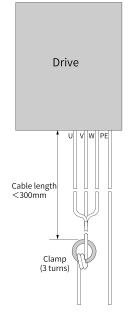


Figure 5-14 Installation of the magnetic ring

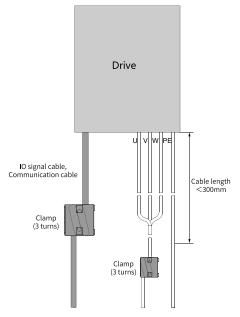


Figure 5-15 Installation of the ferrite clamp

6 System Wiring Diagram

6.1 System Wiring

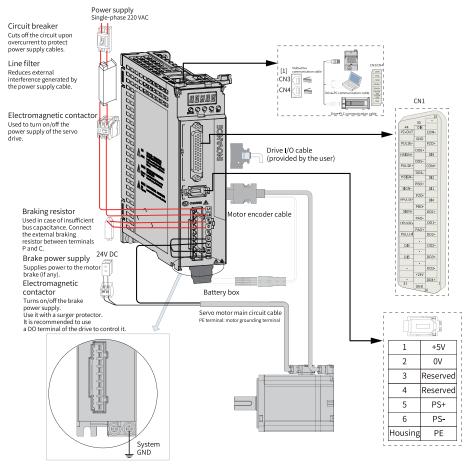


Figure 6-1 Wiring example of a single-phase 220 V system

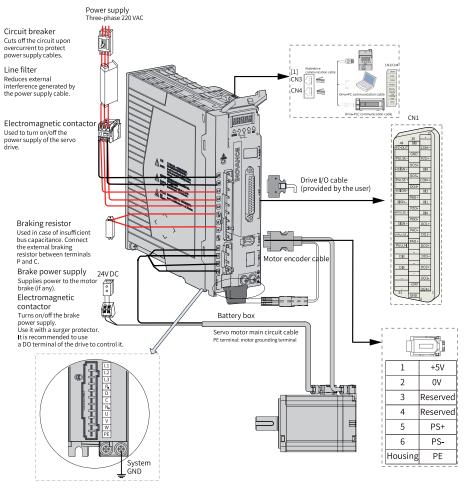


Figure 6-2 Wiring example of a three-phase 220V system

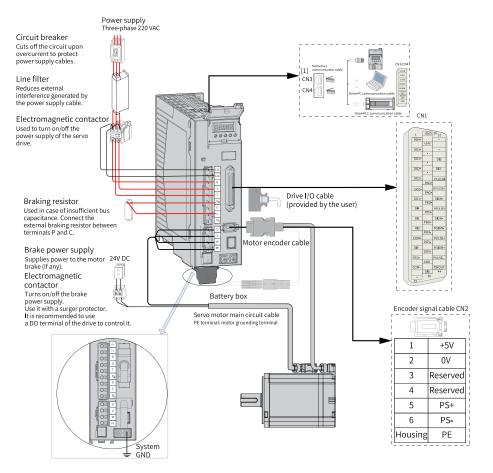
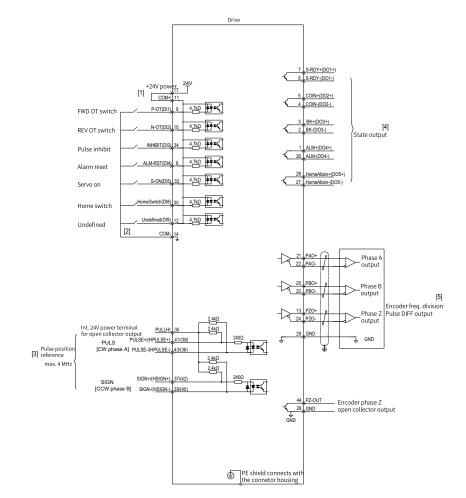


Figure 6-3 Wiring example of a three-phase 380 V system


[1] CN3 and CN4 communication terminals can be used interchangeably. Their pin assignments are exactly the same.

6.2 System Composition

- The servo drive is directly connected to an industrial power supply, with no isolation such as a transformer. A fuse or circuit breaker therefore must be connected to the input power supply to prevent electric shock in the servo system. For the sake of safety, install a residual current device (RCD) to provide protections against overload and short circuit or a specialized RCD to protect the grounding cable.
- Do not start or stop the motor by using the electromagnetic contactor. As a high-inductance device, the motor may generate high voltages instantaneously, which may break down the contactor.
- When connecting an external power supply to the control circuit or a 24 VDC power supply, pay attention to the power capacity as insufficient power capacity will lead to insufficient supply current, resulting in failure of the servo drive or the brake. This is especially true when the power supply is used to power up multiple servo drives or brakes. The brake must be powered up by a 24 VDC power supply that matches the motor model and meets the brake power requirements.

- The built-in regenerative resistor or jumper bar is not available in models S1R6 and S2R8. If an external regenerative resistor is needed for these models, connect it between terminals P⊕ and C.
- Remove the jumper between P⊕ and D before using the external regenerative resistor. Failure to comply will result in overcurrent and damage the braking transistor.
- Do not connect the external regenerative resistor to the positive or negative pole of the bus directly. Failure to comply will damage the servo drive and result in a fire.
- Do not select any resistor lower than the minimum allowed resistance value. Failure to comply will result in E201.0 (Hardware overcurrent) or damage the servo drive.
- Make sure parameters H02.25 (Regenerative resistor setting), H02.26 (Power of external regenerative resistor) and H02.27 (Resistance of external regenerative resistor) are set properly before operating the servo drive.
- Install the external regenerative resistor on an incombustible object such as a metal.

7 电气接线图

7.1 Wiring diagram of the Position Control Mode

Figure 7-1 Wiring diagram of the Position Control Mode

- [1] The range of the internal +24 V power supply is 20 V to 28 V, with maximum operating current being 200 mA.
- [2] DI8 and DI9 are high-speed DIs that must be used according to their functions assigned.
- [3] Use the shielded twisted pairs for pulse terminals, with both ends of the shield connected to PE. Connect GND and signal GND of the host controller properly. The high-speed and low-speed pulse instruction inputs (differential input) share the same interface. The corresponding function code is set according to the frequency of the input pulse.
- [4] The DO power supply (voltage range: 5 V to 24 V) needs to be prepared by users. The DO terminals support a maximum voltage of 30 VDC and a maximum current of 50 mA.
- [5] Use the shielded twisted pair cable as the frequency-division cable, with both ends of the shield connected to PE. Connect GND and signal GND of the host controller properly.

7.2 Wiring Diagram for Torque Control Mode

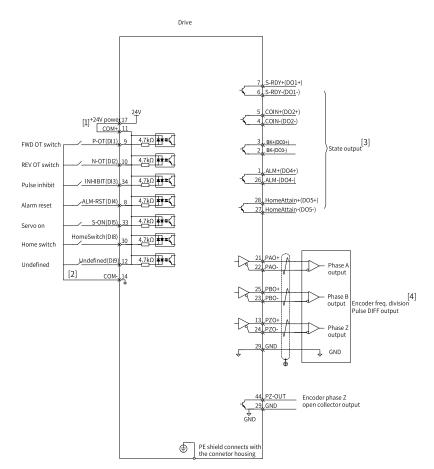
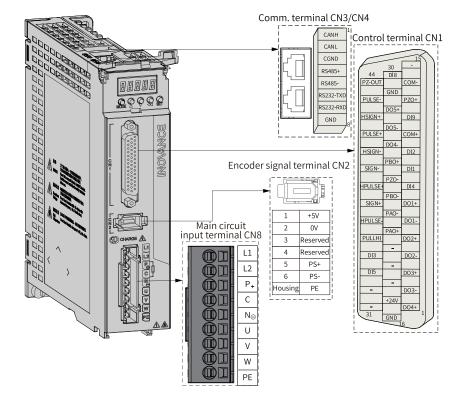


Figure 7-2 Wiring Diagram for Torque Control Mode

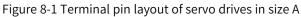
- [1] The range of the internal +24 V power supply is 20 V to 28 V, with maximum operating current being 200 mA.
- [2] DI8 and DI9 are high-speed DIs that must be used according to their functions assigned.
- [3] The DO power supply (voltage range: 5 V to 24 V) needs to be prepared by users. The DO terminals support a maximum voltage of 30 VDC and a maximum current of 50 mA.
- [4] Use the shielded twisted pair cable as the frequency-division cable, with both ends of the shield connected to PE. Connect GND and signal GND of the host controller properly.

8 Wiring Terminals

8.1 Wiring Precautions


Warning

Read through the safety instructions in Chapter "Fundamental Safety Instructions". Failure to comply may result in serious consequences.


- Do not use the power from IT system for the servo drive. Use the power from TN/TT system for the drive. Failure to comply may result in an electric shock.
- Connect an electromagnetic contactor between the input power supply and the main circuit power supply of the drive (L1, L2 for single-phase; L1, L2, L3/R, S, T for three-phase) to form a structure allowing independent power cutoff on the power supply side of the drive. This is to prevent fire accident caused by continuous high current generated upon fault.
- Check that the input power supply of the drive is within the specified voltage range. Failure to comply may result in faults.
- Do not connect the output terminals U, V, and W of the drive to a three-phase power supply. Failure to comply may result in physical injury or a fire.
- Do not connect the motor terminals U, V, and W to a mains power supply. Failure to comply may result in physical injury or a fire.
- Use the ALM (fault) signal to cut off the main circuit power supply. A faulty braking transistor may overheat the regenerative resistor and lead to a fire.
- Connect the PE terminal of the drive to the PE terminal of the control cabinet. Failure to comply may result in an electric shock.
- Ground the entire system properly. Failure to comply may result in equipment malfunction.
- After the power supply is cut off, residual voltage is still present in the internal capacitor of the drive, wait for at least 15 min before further operations. Failure to comply may result in an electric shock.

- The specification and installation of external cables must comply with applicable local regulations.
- Observe the following requirements when the servo drive is used on a vertical axis.
 - Set the safety device properly to prevent the workpiece from falling upon warning or overtravel.
 - Ensure the positive/negative polarity of the 24 V power supply is correct. Otherwise, the axis may fall and cause personal injury or equipment damage.
- Observe the following requirements during wiring of the power supply and main circuit:
 - When the main circuit terminal is a connector, remove the connector from the servo drive before wiring.
 - Insert one cable into one cable terminal of the connector. Do not insert multiple cables into one cable terminal.
 - When inserting cables, take enough care to prevent the cable conductor burrs from being short circuited to the neighboring cable.
 - Insulate the connecting part of the power supply terminals to prevent electric shock.
 - Do not connect a 220 V servo drive to a 380 V power supply directly.
 - Install safety devices such as a circuit breaker to prevent short circuit in external circuits. Failure to comply may result in a fire.
 - Cut off the main circuit power supply and switch off the S-ON signal after an alarm signal is detected.
 - After all cables are connected, it is recommended to tie them at the point 10cm–20cm away from the connector end.
- Connect the servo drive to the motor directly. Do not use an electromagnetic contactor during wiring. Failure to comply may result in equipment fault.
- Do not put heavy objects onto cables or pull cables with excessive force. Failure to comply may result in cable damage, leading to an electric shock.
- When connecting DO terminals to relays, ensure the polarity of the flywheel diode is correct. Wrong polarity will result in equipment damage or signal output failure.
- Keep a distance of at least 30 cm between main circuit cables and I/O signal cables/encoder cables. Failure to comply may result in equipment malfunction.
- Use twisted pairs or multi-conductor shielded twisted pairs as the I/O signal cable or encoder cable. Failure to comply may result in equipment malfunction.
- The maximum wiring lengths of the I/O signal cable and the encoder cable are 3 m and 10 m respectively.
- Use a power supply filter to reduce the electromagnetic interference on electronic devices surrounding the servo drive.
- Take proper shielding measures in the following locations to prevent equipment damage:
 - Locations with interference caused by static electricity
 - Locations with strong electric field or magnetic field
 - Locations with radioactive rays

Size A (rated power: 0.2 kW-0.4 kW): SV630PS1R6I, SV630PS2R8I

Rated power: (SIZE B: 0.75 kW): SV630PS5R5I

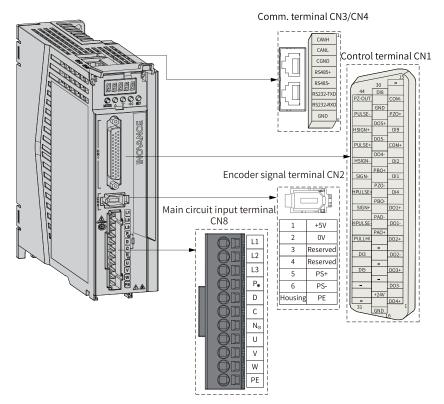


Figure 8-2 Terminal pin layout of servo drives in size B

Servo drives in size C and size D (rated power: 1.0 kW to 1.5 kW): size C: SV630PS7R6I; size D: SV630PS012I

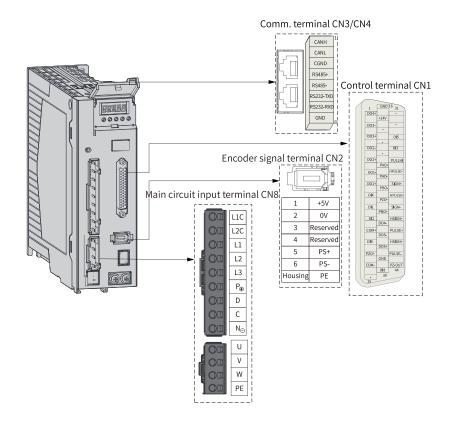


Figure 8-3 Terminal pin layout of servo drives in size C (SV630PS7R6I) and size D (SV630PS012I)

Servo drives in size C and size D (rated power: 1.0 kW to 3.0 kW): size C: SV630PT3R5I and SV630PT5R4I; size D: SV630PT8R4I and SV630PT012I

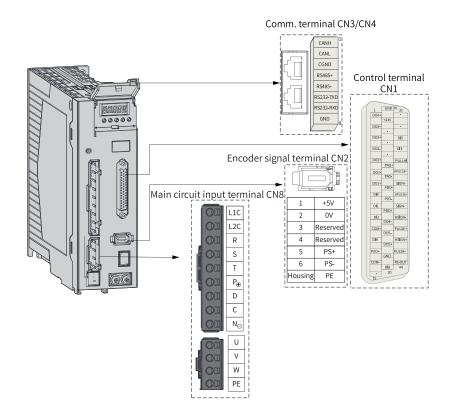


Figure 8-4 Terminal pin layout of servo drives in size C (SV630PT3R5I, SV630PT5R4I) and size D (SV630PT8R4I, SV630PT012I)

Size E (rated power: 5.0 kW to 7.5 kW): SV630PT017I, SV630PT021I, and SV630PT026I

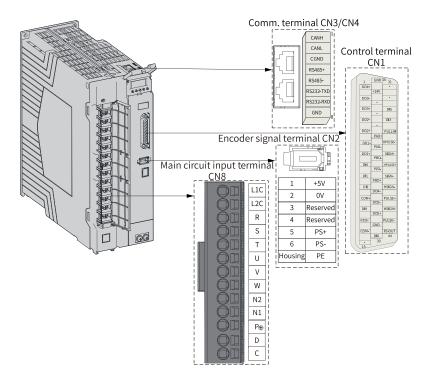


Figure 8-5 Terminal pin layout of servo drives in size E

8.2 Main Circuit Terminals

8.2.1 Wiring Precautions

- Do not connect the input power supply cables to the output terminals U, V, and W. Failure to comply will damage the servo drive.
- When cables are bundled in a duct, take current reduction ratio into consideration because of the poor cooling condition.
- It is recommended to use Teflon cables featuring a higher temperature limit when the temperature inside the cabinet exceeds the temperature limit of regular cables. As the surface of regular cables may be easily hardened and cracked under low temperature, take thermal insulation measures for cables laid in environments with low temperature.
- The bending radius of a cable must be more than 10 times its outer diameter to prevent the internal conductor from breaking due to long-time bending.
- Do not bundle power cables and signal cables together or route them through the same duct. Power cables and signal cables must be separated by at least 30 cm to prevent interference.
- High voltage may be still present in the servo drive after the power supply is switched off. Do not touch the power supply terminals within 15 minutes after power-off.
- Do not switch on/off the power supply frequently. If the power supply is switched on or off frequently within 1s, E740.0/E136.0/E430.0 may occur (see section Troubleshooting). In this case, power on the servo drive again after waiting for the specified ON/OFF interval. If frequent ON/OFF operation is needed, the time interval between ON and OFF must be at least 1 min.

The servo drive carries a capacitor in the power supply part, and this capacitor will be charged with a high current for 0.2s upon power-on. Turning on/off the power supply frequently affects the performance of main circuit components inside the servo drive.

- Use a grounding cable with the same cross-sectional area as the main circuit cable. If the crosssectional area of the main circuit cable is less than 1.6 mm2, use a grounding cable with a crosssectional area of 2.0 mm2.
- Do not power on the servo drive if terminal screws or cables are loose. Failure to comply may lead to a fire.

8.2.2 Main Circuit Wiring Requirements

Servo drive power input cables and motor cables may generate strong electromagnetic interference. To prevent the electromagnetic interference incurred by long-distance parallel routing and coupling between disturbing cables and control cables, keep a clearance of at least 30 cm between main circuit cables and signal cables. Main circuit cables include the RST cable, UVW cable, DC bus, and braking cable. Signal cables include the I/O signal cable, communication cable, and encoder cable.

Cable ducts must be connected and grounded properly. Aluminum cable ducts can be used to ensure equipotentiality of the device. The filter, servo drive, and motor must be properly connected to systems (machines or devices), with spraying protection applied at the installation part and the conductive metal kept in full contact.

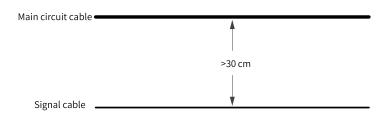


Figure 8-6 Cable layout

Wiring requirements

The wiring mode compliant with the Low Voltage Directive is supported.

- Terminals P⊕, C, and NΘ are used to connect optional parts. Do not connect these terminals to an AC power supply.
- To protect the main circuit, separate and cover the surface that may come into contact with the main circuit.
- Prevent foreign objects from entering the wiring area of the terminal block.
- Do not solder the twisted conductors.
- The tightening torque may vary with terminals. Tighten terminal screws with the specified tightening torque. You can use a torque screwdriver, torque ratchet, or torque wrench to tighten terminal screws.
- When using an electric screwdriver to tighten terminal screws, set the electric screwdriver to low speed to prevent damage to the terminal screws.
- Tighten the terminal screws with an angle not greater than 5°. Failure to comply may damage the terminal screws.

8.2.3 Recommended Cable Specifications and Models

Drive mod	el SV630P****I	Rated input current (A)	Rated output current (A)	Maximum Output Current (A)
		Single-phase 22	V	
	S1R6	2.3	1.6	5.8
Size A	S2R8	4	2.8	10.1
Size B	S5R5	7.9	5.5	16.9
Size C	S7R6	9.6	7.6	23
Size D	S012	12.8	11.6	32
		Three-phase 220	V	
Size C	S7R6	5.1	7.6	23
Size D	S012	8	11.6	32
		Three-phase 380	V	
	T3R5	2.4	3.5	11
Size C	T5R4	3.6	5.4	14
	T8R4	5.6	8.4	20
Size D	T012	8	11.9	29.75
	T017	12	16.5	41.25
Size E	T021	16	20.8	52.12
	T026	21	25.7	64.25

Table 8-1 Input/Output current specifications of the servo drive

Table 8–2 Recommended main circuit cables

Drive	model SV6	530P****I	L1C, L20	С	L1, L2, L3/F	R, S, T	P⊕, D, C, NΘ,	N2, N1	U, V, W,	PE	Grounding terminal	
Size	Model	Rated input current (A)	(mm²)	AWG	(mm²)	AWG	(mm²)	AWG	(mm²)	AWG	(mm²)	AWG
					Sing	le-phase	220V					
	S1R6	2.3	2 x 0.82	18	3 x 1.31	16	2 x 1.31	16	3 x 1.31	16	2.08	14
Size A	S2R8	4	2 x 0.82	18	3 x 1.31	16	2 x 1.31	16	3 x 1.31	16	2.08	14
Size B	S5R5	7.9	2 x 0.82	18	3 x 1.31	16	2 x 1.31	16	3 x 1.31	16	2.08	14
<i>c</i> : <i>c</i>	0700		2 x 0.82	10	3 x 1.31	1.0	2 x 1.31	10	(2)	16	2.08	14
Size C	S7R6	9.6	2 x 0.82	18	3 x 1.31	16	2 x 1.31	16		14		14
Size D	S012	12.8	2 x 0.82	18	3 x 2.08	14	2 x 2.08	14	3 x 2.08	14	2.08	14
					Thre	ee-phase	220V					
									$3 \times 1.31^{[1]}$	16	1.31 ^[1]	16
Size C	S7R6	5.1	2 x 0.82	18	3 x 1.31	16	2 x 1.31	16	$3 \times 2.08^{[2]}$	14	2.08 ^[2]	14
Size D	S012	8	2 x 0.82	18	3 x 2.08	14	2 x 2.08	14	3 x 2.08	14	2.08	14
	Three-phase 380 V											
6	T3R5	2.4	2 x 0.82	18	3 x 1.31	16	2 x 1.31	16	3 x 1.31	16	2.08	14
Size C	T5R4	3.6	2 x 0.82	18	3 x 1.31	16	2 x 1.31	16	3 x 1.31	16	2.08	14

Drive r	Drive model SV630P****I		L1C, L2C		L1, L2, L3/R, S, T		P⊕, D, C, NΘ, N2, N1		U, V, W, PE		Grounding terminal	
Size	Model	Rated input current (A)	(mm²)	AWG	(mm²)	AWG	(mm²)	AWG	(mm²)	AWG	(mm²)	AWG
	T8R4	5.6	2 x 0.82	18	3 x 1.31	16	2 x 1.31	16	3 x 1.31	16	2.08	14
Size D	T012	8	2 x 0.82	18	3 x 2.08	14	2 x 2.08	14	3 x 2.08	14	2.08	14
									$3 \times 3.33^{[3]}$	12	3.33 ^[3]	12
с: г	T017	12	2 x 0.82	18	3 x 5.27	10	2 x 5.27	10	$3 \times 5.27^{[4]}$	10	5.27 ^[4]	10
Size E	T021	16	2 x 0.82	18	3 x 5.27	10	2 x 5.27	10	3 x 5.27	10	5.27	10
	T026	21	2 x 0.82	18	3 x 5.27	10	2 x 5.27	10	3 x 5.27	10	5.27	10

- [1]: For MS1H1-10C30CB motors.
- [2]: For MS1H2-10C30CB/MS1H3-85B15CB motors.
- [3]: For MS1H2-40C30CD/MS1H2-50C30CD motors.
- [4]: For MS1H3-44C15CD motors.

Table 8–3 Recommended Cable Specifications and Models

		OD	
Cable Type	Cable Size	(mm)	
	4×12AWG	12.2±0.4	
	4×14AWG	10.5±0.3	
Power cable	4×16AWG	9.5±0.4	
	4×18AWG	7.8±0.2	
	4×20AWG	6.5±0.2	
	4×12AWG	12.9±0.4	
	4×14AWG	11.2±0.4	
Power cable shield	4×16AWG	10.1±0.4	
	4×18AWG	8.3±0.2	
	4×20AWG	6.5±0.2	
Power cable + brake cable	4×20 AWG + 2 $\times 24$ AWG	6.5±0.2	
Duration and the	2×18AWG	5.8±0.2	
Brake cable	2×20AWG	5.0±0.2	

Serve	o drive model SV630P	****	Recommended PVC Cable Model (at 40°C)			
SIZE	Model	Rated Input Current (A)	U, V, W, PE Cable Lug	Brake Cable Lug	Grounding Cable Lug	Tightening Torque (N · m)
			Single-phase 220V			
c:	S1R6	2.3			TVR2-4	-
Size A	S2R8	4	CTVF10000	CT / F0 F0 00	TVR2-4	-
Size B	S5R5	7.9	GTVE10008	GTVE05008	TVR2-4	-
Size C	S7R6	9.6			TVR2-4	-
Size D	S012	12.8	GTVE15008	GTVE10008	TVR2-4	-
			Three-phase 220V			
Size C	S7R6	5.1	GTVE10008	GTVE05008	TVR2-4	-
Size D	S012	8	GTVE15008	GTVE10008	TVR2-4	-
			Three-phase 380 V			
	T3R5	2.4			TVR2-4	-
Size C	T5R4	3.6	GTVE10008	GTVE05008	TVR2-4	-
City D	T8R4	5.6			TVR2-4	-
Size D	T012	8	GTVE15008	GTVE10008	TVR2-4	-
	T017	12	TVS1.25-4	GTVE10008	TVR1.25-4	1.36
Size E	T021	16	TVS2-4	GTVE10008	TNR2-4	1.36
	T026	21	TVS3.5-4	GTVE10008	TNR3.5-4	1.36

Table 8–4 Main circuit cable lug and tightening torque

Table 8–5 TVR2-4 cable lug

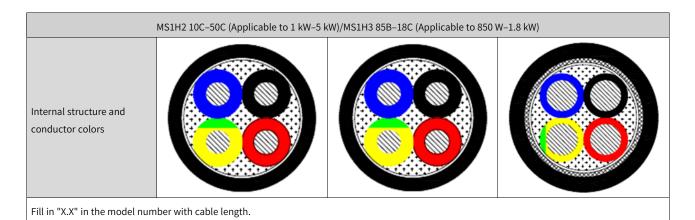
Lug Mo	odel	D (mm)	d2 (mm)	B (mm)	Dimension Drawing
TVR	2-4	4.5	4.3	8.5	¢D ↓ B

Table 8–6 Recommended terminal blocks

Servo drive mo	del SV630P****I	Terminal Block				
<u> </u>	S1R6					
Size A	S2R8	9EDGK-5.0-09P-13-01AH & Gaozheng & B/BBB1				
Size B	S5R5	9EDGK-5.0-11P-13-05AH & Gaozheng & B/BBA2				
	S7R6					
Size C	T3R5					
	T5R4	9EDGK-7.5-09P-13-1014A(H) & Gaozheng & B/BAB1+9EDGK-7.5-04P-13-1015A_H & Gaozheng & B/				
	S012	BAA2				
Size D	T8R4					
	T012					

Servo drive mo	del SV630P****I	Terminal Block
	T017	
Size E	T021	-
	T026	

Table 8–7 Specifications of motor output cables


MS1H1/H4 05B–10C (applicable to 0.05 kW–1 kW)								
Cable type	Regular cable	Flexible cable	Oil-resistant shielded flexible cable					
Cable model	S6-L-M/B***-X.X	S6-L-M/B***-X.X-T	S6-L-M/B***-X.X-TS					
Cable specifications	UL2517 (rated temperature: 105°C) 4Ex20AWG+2Cx24AWG Power cable: 20AWG (0.52 mm ²); OD of insulation: 1.7 mm	UL2517 (rated temperature: 105°C) 4Ex20AWG+2Cx24AWG Power cable: 20AWG (0.52 mm ²); OD of insulation: 1.7 mm	UL2517 (rated temperature: 105°C) 4Ex20AWG+2Cx24AWG Power cable: 20AWG (0.52 mm ²); OD of insulation: 1.7 mm					
	Brake cable: 24AWG (0.205 mm ²); OD of insulation: 1.1 mm	Brake cable: 24AWG (0.205 mm ²); OD of insulation: 1.1 mm	Brake cable: 24AWG (0.205 mm ²); OD of insulation: 1.1 mm					
Sheath diameter	6.5±0.2 mm							

Fill in "X.X" in the model number with cable length.

Table 8-8 Specifications of motor output cables

MS1H2 10C–50C (Applicable to 1 kW–5 kW)/MS1H3 85B–18C (Applicable to 850 W–1.8 kW)						
Cable type	Regular cable	Flexible cable	Oil-resistant shielded flexible cable			
Cable model	S6-L-M/B***-X.X	S6-L-M/B***-X.X-T	S6-L-M/B***-X.X-TS			
Cable specifications	UL2586 (rated temperature: 105°C) 4Ex16AWG+2Cx18AWG	UL2586 (rated temperature: 105°C) 4Ex16AWG+2Cx18AWG	UL2586 (rated temperature: 105°C) 4Ex16AWG+2Cx18AWG			
	Power cable: 16AWG (1.31 mm ²) OD of insulation: 3.1 mm	Power cable: 16AWG (1.31 mm ²) OD of insulation: 3.25 mm	Power cable: 16AWG (1.31 mm ²) OD of insulation: 3.25 mm			
	Brake cable: 18AWG (0.823 mm ²) OD of insulation: 2.0 mm	Brake cable: 18AWG (0.823 mm ²) OD of insulation: 2.15 mm	Brake cable: 18AWG (0.823 mm ²) OD of insulation: 2.15 mm			
Sheath diameter	9.5±0.3 mm (main circuit)	10.0±0.3 mm (main circuit)	10.5±0.3 mm (main circuit)			

		MS1H3 29C–75C (Applicable to 2.9 kW–7.5 kW)					
able type Regular cable		Oil-resistant shielded flexible cable					
S6-L-M/B***-X.X	S6-L-M/B***-X.X-T	S6-L-M/B***-X.X-TS					
JL2586 (rated temperature: 105°C) IEx12AWG+2Cx18AWG	UL2586 (rated temperature: 105°C) 4Ex12AWG+2Cx18AWG	UL2586 (rated temperature: 105°C) 4Ex12AWG+2Cx18AWG					
Power cable: 12AWG (3.31 mm ²) OD of insulation: 4.1 mm	Power cable: 12AWG (3.31 mm ²) OD of insulation: 4.2 mm	Power cable: 12AWG (3.31 mm ²) OD of insulation: 4.2 mm					
Brake cable: 18AWG (0.823 mm ²) OD of insulation: 2.0 mm	Brake cable: 18AWG (0.823 mm ²) OD of insulation: 2.15 mm	Brake cable: 18AWG (0.823 mm ²) OD of insulation: 2.15 mm					
12.2±0.4 mm (main circuit)	12.5±0.4 mm (main circuit)	13.2 \pm 0.4 mm (main circuit)					
112 112 112	L2586 (rated temperature: 105°C) Ex12AWG+2Cx18AWG ower cable: 12AWG (3.31 mm ²) OD insulation: 4.1 mm rake cable: 18AWG (0.823 mm ²) OD insulation: 2.0 mm	L2586 (rated temperature: 105°C)UL2586 (rated temperature: 105°C)Ex12AWG+2Cx18AWG4Ex12AWG+2Cx18AWGower cable: 12AWG (3.31 mm²) ODPower cable: 12AWG (3.31 mm²) ODof insulation: 4.1 mmof insulation: 4.2 mmrake cable: 18AWG (0.823 mm²) ODBrake cable: 18AWG (0.823 mm²) ODof insulation: 2.0 mm0f insulation: 2.15 mm2.2±0.4 mm (main circuit)12.5±0.4 mm (main circuit)					

Table 8-9 Specifications of motor output cables

Fill in "X.X" in the model number with cable length.

Cable selection

To comply with the EMC standards, use shielded cables. You can use shield-less cables if EMC is not a concern.

Shielded cables are divided into three-conductor shielded cables and four-conductor shielded cables, as shown in the following figure.

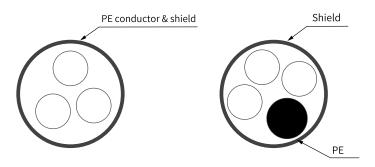


Figure 8-7 Recommended power cable

If the conductivity of the three-conductor cable shield is insufficient, add an extra PE cable. Or use a four-core shielded cable, with one core being the PE wire. The shield of the shielded cable is comprised of coaxial cooper braids to suppress radio frequency interference. To enhance the shielding performance and conductivity, the braided density of the shield must be greater than 90%.

Observe national or regional regulations when selecting cable dimensions. The IEC cable must meet the following requirements:

- EN 60204-1 and IEC 60364-5-52 standards
- Use PVC insulated cables with copper conductors.
- Ambient temperature: 40°C; cable surface temperature: 70°C. Contact the manufacturer if the ambient temperature exceeds 40°C).

Note

If the recommended cable specifications for peripheral devices or optional parts exceed the applicable cable specification range, contact Inovance.

8.2.4 Main circuit terminal layout

Size A (rated power: 0.2 kW-0.4 kW): SV630PS1R6I, SV630PS2R8I

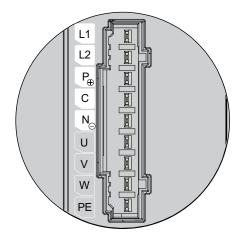
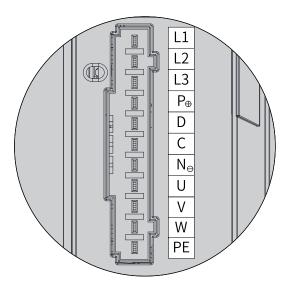


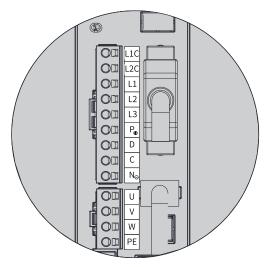
Figure 8-8 Main circuit terminal pins of size A drive

No.	Parameter Name	Description
1	L1, L2 (power input terminals)	See the nameplate for the rated voltage class.
	P⊕, NO (DC bus terminals)	Used by the common DC bus for multiple servo drives.
2	P⊕, C Terminals for connecting external braking resistor	If an external regenerative resistor is needed, connect it between terminals $P\oplus$ and C.
3	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.
4	Motor grounding terminal	Connected to the grounding terminal of the motor for grounding purpose.

Table 8–10 Description of main circuit terminal pins of servo drives in size A

Rated power: (SIZE B: 0.75 kW): SV630PS5R5I




Figure 8-9 Pin assignment of main circuit terminal of servo drives in SIZE B

No.	Parameter Name	Description	
	L1, L2, L3	See the nameplate for the rated voltage class.	
1	(power input terminals)	Note: S5R5 (750W) models support single-phase 220 V input only, with a 220 V power supply connected between terminals L1 and L2.	
	P⊕, N⊖	Used by the common DC bus for multiple servo drives.	
	(DC bus terminals)		
2	P⊕, D, C	If an external regenerative resistor is needed, connect it between	
	Terminals for connecting external braking resistor	terminals $P\oplus$ and C. Servo drives in size B are equipped with the built-in regenerative resistor, with terminals $P\oplus$ and D jumpered by default.	

Table 8–11 Description of main circuit terminal pins of servo drives in SIZE B

No.	Parameter Name	Description
3	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.
4	Motor grounding terminal	Connected to the grounding terminal of the motor for grounding purpose.

Rated power (SIZE C/SIZE D: 1.0kW-1.5kW): SV630PS7R6I, SV630PS012I

Figure 8-10 Main circuit terminal pin layout of servo drives in size C (SV630PS7R6I) and size D (SV630PS012I)

Table 8–12 Description of main circuit terminal pins of servo drives in size C (SV630PS7R6I) and size D (SV630PS012I)

No.	Parameter Name	Description
1	L1C, L2C Control circuit power input terminals	See the nameplate for the rated voltage class.
2	L1, L2, L3 Main circuit power input terminals	See the nameplate for the rated voltage class.
	P⊕, NΘ (DC bus terminals)	Used by the common DC bus for multiple servo drives.
3	P⊕, D, C Terminals for connecting external braking resistor	If an external regenerative resistor is needed, connect it between terminals $P\oplus$ and C. SIZE C and SIZE D use a built-in regenerative resistor, with terminals $P\oplus$ and D jumped.
4	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.
5	Motor grounding terminal	Connected to the grounding terminal of the motor for grounding purpose.

Servo drives in size C and size D (rated power: 1.0 kW to 3.0 kW): SV630PT3R5I, SV630PT5R4I, SV630PT8R4I, and SV630PT012I

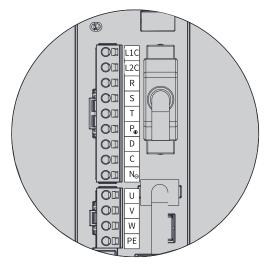


Figure 8-11 Main circuit terminal pin layout of servo drives in size C (SV630PT3R5I, SV630PT5R4I) and size D (SV630PT8R4I, SV630PT012I)

Table 8–13 Description of main circuit terminal pins of servo drives in size C (SV630PT3R5I,
SV630PT5R4I) and size D (SV630PT8R4I, SV630PT012I)

No.	Parameter Name	Description	
1	L1C, L2C Control circuit power input terminals	See the nameplate for the rated voltage class.	
2	R, S, and T Main circuit power input terminals	See the nameplate for the rated voltage class.	
	P⊕, NΘ (DC bus terminals)	Used by the common DC bus for multiple servo drives.	
3	P⊕, D, C Terminals for connecting external braking resistor	If an external regenerative resistor is needed, connect it between terminals $P \oplus$ and C. SIZE C and SIZE D use a built-in regenerative resistor, with terminals $P \oplus$ and D jumped.	
4	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.	
5	Motor grounding terminal	Connected to the grounding terminal of the motor for grounding purpose.	

Size E (rated power: 5.0 kW to 7.5 kW): SV630PT017I, SV630PT021I, and SV630PT026I

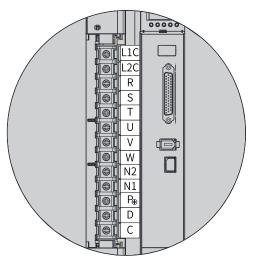


Figure 8-12 Pin assignment of main circuit terminal of servo drives in size E

Table 8–14 Description of main circuit terminal pin	ns of servo drives in size E
---	------------------------------

No.	Parameter Name	Description
1	L1C, L2C Control circuit power input terminals	See the nameplate for the rated voltage class.
2	R, S, and T Main circuit power input terminals	See the nameplate for the rated voltage class.
3	U, V, W (terminals for connecting the servo motor)	Connected to U, V, and W phases of the servo motor.
4	N2, N1 Terminals for connecting external reactor	Terminals and are shorted by default. When the power high-order harmonics need to be suppressed, remove the jumper and connect a reactor between N1 and N2. Install a DC reactor between terminals N1 and N2.
5	P⊕, D, C Terminals for connecting external braking resistor	If an external regenerative resistor is needed, connect it between terminals $P \oplus$ and C. SIZE E use a built-in regenerative resistor, with terminals $P \oplus$ and D jumped.

8.2.5 Connecting the Motor (UVW)

Keep the lead wire of the motor cable shield as short as possible, with its width (b in the following figure) not shorter than 1/5 of its length (a in the following figure).

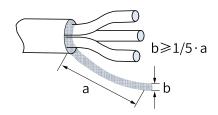


Figure 8-13 Lead-out of the motor cable shield

• The following figure shows the wiring diagram for a terminal-type motor.

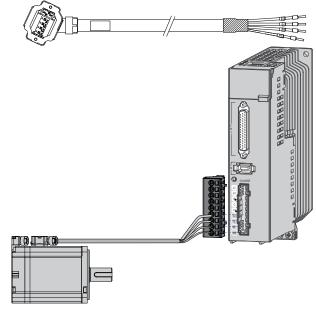


Figure 8-14 Wiring between the servo drive and terminal-type motor

Flange Size [1]	Illustration		Pin		
Flange Size [1]			Pin No.	Signal Name	Color
			1	PE	Yellow/Green
Terminal-type:		50 6	2	W	Red
40		onnector	3	V	Black
60				4	U
			5	Brake (polarity	Brown
80	Black 6-pin c		6	insensitive)	Blue

Table 8–15 Description of the power cable connector (motor side)

- [1] The flange size refers to the width of the mounting flange (in mm).
- Power cable colors are subject to the actual product. All cable colors mentioned in this guide refer to Inovance cable colors.
- The connection diagram for a flying leads type motor is shown in the following figure.

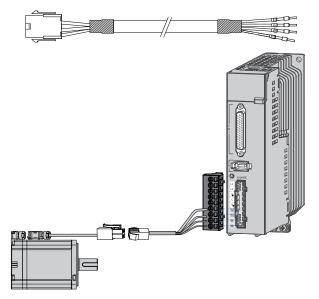


Figure 8-15 Wiring between the servo drive and terminal-type motor

Flanga Siza [1]		Pin		
Flange Size [1]	Illustration	Pin No.	Signal Name	Color
		1	U	White
		2	V	Black
El du el codo tomos		4	W	Red
Flying leads type:		5	PE	Yellow/Green
40	6 3	3		Brown
60 80	Black 6-pin connector Recommendation: Plastic housing:	6	Brake (polarity insensitive)	Blue
	MOLEX-50361736 Terminal: MOLEX- 39000061			

- [1]: The flange size refers to the width of the mounting flange.
- Power cable colors are subject to the actual product. All cable colors mentioned in this guide refer to Inovance cable colors.
- The following table describes the connector for high-power motor power cables.

Flange Size [1]	Illustration	Pin		
		Pin No.	Signal Name	Color
100 130	20-18 connector A H G BO IO OF C D E MIL-DTL-5015 series 3108E20-18S military-spec connector	В	U	Blue
		I	V	Black
		F	W	Red
		G	PE	Yellow/Green
		С	Brake (polarity insensitive)	Red
		E		Black

Table 8–17 Description of the power cable connector (motor side)

Flange Size [1]	Illustration	Pin		
	Illustration	Pin No.	Signal Name	Color
180	20-22 connector 20-22 connector	А	U	Blue
		С	V	Black
		Е	W	Red
		F	PE	Yellow/Green
		В		Red
		D	Brake (polarity insensitive)	Black

Table 8–18 Description of the power cable connector (motor side)

Note

- [1]: The flange size refers to the width of the mounting flange.
- Power cable colors are subject to the actual product. All cable colors mentioned in this guide refer to Inovance cable colors.

8.2.6 Wiring of External EMC Filter

Install the filter near the input terminals of the drive. The cable between the filter and the drive must be shorter than 30 cm. Connect the grounding terminal of the filter together with the grounding terminal of the drive. Ensure the filter and the drive are installed onto the same conductive mounting surface that is connected to the main grounding of the control cabinet.

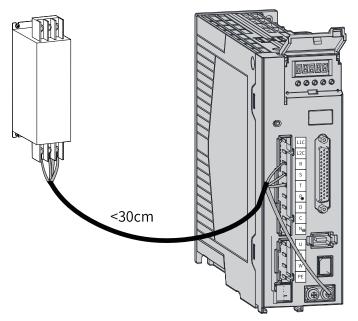
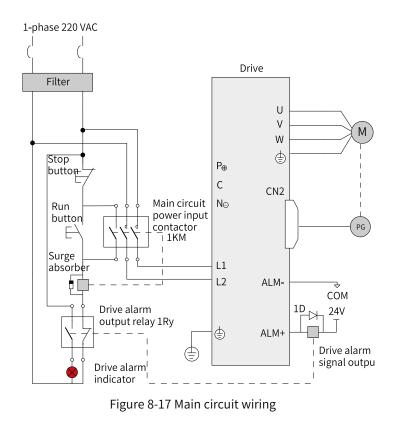



Figure 8-16 Installing the filter

8.2.7 Wiring of the Power Supply

 Single-phase 220 V models: SV630PS1R6I, SV630PS2R8I, SV630PS5R5I, SV630PS7R6I and SV630PS012I

- 1KM: Electromagnetic contactor; 1Ry: Relay; 1D: Flywheel diode
- DO is set as alarm output (ALM+/-). When the servo drive alarms, the power supply will be cut off automatically. SV630PS1R6I and SV630PS2R8I are not configured with built-in regenerative resistors, if the regenerative resistor is needed, connect an external regenerative resistor between P⊕ and C.
- Three-phase 220 V models: SV630PS7R6I, SV630PS012I

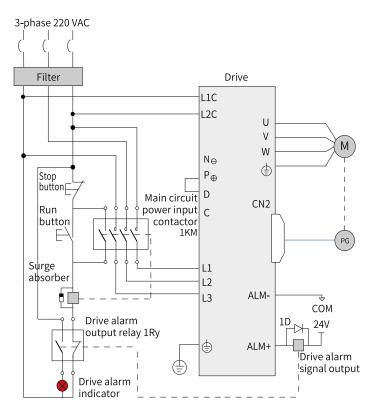


Figure 8-18 Main circuit wiring of three-phase 220 V models

- 1KM: Electromagnetic contactor; 1Ry: Relay; 1D: Flywheel diode
- The DO is set as alarm output (ALM+/-). When the servo drive alarms, the power supply is cut off automatically and the alarm indicator lights up.
- Three-phase 380 V models: SV630PT3R5I, SV630PT5R4I, SV630PT8R4I, SV630PT012I, SV630PT021I, SV630PT026I

Figure 8-19 Main circuit wiring of three-phase 380V models

- 1KM: Electromagnetic contactor; 1Ry: Relay; 1D: Flywheel diode
- The DO is set as alarm output (ALM+/-). When the servo drive alarms, the power supply is cut off automatically and the alarm indicator lights up.

8.2.8 Grounding and Wiring

Observe the following requirements to ensure a proper grounding of the servo drive.

- To prevent electric shocks, ground the grounding terminal properly. Observe related national or regional regulations during grounding.
- To prevent electric shocks, ensure the protective grounding conductor complies with technical specifications and local safety standards. Keep the length of the grounding cable as short as possible. As the leakage current of the equipment may exceed 3.5 mA, it is recommended to use a copper protective grounding conductor with a cross-sectional area of at least 10 mm², or use two protective grounding conductors with the same specification.
- The dimensions of the grounding cable must comply with the electrical device technical standards. Keep the length of the grounding cable as short as possible. Failure to comply will lead to unstable potential in the grounding terminals away from the grounding point due to leakage current, resulting in an electric shock.

- For use of multiple servo drives, observe all the grounding instructions for the drive. Improper grounding of the device will lead to malfunction of the drive and the device.
- Do not share the same grounding cable with other devices (such as welding machines or high-current electrical devices). Improper grounding of the device will lead to drive or device faults caused by electrical interference.
- For use of multiple servo drives, observe all the grounding instructions for the drive. Improper grounding of the device will lead to malfunction of the drive and the device.
- For drives equipped with optional VDR and insulation resistor grounding screws, remove the grounding screw before voltage resistance test. Failure to comply may cause the drive to fail the test.

Grounding requirements

Observe the following requirements to ensure a proper grounding of the drive.

- The protective grounding conductor must be a yellow/green cable comprised of copper conductors. Do not connect the protective grounding conductor to a switching device (such as a circuit breaker) in serial.
- Ground the grounding terminal properly. Improper grounding will lead to device malfunction or damage.
- Do not connect the grounding terminal to the N terminal of the neutral wire of the power supply.
- It is recommended to install the drive to a conductive metal surface. Ensure the whole conductive bottom of the drive is connected properly to the mounting face.
- Tighten the grounding screw with specified tightening torque to prevent the protective grounding conductor from being secured improperly.

Single-drive grounding

Installation of an individual drive:

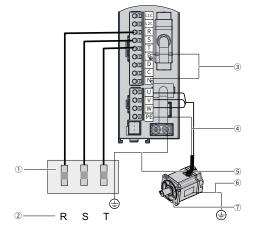


Table 8–19 Single-drive grounding

No.	Description
1	Input protection (fuse or circuit breaker) Connect the lower end of the fuse to the filter.
2	Input power supply
3	Do not ground the DC bus terminal or the regenerative resistor terminal.
(4)	Connect the output PE terminal of the servo drive to the motor output cable shield.

No.	Description		
(5)	Connect the PE cable on the input power supply side to the input PE terminal of the servo drive.		
6	Ground the motor enclosure.		
1	Three-phase motor		

Note

The main circuit terminal layout varies with different models and is subject to the physical product.

Multi-drive grounding

Side-by-side installation of multiple drives:

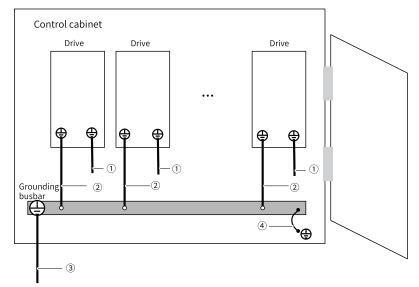


Table 8–20 Description for grounding of multiple drives installed side by side

No.	Description
1	Connect the motor output cable shield to the output PE terminal of the servo drive.
2	Connect the main circuit input PE terminal of the servo drive to the grounding copper busbar of the control cabinet through a protective grounding conductor.
3	Connect the PE cable on the input power supply side to the grounding copper busbar of the control cabinet.
(4)	Connect the grounding copper busbar of the control cabinet to the metal enclosure of the control cabinet through the protective grounding conductor.

Grounding the control cabinet system

The most cost-effective method of suppressing interference in a control cabinet is to isolate the interference source from devices that may be interfered with. Divide the control cabinet into multiple EMC compartments or use multiple control cabinets based on the intensity of interference sources, and install each device in accordance with the following wiring principles.

No.	Wiring requirements
1	Place the control unit and the drive unit in two separate control cabinets.
2	If multiple control cabinets are used, connect the control cabinets by using a PE cable with a cross-sectional area of at least 16 mm ² for equipotentiality between the control cabinets.
3	If only one control cabinet is used, place different devices in different compartments of the control cabinet based on signal intensity.
4	Apply equipotential bonding to devices in different compartments inside the control cabinet.
5	Shield all communication (such as RS485) and signal cables drawn from the control cabinet.
6	Place the power input filter in a position near the input interface of the control cabinet.
7	Apply spray coating to each grounding point in the control cabinet.

Table 8–21 Wiring requirements

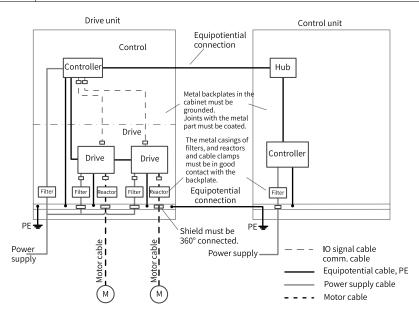


Figure 8-20 Recommended wiring for the control cabinet system

8.3 Description of Control Terminal (CN1)

Observe the requirements in standard EN 60204-1 during connecting control circuit cables.

I/O signal cable selection

It is recommended to use shielded signal cables to prevent I/O signal circuit from being disturbed by external noise. Use separate shielded cables for different analog signals. It is recommended to use shielded twisted pairs for digital signals.

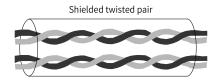


Figure 8-21 Diagram of shielded twisted pairs

Control Cable Specifications

Table 8–22 Recommended Control Cable Specifications

Control terminal	Connector Kit/Material No.	AWG
CN1	DB44	24 to 30

I/O signal layout

I/O signals include DI/DO signals and relay output signals.

Observe the following requirement during control circuit wiring:

Route the control circuit cables and main circuit cables or other power cables through different routes with a distance of at least 30 cm. Failure to comply may result in disturbed I/O signals.

8.3.1 Terminal Layout

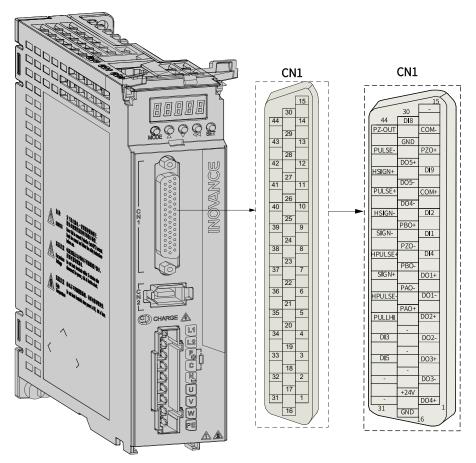


Figure 8-22 Control terminal pin layout of servo drives in sizes A and B

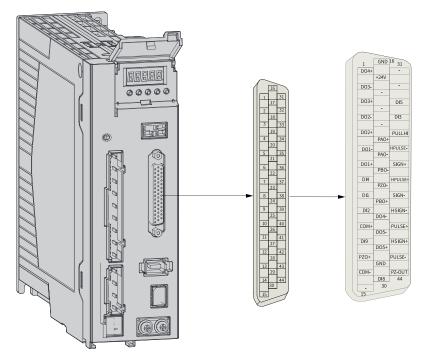


Figure 8-23 Control terminal pin layout of servo drives in sizes C, D, and E

Note

- CN1: Plastic housing of plug on cable side: DB25P (manufacturer: SZTDK), black housing. Core: HDB44P male solder (manufacturer: SZTDK).
- Use shielded cables as signal cables, with both ends of the shielded cable grounded.

Signal Name		Pin No.	Function		
	PULSE+	41	Low-speed pulse reference input mode: • Differential drive input • Open-collector	Pulse input form:	
	PULSE-	43		Direction+Pulse	
	SIGN+	37		• Quadrature pulse of phases A and B • CW/CCW pulse	
	SIGN-	39			
Position reference	PULLHI	35			
Telefenee	HPULSE+	38	High-speed input pulse refere		
	HPULSE-	36	The speed input pulse referen	ce	
	HSIGN+	42	High-speed position reference	sign	
	HSIGN-	40	nigh-speed position relefence		

Signal Name		Default Function	Pin No.	Function
	DI1	P-OT	9	Positive limit switch
	DI2	N-OT	10	Negative limit switch
	DI3	INHIBIT	34	Pulse input forbidden
	DI4	ALM-RST	8	Alarm reset (edge-triggered)
	DI5	S-ON	33	Servo ON
	DI8	HomeSwitch	30	Home switch
	DI9	Reserved	12	-
	4	+24V	17	Internal 24 V power supply, voltage
	COM-		14	range: 20 to 28 V, maximum output current: 200 mA
General	C	COM+	11	Common terminal of DI terminals.
	DO1+	S-RDY+	7	– Servo ready
	DO1-	S-RDY-	6	Servo ready
	DO2+	COIN+	5	Position reached
	DO2-	COIN-	4	Position reached
	DO3+	BK+	3	– Brake output
-	DO3-	BK-	2	brake output
	DO4+	ALM+	1	Fault output
	DO4-	ALM-	26	
	DO5+	HomeAttain+	28	Homing completed
	DO5-	HomeAttain–	27	Thomas completed

Table 8–24 Description of DI/DO signals

Table 8–25 Encoder frequency-division output signals

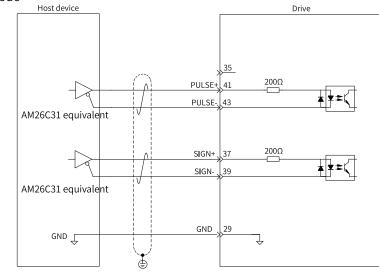
Signal Name	Default Function	Pin No.	Fun	ction
	PAO+	21	Phase A frequency-	Quadrature frequency- division pulse output signals of phases A and B Home pulse output signal
	PAO-	22	division output signal	
	PBO+	25	Phase B frequency-	
	PBO-	23	division output signal	
	PZO+	13	Phase Z frequency-	
General	PZO-	24	division output signal	
	PZ-OUT	44	Phase Z frequency- division output signal	Home pulse open- collector output signal.
_	GND	29	Home pulse open-collector output signal ground	
	GND	16	-	
	PE	Housing	-	

8.3.2 Position Reference Input Signals

For descriptions of position reference input signals, see *"Table 8–23" on page 148*.

The reference pulses and signs on the host controller side can be outputted through the differential drive or open-collector. The following table lists the maximum input frequency and minimum pulse width.

Pulse Mode		Max. Frequency (pps)	Minimum Pulse Width (us)	Voltage (V)
Lowenood	Differential	200k	2.5	> 3.0
Low speed	Open-collector	200k	2.5	24
High-speed differential		4M	0.125	> 3.0


Table 8–26 Correspondence	between pulse input	t frequency and pulse width

Note

- You can either use high-speed pulses or low-speed pulses, but not both of them together.
- If the output pulse width of the host controller is smaller than the minimum pulse width, a pulse receiving error will occur on the drive.
- The symbol / represents shielded twisted pairs.

Low-speed pulse reference input

• Differential mode

Note

This is a 5 V system. Do not input 24 V power.

• Open-collector mode

① For use of the internal 24 V power supply of the servo drive:

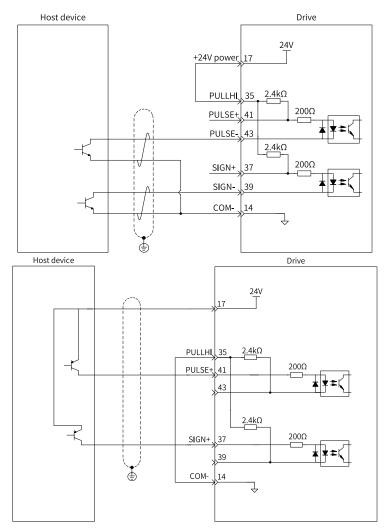
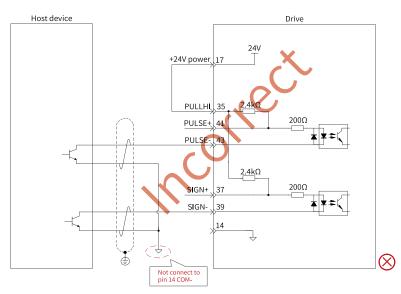
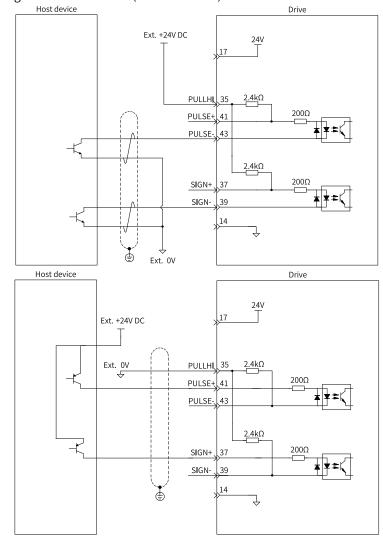
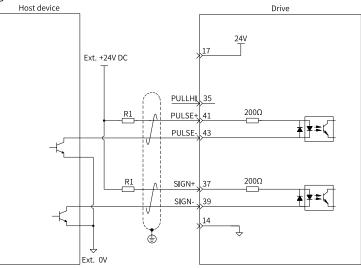
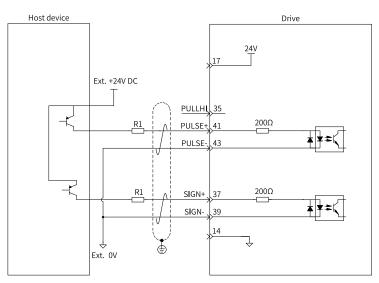


Figure 8-24 Correct: The internal 24 V power supply of the servo drive is used.


Figure 8-25 Incorrect: Pin 14 (COM–) is not connected, leading to failure in forming a closed-loop circuit.


When the external power supply is used:

• Scheme 1: Using the built-in resistor (recommended)

• Scheme 2: Using the external resistor

Select resistor R1 based on the following formula.

$$\frac{V_{cc} - 1.5}{R1 + 200} = 10 \text{ mA}$$

Table 8–27 Recommended resistance of R1

V _{CC} Voltage (V)	R1 Resistance (kΩ)	R1 Power (W)		
24	2.4	0.5		
12	1.5	0.5		

- The following figures show examples of improper wiring.
- 1: The current limiting resistor is not connected, resulting in terminal burnout.

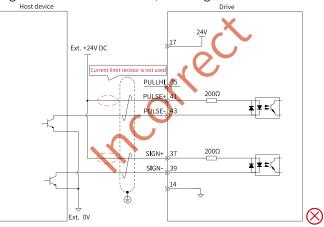


Figure 8-26 Incorrect wiring example 1: The current limiting resistor is not connected, resulting in terminal burnout.

Note

- Some models comes with a detection feature on SIGN+ and SIGN- to detect if SIGN+ is connected to 24 V, SIGNis connected to external 0 V, but no current limit resistor is connected. When this case is detected, the drive issues an E991.1 warning.
- In this case, check the wiring and then test the drive. Otherwise, the port may be damaged.
- This feature cannot detect polarity reversal.

• 2: Multiple terminals share the same current limiting resistor, resulting in pulse receiving error.

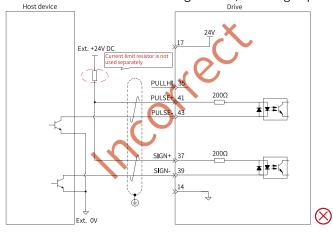


Figure 8-27 Incorrect wiring example 2: Multiple terminals share the same current limiting resistor, resulting in pulse receiving error.

 Incorrect wiring 3: The SIGN port is not connected, preventing these two ports from receiving pulses.

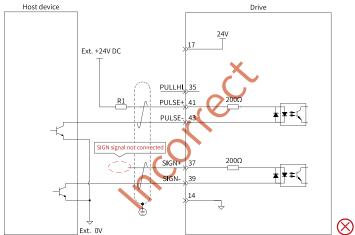
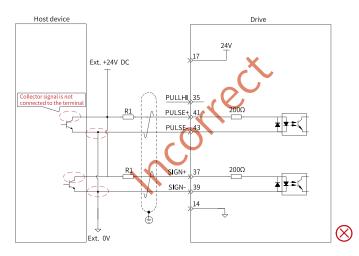
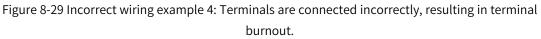




Figure 8-28 Incorrect wiring example 3: The SIGN port is not connected, preventing these two ports from receiving pulses.

• Wrong wiring 4: Terminals are connected incorrectly, resulting in terminal burnout.

• Wrong wiring 5: Multiple terminals share the same current limiting resistor, resulting in pulse receiving error.

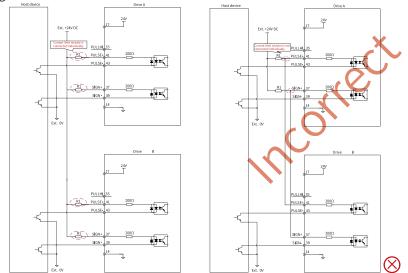
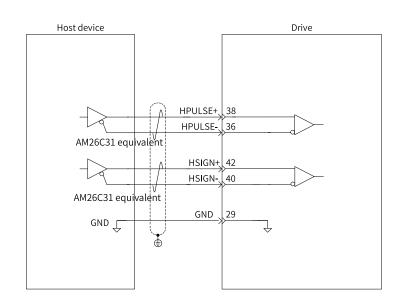



Figure 8-30 Incorrect wiring example 5: Multiple terminals share one current limiting resistor, resulting in a pulse receiving error.

High-speed pulse reference input

High-speed reference pulses and signs on the host controller side can be outputted to the servo drive through the differential drive only.

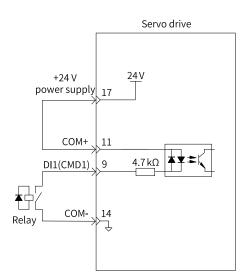
Note

- This is a 5 V system. Do not input 24 V power.
- Some models comes with a detection feature on HSIGN+ and HSIGN- to detect if HSIGN+ is connected to 24 V, HSIGN- is connected to external 0 V, but no current limit resistor is connected. When this case is detected, the drive issues an E991.1 warning.
- In this case, check the wiring and then test the drive. Otherwise, the port may be damaged.
- This feature cannot detect polarity reversal.

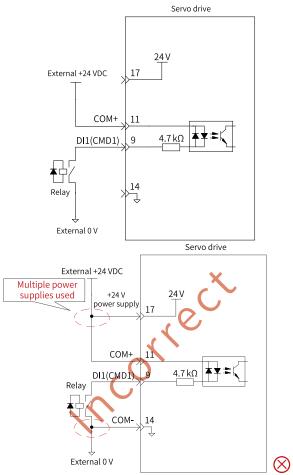
A Caution

The differential input must be 5 V. Otherwise, unstable pulse input will occur on the servo drive, resulting in the following situations:

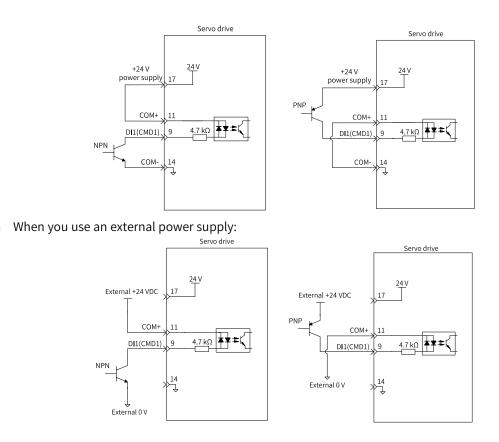
- Pulse loss during pulse input
- Reference inverted during reference direction input
- Connect 5 V GND of the host controller to the GND of the servo drive to reduce noise interference.


8.3.3 DI/DO Signals

For description of DI/DO signals, see *"Table 8–24" on page 149*.


DI circuit

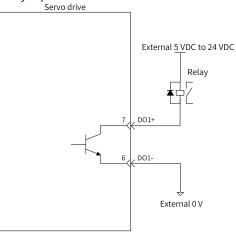
The circuits for DI1–DI5, DI8, and DI9 are the same. The following description takes DI1 circuit as an example.


- The host controller provides relay output:
 - When you use the internal 24 V power supply:

• When you use an external power supply:

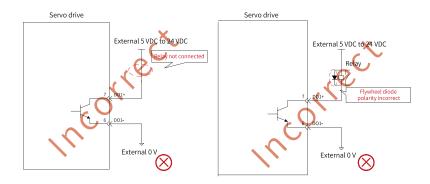
- The host controller provides open-collector output.
 - When you use the internal 24 V power supply:

Note

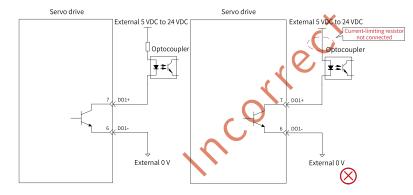

.

PNP and NPN input cannot be used together in the same circuit.

DO circuit


The circuits for DO1 to DO5 are the same. The following description takes DO1 circuit as an example.

• The host controller provides relay input.



Note

When the host controller provides relay input, a flywheel diode must be installed. Otherwise, the DO terminals may be damaged.

• The host controller provides optocoupler input:

Note

The maximum permissible voltage and current capacity of the optocoupler output circuit inside the servo drive are as follows:

- Maximum voltage: 30 VDC
- Maximum current: DC 50 mA

8.3.4 Encoder Frequency-Division Output Signals

For details on encoder frequency-division output signals, see *"Table 8–25 Encoder frequency-division output signals"* on page 149.

Encoder frequency-division output circuit outputs differential signals via the differential drive. Typically, this circuit provides feedback signals to the host controller in a position control system. Use a differential or optocoupler receiving circuit on the host controller side to receive feedback signals. The maximum output current is 20 mA.

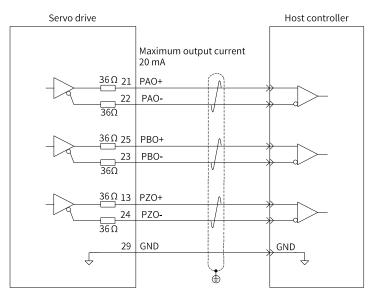


Figure 8-31 Differential receiving circuit

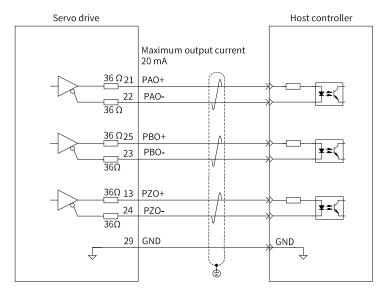
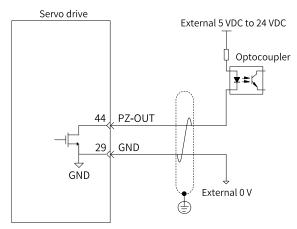
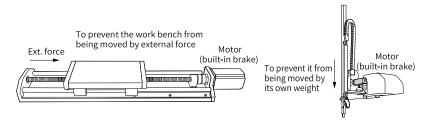



Figure 8-32 Optocoupler receiving circuit

Encoder phase Z output circuit outputs OC signals. Typically, this circuit provides feedback signals to the host controller in a position control system. An optocoupler circuit, relay circuit, or bus receiver circuit shall be used in the host controller to receive feedback signals.



To reduce noise interference, use shielded twisted pairs to connect the 5V GND of the host controller to the GND of the servo drive.

8.3.5 Wiring of the Brake

The brake is used to prevent the motor shaft from moving and lock the position of the motor and the motion part when the drive is in the non-operational status.

- Use the built-in brake for position-lock purpose only. Do not use this brake for any other purposes (such as braking) other than position-lock in the stop state.
- The brake coil has no polarity.
- Switch off the S-ON signal after the motor stops.
- When the motor with brake runs, the brake may generate a click sound, which does not affect its function.
- When brake coils are energized (the brake is released), flux leakage may occur on the shaft end. Pay special attention when using magnetic sensors around the motor.

The connection of brake input signals is polarity-insensitive. Users need to prepare a 24 V power supply. The following figure shows the standard wiring of the brake signals (BK) and the brake power supply.

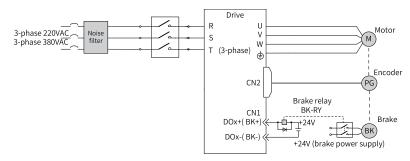
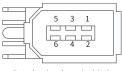


Figure 8-34 Wiring of the brake

Pay attention to the following precautions during wiring:

When deciding the length of the motor brake cable, take the voltage drop caused by cable resistance into consideration. The input voltage must be at least 21.6 V to enable the brake to work properly. The following table lists brake specifications of Inovance MS1 series servo motors.

Motor Model	Holding Torque (N · m)	Supply Voltage (VDC) ±10%	Coil Resistance (Ω)±7%	Exciting Current (A)	Release Time (ms)	Apply Time (ms)	Backlash (°)
MS1H1-05B/10B MS1H4-10B	0.32		94.4	0.25	≤ 20	≪ 40	≤ 1.5
MS1H1-20B/40B MS1H4-20B/40B	1.5		75.79	0.32	≤ 20	≤ 60	≤ 1.5
MS1H1-75B/10C MS1H4-75B/10C	3.2	24	57.6	0.42	≤ 40	≤ 60	≤1
MS1H2-10C/15C/20C/ 25C	8		32.73	0.73	≤ 40	≤ 100	≤1
MS1H2-30C/40C/50C MS1H3-85B/13C/18C	16		24	1	≤ 60	≤ 120	≤1
MS1H3-29C/44C/55C/ 75C	50		18.58	1.29	≤ 100	≤ 200	≤1


Table 8–28 Brake specifications

Note

- The brake cannot share the same power supply with other electrical devices. This is to prevent malfunction of the brake due to voltage or current drop caused by other working devices.
- Use cables with a cross-sectional area above 0.5 mm².

8.4 Encoder Terminal CN2

8.4.1 Terminal Layout

Encoder signal terminal CN2

Figure 8-35 Encoder terminal pin layout

Table 8–29 Description of encoder terminal pins

No.	Name	Description
1	+5 V	5 V power supply
2	0 V	-
3	Reserved	-
4	Reserved	-
5	PS+	Encoder signal
6	PS-	
Enclosure	PE	Shield

8.4.2 Connecting the Absolute Encoder

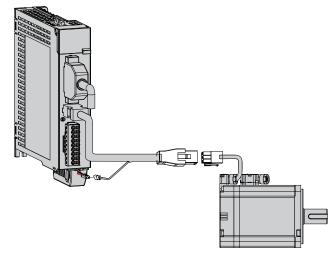


Figure 8-36 Signal wiring example of the absolute encoder^[1]

Note

- [1]: The figure shows encoder cable wiring.
- The encoder cable color is subject to the color of the actual product. Cable colors mentioned in this guide all refer to Inovance cables.

The following figure describes the lead wire color of the battery box.

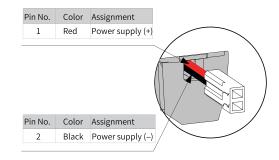


Figure 8-37 Lead wire color of the battery box

Note

- Keep the battery in environments within the required ambient temperature range and ensure the battery is in reliable contact and carries sufficient power capacity. Otherwise, encoder data loss may occur.
- Model of the battery box (battery included): S6-C4A

Motor Frame		Illustration	Pin			
Size ^[1]		Illustration	Pin No.	Signal Name	Color	Туре
			1	+5V	Red	Twisted pair
			2	GND	Orange	i wisteu pair
	Servo		5	PS+	Blue	Twisted pair
	drive		6	PS-	Purple	Twisted pair
Terminal-type: 40	side	6-pin male (right side as the connecting side)	Enclosure	PE	-	-
60			1	PS+	Blue	Twisted pair
80			2	PS-	Purple	i wisteu pali
	Matar		3	DC+	Brown	Twisted pair
	Motor side		4	DC-	Black	i wisteu pair
	Side		5	+5V	Red	Twisted pair
			6	GND	Orange	i wisteu pali
		7-pin connector	7	PE	-	-

Table 8-30 Terminal-type motor encoder cable connector

Note

[1] The flange size refers to the width of the mounting flange.

Motor Frame					P	in	
Size ^[1]		Illustra	tion	Pin No.	Signal Name	Color	Туре
				1	+5V	Red	Twisted
				2	GND	Orange	pair
		Servo		5	PS+	Blue	Twisted
		drive		6	PS-	Purple	pair
Flying leads type:	Encoder cable		6-pin male (right side as the connecting side)	Enclo- sure	PE	-	-
40 60	Connector To the drive CN2		View direction	1	Battery (+)	Brown	
80	التخفيظ المسيا			4	Battery (-)	Black	Twisted pair
		Motor	9-pin connector	3	PS+	Blue	
		side	Recommended: Plastic	6	PS-	Purple	
			enclosure: AMP 172161-1;	9	+5V	Red	
			terminal: AMP 770835-1	8	GND	Orange	-
				7	Shield	-	

Table 8–31 Flying leads type motor encoder cable connector (9-pin)

Note

[1] The flange size refers to the width of the mounting flange.

Motor				Pi	n		
Frame Size ^[1]		Illustratio	n	Pin No.	Signal Name	Color	Туре
				1	+5V	Red	Twisted
				2	GND	Orange	pair
		Comio divisio		5	PS+	Blue	Twisted
		Servo drive side		6	PS-	Purple	pair
100	Encoder cable connector		6-pin male (right side as the connecting side)	Enclosure	PE	-	-
130	To the connector			А	PS+	Blue	Twisted
180	_ //			В	PS-	Purple	pair
			20-29 connector	E	Battery (+)	Brown	-
		Motor side	View direction $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	F	Battery (-)	Black	
				G	+5V	Red	
				Н	GND	Orange	-
				J	Shield	-	

Table 8-32 Absolute encoder cable connector (MIL-DTL-5015 series 3108E20-29S aviation connector)

Note

[1] The flange size refers to the width of the mounting flange (in mm).

8.4.3 Installing Absolute Encoder Battery Box

The optional S6-C4A battery box contains the following items:

- One plastic case.
- One battery (3.6 V, 2,600 mAh).
- Terminal block and crimping terminal.

Installing the battery box

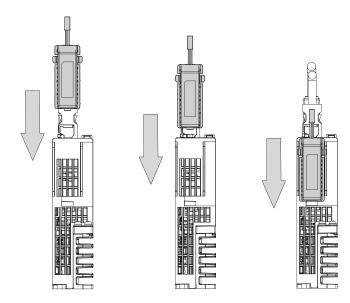
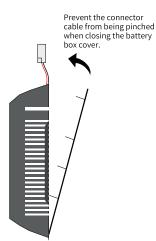



Figure 8-38 Installing the battery box (bottom view)

Removing the battery box

The battery may generate leakage liquid after long-term use. Replace it every two years. Remove the battery box in steps shown in the preceding figure, but in the reverse order.

When closing the battery box cover, prevent the connector cable from being pinched.

Improper use of the battery may result in liquid leakage which corrodes the components or leads to battery explosion. Observe the following precautions during use:

- Insert the battery with polarity (+/-) placed correctly.
- Leaving an idled or retired battery inside the device may lead to electrolyte leakage. The electrolyte inside the battery is highly corrosive, not only corroding surrounding components but also incurring the risk of short circuit. It is recommended to replace the battery every 2 years.
- Do not disassemble the battery because the internal electrolyte may spread out and result in personal injury.
- Do not throw a battery into the fire. Failure to comply may result in an explosion.
- Do not short-circuit the battery or strip off the battery case. Prevent terminals (+) and (-) of the battery from coming into contact with the metal. Contact with the metal can result in a high current, not only weakening the battery power, but also incurring the risk of explosion due to severe heating.
- This battery is not rechargeable.
- Dispose of the retired battery according to local regulations.

8.4.4 Encoder Cable Specifications

- Ground the shielded layers on both the servo drive side and the motor side. Otherwise, the servo drive will report a false alarm.
- Do not connect cables to the "reserved" terminals.
- Given the voltage drop caused by cable resistance and signal attenuation caused by distributed capacitance, it is recommended to use twisted-pair cables of 26AWG or above (as per UL2464 standard) with length no longer than 10 m as the encoder cable.

Note

It is recommended to use 22AWG to 26AWG cables and a matching terminal AMP170359-1 for 10B, 20B, 40B, and 75B series motors. If a longer cable is required, increase the cable diameter properly. See *"Table 8–33 Recommended cables" on page 167* for details.

Cable Size	Cable Size (mm ²)	Ω/km	Allowable Length (m)	OD (mm)			
3P×26AWG	0.13	143	10.0	6.0±0.2			
3P×25AWG	0.16	89.4	16.0	6.2±0.2			
3P×24AWG	0.2	79.6	18.0	6.5±0.2			
3P×23AWG	0.26	68.5	20.9	6.8±0.2			
3P×22AWG	0.32	54.3	26.4	7.0±0.2			
3P×21AWG	0.41	42.7	33.5	7.3±0.2			
3P×20AWG	0.52	33.9	42.2	7.6±0.3			
3P×19AWG	0.57	26.9	53.2	8.5±0.3			
3P×18AWG	0.81	21.4	66.8	8.8±0.3			
3P×17AWG	1.03	16.3	87.7	9.7±0.3			
3P×16AWG	1.31	13.5	105.0	11.4±0.3			

Table 8–33 Recommended cables

Note

If the cables of above 16AWG are required, contact the sales personnel of Inovance.

8.5 Communication Terminals CN3 and CN4

Terminal Layout

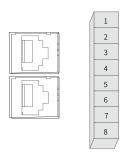


Figure 8-39 Communication Terminal pin layout of the servo drive

Table 8–34 Description of communication terminal pins						
Pin No.	Description	Description				
1	CANH	- CAN communication port				
2	CANL	CAN communication por				
3	CGND	CAN communication ground				
4	RS485+	RS485 communication port				
5	RS485-	K5465 communication port				
6	RS232-TXD	RS232 transmitting end, connected to the receiving end of the host controller				
7	RS232-RXD	RS232 receiving end, connected to the transmitting end of the host controller				
8	GND	Ground				
Enclosure	PE	Shield				

Table 8–34 Description of communication terminal pins

Terminal descriptions

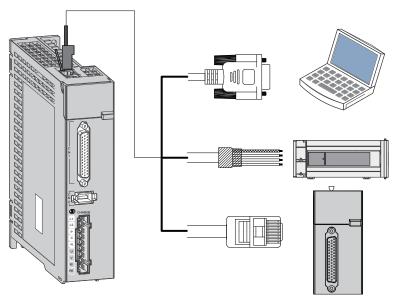


Figure 8-40 Wiring of communication cables

CN3 and CN4 are identical communication terminals connected in parallel internally.

CN3 and CN4 in the drive are used for communication with the PC, PLC, and other drives. For pin assignment of CN3/CN4, see *"Figure 8–39 Communication Terminal pin layout of the servo drive" on page 168*.

RS485 communication with PLC

The following figure shows the cable used for 485 communication between the servo drive and PLC.

Figure 8-41 Outline drawing of cable used for CAN communication between the servo drive and PLC

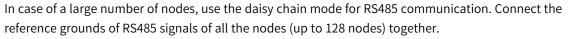
Use a three-conductor shielded cable to connect the RS485 bus, with three conductors connected to 485+, 485-, and GND (GND represents non-isolated RS485 circuit) respectively. Connect RS485+ and RS485- with two conductors twisted together and connect the remaining conductor to the RS485 reference ground (GND). Connect the shield to the device ground (PE). Connect a 120 Ω termination resistor on each end of the bus to prevent RS485 signal reflection.

Table 8–35 Pin connection relation of the cable used for CAN communication between the servo drive and PLC

RJ4	RJ45 on the Drive Side (A)			PLC Side (B)		
Communication Type	Pin No.	Description	Communication Type	Pin No.	Description	
	4	485+		4	485+	
RS485	5	485-	RS485	5	485-	
	8	GND		8	GND	
-	Enclosure	PE (shield layer)	-	Enclosure	PE (shield layer)	

Wiring of multi-drive RS485 communication

The following figure shows the cable used for multi-drive RS485 communication.



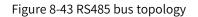

Figure 8-42 Outline drawing of the cable used for multi-drive RS485 communication

Table 8–36 Pin connection relation of the cable used for multi-drive RS485 communication (pins in 485 group used only)

RJ4	15 on the Drive Side	(A)	RJ45 on the Drive Side (B)			
Communication Type	Pin No.	Description	Communication Type	Pin No.	Description	
	4	485+		4	485+	
RS485	5	485-	RS485	5	485-	
	8	GND		8	GND	
-	Enclosure	PE (shield layer)	-	Enclosure	PE (shield layer)	

RS485 bus 485+ 1200 termination resistor to PE. 485+ 485- GND 485+ 485- GND 485+ 485- GND Set the termination resistor. Master Drive Slave 1 Connet the shield

Do not connect (1) (GND) terminal to the CGND terminal of the drive. Failure to comply may damage the machine.

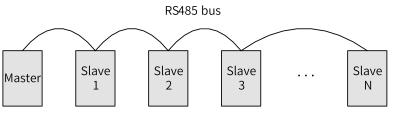


Figure 8-44 Daisy chain mode

The following table lists the maximum number of nodes and transmission distance supported by the standard RS485 circuit at different transmission rate.

No.	Transmission Rate (kbps)	Transmission Distance (m)	Number of Nodes	Cross Sectional Area
1	115.2	100	128	AWG26
2	19.2	1000	128	AWG26

Table 8-37 Transmission distance and number of nodes

RS232 communication with PC

You can connect the servo drive and the PC using the PC communication cable during RS232 communication. It is recommended to use RS232 communication interface. The outline drawing of the PC communication cable is shown in the following figure.

Figure 8-45 Outline drawing of the PC communication cable

RJ45 on the I	Drive Side (A)	DB9 on the PC Side (B)		
Signal Name	Pin No.	Signal Name	Pin No.	
RS232-TXD	6	PC-RXD	2	
RS232-RXD	7	PC-TXD	3	
GND	8	GND	5	
PE (shield layer)	Enclosure	PE (shield layer)	Enclosure	

Table 8–38 Pin connection relation between the servo drive and PC communication cable

Pin assignment of DB9 terminal on the PC side is shown in the following table.

Table 8–39 Pin definition of DB9 terminal on the PC side ("B" in the preceding figure)

Pin No.	Description	Description	Terminal Pin Layout
2	PC-RXD	PC receiving end	
3	PC-TXD	PC transmitting end	
5	GND	Ground	
Enclosure	PE	Shield	

If the host controller supports USB interface only, use the serial-to-USB cable.

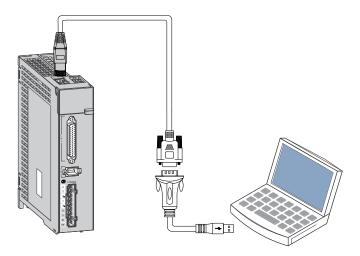


Figure 8-46 Outline drawing of the PC communication cable

Recommendations: Manufacture: Z-TEK Model: ZE551A, equipped with a 0.8 m USB extension cable Chip model: FT232

8.6 Wiring and Setting of the Regenerative Resistor

Connecting the regenerative resistor

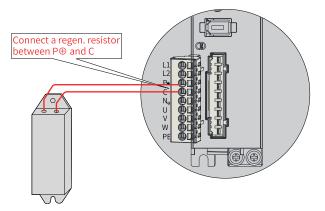


Figure 8-47 Wiring of external regenerative resistor

For cables used for terminals P⊕ and C, see *"8.2.3 Recommended Cable Specifications and Models" on page 128.*

Observe the following precautions when connecting the external regenerative resistor:

- The built-in regenerative resistor or jumper bar is not available in models S1R6 and S2R8. If an external regenerative resistor is needed for these models, connect it between terminals P⊕ and C.
- Remove the jumper between terminals P⊕ and D before using the external regenerative resistor. Failure to comply will result in overcurrent and damage the braking transistor.
- Do not connect the external regenerative resistor to the positive or negative pole of the bus directly. Failure to comply will damage the servo drive and result in a fire.
- Select a resistor with resistance higher than or equal to the minimum permissible value. Failure to comply will result in Er.201 (Overcurrent) or damage the servo drive.
- Make sure parameters H02.25 (Regenerative resistor setting), H02.26 (Power of external regenerative resistor) and H02.27 (Resistance of external regenerative resistor) are set properly before operating the servo drive.
- Install the external regenerative resistor on an incombustible object such as a metal.

9 Commissioning Tool

9.1 Operating Panel

9.1.1 Display Panel Components

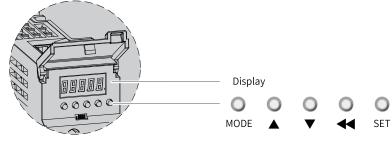


Figure 9-1 Magnified view of the keypad

The operation panel of the SV630 Series servo drive consists of an LED (5-digit, 8-segment) and five buttons. The keypad is used for value display, parameter setting, user password setting and general function execution. The following table takes parameter setting as an example to describe the general functions of the keys.

Parameter Name	Illustration	Description	
MODE	MODE	Switches among different modes. Returns to the previous menu.	
UP		Increases the value of the blinking digit for the LED.	
DOWN	Q T	Decreases the value of the blinking digit for the LED.	
SHIFT	•	Shifts the blinking digit for the LED. You can view the high digits of the number consisting of more than 5 digits.	
SET	O SET	Switches to the lower-level menu. Executes commands such as storing parameter setting value.	

Table 9–1 Descriptions of keys

9.1.2 Panel Display

The operating panel can display the running status, parameter, faults, and monitoring information during running of the servo drive.

- Status display: Displays current servo drive status, such as servo ready or servo running.
- Parameter display: Displays parameters and their setpoints
- Fault display: Displays faults and warnings that occurred on the servo drive.
- Monitored value display: Displays values of monitoring parameters.

Display mode switchover

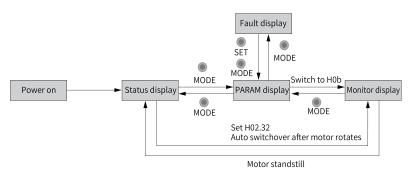


Figure 9-2 Switchover among different display modes

- The keypad enters status display immediately upon power-on.
- Press MODE to switch among different display modes based on the conditions shown in *"Figure 9–2" on page 174*.
- In status display, set H02.32 to select the parameter to be monitored. When the motor rotates, the keypad automatically switches to monitored value display. After the motor stops, the keypad automatically returns to status display.
- In the parameter display mode, after you select the parameter to be monitored in group H0b, the keypad switches to monitored value display.
- Once a fault occurs, the keypad switches to fault display immediately, with all the five LEDs blinking. Press SET to stop the LEDs from blinking, and then press MODE to switch to parameter display.

Display	Parameter Name	Applicable Occasion	Meaning
rESEŁ	Reset Servo drive initializing	Upon power-on	The servo drive is in the initialization or reset status. After initialization or reset is done, the servo drive automatically switches to other status.
nrd	Nrd Servo not ready	Initialization done, but servo drive not ready.	The servo drive is not ready to run because the main circuit is not powered on. For details, see Chapter "Troubleshooting".
rdy	Rdy Ready	Servo drive ready	The servo drive is ready to run and waits for the enabling signal from the host controller.
run	Run Running	Servo ON (S-ON) signal activated (S-ON signal switched on)	The servo drive is running.
309	Jog Jog	Servo drive in jog status	See <i>"10.4 Jog" on page 194</i> for details.

Status display

Parameter Display

Parameters are divided into 19 groups based on their functions. A parameter can be located quickly based on the parameter group it belongs to. For details on parameters, see Chapter "Parameter List".

• Display of parameter groups

Display	Parameter Name	Description
		XX: parameter group No. (decimal)
HXX.YY	Parameter group	YY: offset within the parameter group (hexadecimal)

For example, "H02.00" is displayed as follows.

Display	Parameter Name	Description
H02.00	H02.00	02: Parameter group No. 00: Offset within the parameter group

- Display of negative numbers and numbers with different lengths
 - Signed number with 4 digits and below or unsigned number with 5 digits and below
 Such numbers are displayed in a single page (five digits). For signed numbers, the highest bit "-" represents the negative symbol.

For example, "-9999" is displayed as follows:

For example, "65535" is displayed as follows:

Signed number with more than 4 digits or unsigned number with more than 5 digits
 Such numbers are displayed from low to high bits in several pages (5 digits per page): current
 page + values on current page, as shown in the following figure. Hold down SHIFT for more than 2s to switch to the next page.

For example, "-1073741824" is displayed as follows:

Figure 9-3 Display of "-1073741824"

Example: "1073741824" is displayed as follows:

Figure 9-4 Display of "1073741824"

• Display of the decimal point

The segment "." of the ones indicates the decimal point, which does not blink.

Display	Parameter Name	Description
100.0	Decimal point	100.0

• Display of parameter setting status

Display	Parameter Name	Applicable Occasion	Meaning
don£	Done Parameter setting completed	The parameter is set successfully.	The parameter is set and saved to the servo drive (Done). The servo drive can execute other operations.
F. In 12	F.InIt (Restored to default settings)	Parameter initialization is in progress (H02.31 = 1).	The servo drive is in the process of parameter initialization. After parameter initialization is done, switch on the control power supply again.
Error	Error (wrong password)	The user password (H02.30) is activated and the password entered is wrong.	A wrong password is entered. You need to enter the password again.

Fault Display

- The keypad can be used to display present or previous fault and warning codes. For analysis and solutions to the faults and warnings, see Chapter "Troubleshooting".
- When a fault or warning occurs, the operating panel displays the corresponding fault or error code immediately. When multiple faults or errors occur, the keypad displays the fault or error code of the highest fault level.
- You can select the previous fault/warning to be viewed through H0b.33 and view the code of the selected fault/warning in H0b.34.
- You can clear the latest 10 faults or warnings saved in the servo drive by setting H02.31 to 2.

For example, "E941.0" is displayed as following:

Display	Parameter Name	Description
	E941.0 Warning code	E: A fault or warning occurs on the servo drive. 941.0: Warning code

Note

- If the panel displays Hault/Fault, a system fault has occurred.
- The possible causes include bugs of the program, external interference like static electricity or electromagnetic interference, extreme operating temperature or radiation.
- In this case, record the values of H16.00–H16.27, and consult with our R&D engineers.

Monitored value display

- Group H0b: Displays parameters used to monitor the operating state of the servo drive.
- Set H02.32 (Default keypad display) properly. After the motor operates normally, the keypad switches from status display to parameter display. The parameter group number is H0b and the offset within the group is the setpoint of H02.32.
- For example, if H02.32 is set to 00 and the motor speed is not 0 rpm, the keypad displays the value of H0b.00.

Param.	Parameter Name	Unit	Meaning	Example
Н0Ь.00	Motor speed actual value	RPM	Displays the actual value of the motor speed after round-off, which can be accurate to 1 rpm.	Display of 3000 rpm: 3000 rpm: - 3000 rpm:

The following table describes the monitoring parameters in H0b.00.

Note

For details of parameter group H0b, see "19.6 Display of Monitoring Parameters" on page 700.

9.1.3 Parameter Settings

Example of parameter settings

You can set parameters through the keypad. For details on parameters, see Chapter "List of Parameters". The following figure shows how to switch from position control mode to speed control mode using the keypad after power-on.

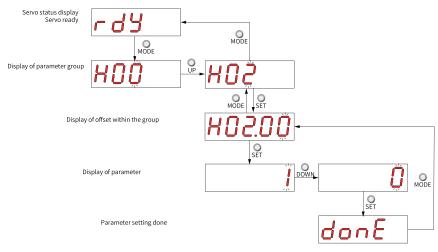


Figure 9-5 Example of parameter setting

- MODE: Used to switch the keypad display mode and return to the previous interface.
- UP/DOWN: Used to increase or decrease the value of the blinking digit.
- SHIFT: Used to shift the blinking digit.
- SET: Used to save the present setpoint or switch to the next interface.

After parameter setting is done, that is, "donE" is displayed on the keypad, press MODE to return to the parameter group interface (interface of "H02.00").

Forced DI/DO signals

You can assign different functions to DI/DOs by setting parameters in groups H03 and H04 through the keypad (or host controller), so that the host controller can control the servo functions through DI signals or use the DO signals outputted by the servo drive.

The servo drive also provides forced DI/DO functions. The forced DIs can be used to test the DI functions of the servo drive, and the forced DOs can be used to check the DO signal connection between the host controller and the servo drive.

When the forced DI/DO function is used, the logics of both physical DI and virtual DI are determined by the forced DI.

Forced DI signal input

After this function is enabled, all DI signal levels are controlled by the forced DI setting (H0d.18), independent of external DI signal status.

1. Operating process

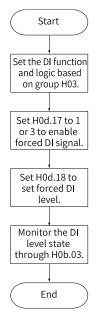


Figure 9-6 Procedure for setting forced DI function

H0d.18 is used to set the forced DI input. The keypad displays the value in hexadecimal. After the hexadecimal value is converted to a binary value, the value "1" indicates high level and "0" indicates low level.

Note

- The DI logic is defined by parameters in group H03.
- H0b.03 is used to monitor the DI level status. The keypad displays the level, and the value of H0b.03 (Monitored DI signal) read in the software tool is a decimal.

2. Example:

To activate the DI function assigned to DI1 and deactivate DI functions assigned to DI2...DI9 (DI to DI9 are active low), set as follows:

As the value "1" indicates high level and the value "0" indicates low level, the corresponding binary value and hexadecimal value are "110011110" and "19E" respectively. Therefore, set H0d.18 to "19E" through the keypad.

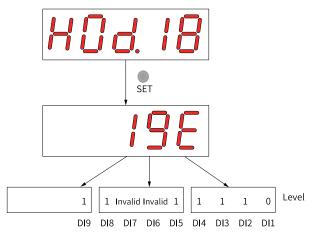


Figure 9-7 Meaning of the H0d.18 setpoint

Monitoring the DI level status through H0b.03:

If the DI function is normal, the display value of H0b.03 is always the same as that of H0d.18.

In this case, the DI1 is active low, DI2 to DI9 are active high and the value of H0b.03 read by the software tool is 414 (in decimal). See the following figure.

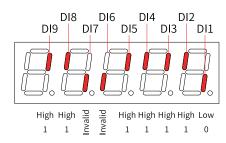


Figure 9-8 DI level status corresponding to H0b.03

Note

Upper LED segments ON: high level (indicated by "1") Lower LED segments ON: low level (indicated by "0")

3. Exit

The forced DI signal function is not retentive upon power-off. Normal DIs apply after restart, or you can set H0d.17 to 0 (No operation) to return to the normal DI mode.

Forced DO function

After this function is enabled, all DO signal levels are controlled by H0d.19 (Forced DO value), regardless of the internal DO status of the servo drive.

In applications where the servo motor is used for vertical movement, if the brake output signal (FunOUT.9: BK, brake output) is active, the brake will be released and the load may fall. Take protective measures on the machine to prevent the risk of falling.

1. Operating process

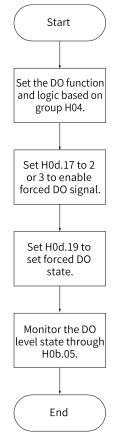


Figure 9-9 Procedure for setting forced DO function

H0d.19 (Forced DO value) is used to set whether the DO function is active. The keypad displays the value in hexadecimal. After the hexadecimal value is converted to a binary value, the value "1" indicates the DO function is active and "0" indicates the DO function is inactive.

The DO logic is defined by parameters in group H04. H0b.05 is used to monitor the DO level status. The keypad displays the level, and the value of H0b.05 (monitored DO signal) read in the software tool is decimal.

2. Example:

To activate the DO function assigned to DO1 and deactivate DO functions assigned to DO2 and DO5, set as follows:

As the value "1" indicates the DO function is active and "0" indicates the DO function is inactive, the binary value is "11110", which corresponds to the hexadecimal value "1E". Therefore, set H0d.19 (Forced DO value) to 1E through the keypad.

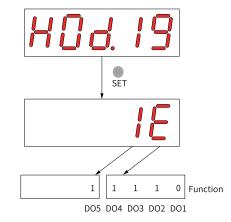


Figure 9-10 Meaning of the H0d.19 setpoint

Monitoring the DO level status through H0b.05:

If the logic of all the three DO terminals are "active at low level", the DO1 terminal is high level and DO2 to DO5 terminals are low level, and the corresponding binary number is "00001". In this case, the value of H0b.05 (Monitored DO signal) read by the software tool is 1 (decimal). See the following figure.

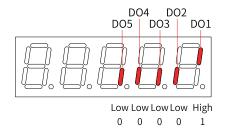


Figure 9-11 Display H0b.05 when all DO are "active low"

If the logic of all the 5 DO terminals are "active high", the DO1 terminal is low level and DO2 to DO5 terminals are high level, and the corresponding binary number is "11110". In this case, the value of H0b.05 (Monitored DO signal) read by the software tool is 30 (decimal). See the following figure.

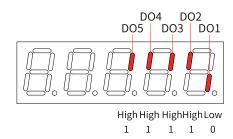


Figure 9-12 Display H0b.05 when all DO are "active high"

3. Exit

The forced DO signal is not retentive upon power-off. Normal DO functions are restored after restart, or you can set H0d.17 to 0 to return to the normal DO mode.

User password

After the user password (H02.30) is activated, only authorized operators can set parameters.

• Setting the user password

The following figure shows how to set the user password to "00001".

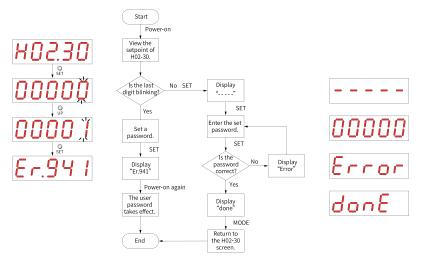


Figure 9-13 Procedure for setting the user password

To change the user password, input current password first to authorize the access to parameter setting. Next, enter H02.30 again to set a new password based on the procedure shown in the preceding figure.

Note

If the last bit does not blink, the access to parameters is password protected. If the last bit blinks, password is not needed or the password entered is correct.

• Canceling user password Enter the set user password, and set H02.30 to "00000" to cancel the user password.

9.2 Commissioning Software

9.2.1 Overview

The software tool InoDriverShop can be downloaded from <u>http://www.inovance.com</u>.

Use a Type-C communication cable for communication between SV630 series servo drives and the PC.

InoDriverShop supports 32-bit/64-bit Windows 7 and 64-bit Windows 10 operating systems. For details on how to use InoDriverShop, see the help document of InoDriverShop.

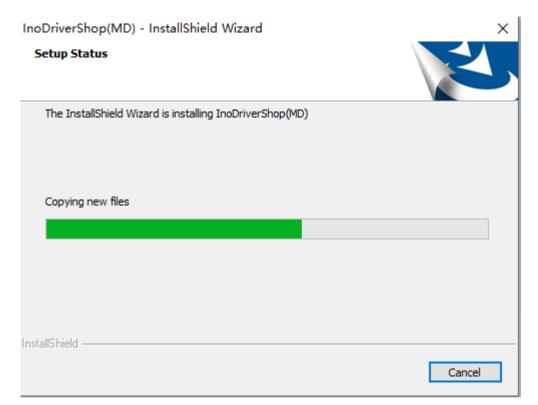
9.2.2 To install the fan, do as follows:

1. Software

- a. Visit the official website of Inovance as shown below. <u>http://www.inovance.com</u>
- b. Choose Support \rightarrow Download, and then type in the keyword InoDriverShop and click Search.

- c. Click Download.
- 2. Unzip the package downloaded.

3. Click	InoDriverShop.exe	o start installing InoDriverShop.
	InoDriverShop(MD) - InstallS	hield Wizard
		Preparing to Install InoDriverShop(MD) Setup is preparing the InstallShield Wizard, which will guide you through the program setup process. Please wait. Preparing to Install
		Cancel
4. Click	Next. InoDriverShop(MD) - InstallS	hield Wizard X
		Welcome to the InstallShield Wizard for InoDriverShop(MD) The InstallShield Wizard will install InoDriverShop(MD) on your computer. To continue, dick Next.
		< <u>B</u> ack <u>Next</u> > Cancel


5. You can select the directory for installation as needed through the Browse button. The default directory for installation is "C:\Program Files\Inovance\InoDriverShop".

In online upgrade, InoDriverShop will be upgraded directly in the original directory.

After selecting the directory for installation, click Next.

InoDri	iverShop(MD) - In				
Choo	ose Destination Lo	ocation			
Sel	lect folder where set	up will install files			
Set	tup will install InoDriv	verShop(MD) in t	ne following folder.		
	install to this folder, other folder.	click Next. To ins	stall to a different i	folder, click Browse	e and select
- 0	Destination Folder				
	Destination Folder C:\Inovance\InoDrive	erShop			Browse
C	C:\Inovance\InoDrive	erShop			Browse
c	C:\Inovance\InoDrive	erShop			Browse
	C:\Inovance\InoDrive	erShop	< <u>B</u> ack	Next >	B <u>r</u> owse

InoDriverShop(MD) - InstallShield Wizard	×
Ready to Install the Program The wizard is ready to begin installation.	Z
Click Install to begin the installation.	
If you want to review or change any of your installation settings, click Bad exit the wizard.	k. Click Cancel to
InstallShield	
< <u>B</u> ack <u>I</u> nstall	Cancel

7. After installation is done, click Finish.

InoDriverShop(MD) - Install	Shield Wizard
	InstallShield Wizard Complete The InstallShield Wizard has successfully installed InoDriverShop(MD). Click Finish to exit the wizard.
	< Back Finish Cancel

8. A shortcut icon for InoDriverShop will be generated automatically on the desktop.

9.2.3 Connection

1. Start InoDriverShop.

∦S

- Double-click InoDriver... to start the InoDriverShop.
- If there is no shortcut for InoDriverShop on your desktop, click Start and search for InoDriverShop.
- 2. Create a project.
 - a. Click ① shown in the following figure to create a project.

InoDriverShop - Home Page	a hologothe init former a state of the anti-	
1 General2 Project		UI Style 👻
New Open Close Save Connect Project Project Project Operation	्रियुः Sicconset draine	
Work Space # ×	Home Page 🗙	-
- D Project	InoDriverShop File operation Files operation F	
	✓ Close home page after opening project ✓ Show home page while leanch application	INOVANCE

Figure 9-14 Start interface

Note

You can click 2 or 3 shown in the preceding figure to open the project saved before.

b. Open the Project Guide interface.

Click Online or Offline in area ①. Next, click the product series in area ②. Finally, load default communication parameters in area ③ based on the product series selected.

Figure 9-15 Project Guide interface

- c. Click Next page to create a project.
 - Creating a project for online device brings you to the following interface. The device is scanned automatically. Select the device to be commissioned and click Finish.

Begin scannin Row	ng scanning Object name SV630P	Object type SV630P	Slave Id 1	Baud rage 115200	Version 13.269.9.0	common problem	
bject (Inline: 0	Scan finishe	۰d.				
roject							
roject	nane: NewProje	ct2023-08-21					
torage	path: E:\Servo						

Figure 9-16 Scan interface

• Creating a project for offline device brings you to the following interface. You can select the Slave ID, Object Type, and Software Version as needed and add different standards or customized devices. You can also designate the directory for storage or create multiple offline devices.

	Project Guide					
ſ	Device List	3				
		Object name	Sla	Object type		
		SV630P_1	1	SV630P	J	
	1					
	Slave Id: 2 2					
	Object SV630P >>					
	Software 1.0.0.0					
	Project dir 4					
	Project name: NewProject2023-08-21					
	Storage path: E:\Servo					
	and the barn.		5			
		Pre Pag	5 	nish		
						.:

Figure 9-17 Project Guide interface for offline device

Note

① Station No., ④ Project name, and the storage directory can be changed as needed.

d. The project has been created.

3. The main interface is shown as follows.

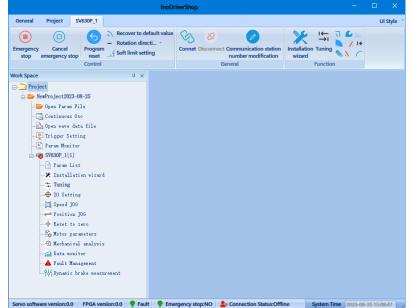


Figure 9-18 Main interface

9.2.4 Introduction to the Software Tool

InoDriverShop features the following functions:

• Oscilloscope: Detects and saves the instantaneous data during operation.

Control	ver to Rotation t value direction	Sonnect Modify station number General	 Mechanical Param Continuous analysis List Osc Inction	C) Multi-machine recipe
Work Space 4 x Project 0 Para Project 2022-01-07 0 Open Para File Continuou Ose 0 pen wave data file 0 Trigger Setting 1 Paras Honitor 5 SV660P_1(1) 1 Paras List 5 Paras List 5 Paras List 5 Paras JOG Position JOG Position JOG Notor parameters 9 Mechanical analysis 1 Object dictionary list 0 Contrast output 1 Shackbox 2 Davice Information 2 Fault Management	Continuous Osc ×		Sampling 4 🔔 Ins	Time Axis

• Parameter management: Reads and downloads parameters in batches.

● 参数组 	í.	(当前页)	<u>脾</u> 、	上倍并保存 所有勾选场) 打开配方	保存设定值 (所有勾选项)	写入全部 写; \$\$\$100-00015(组)	入全部勾送1页 (当前页)	VS Ekšk	袖拷贝		截线 🗌	
		10030	97H 7 0	MH40300	001141-202300	(delennositiun 1981)	Ca100347	C CASE	全迭(当前	(页)	音響	●用户 ▼
		轴号	功能码ID	描述	设定值	当前值	出厂值	最小值	最大值	单位	修改方式	生效方式
	E	1 轴1	H00-00	电机编号		14102	14102	0	65535		停机修改	再次通电
	10	1 1 1 1	H00-02	非标号		0.00	0.00	0.00	429496T2		不可能改	
🐏 HD1 D驱动器参数	10	+ 轴1	H00-04	编码器版本号		2600.0	0.0	0.0	6553.5		不可修改	
		袖1	H00-05	总线电机编号		11408	0	0	65535		不可修改	
		1 袖1	H00-06	FPGA非标号		0.00	0.00	0.00	655.35		不可修改	
- 104E端子输出参	III E	抽1	H00-07	STO版本号		410.10	0.00	0.00	655.35		不可能改	
	E	轴1	H00-08	总线编码器类型		14100	0	0	65535		停机鲶改	
	III E	1 抽1	H01-00	MCU软件版本号		4100.1	0.0	0.0	6553.5		不可修改	
	10	1 袖1	H01-01	PPGA软件版本		4100.1	0.0	0.0	6553.5		不可修改	
	III E	1 1 1 1	H01-02	個腦腳加系列号		3	0	0	65535		不可修改	
	III E	1 袖1	H01-10	驱动器系列号		3[3-S2R8]	3	0	65535		傳机餘改	再次通电
	III E	+抽1	HD1-11	逆变电压等级		220	220	0	65535	v	不可修改	
	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HD1-12	驱动器额定功率		0.40	0.40	0.00	10737418.24	kw	不可修改	
🏪 NDA [故障与保护	117	1 1 1 1	H01-14	驱动器最大输出功率		0.40	0.40	0.00	10737418.24	kw	不可修改	
	ll F	1 轴1	H01-16	驱动器额定输出电流		2.80	2.80	0.00	10737418.24	A	不可修改	
	E F	轴1	H01-18	驱动器最大输出电流		10.10	10.10	0.00	10737418.24	А	不可修改	
		1 1 1 1	HD1-40	直流母线过压保护点		420	420	0	2000	v	任意能改	
—————————————————————————————————————	Ē	+ 11	H01-44	額定功率		1.00	1.00	0.00	655.35	lev	不可能改	
	12	轴1	HD1-46	最大输出功率		1.50	1.50	0.00	655.35	lov	不可修改	
📅 Hit[多段位置]	E	袖1	H01-48	墨流额定输出电流		3.20	3.20	0.00	655.35	A	不可能改	
- 🐺 H12[多段速度]	I E	袖1	H01-75	电流环放大系数		1.30	1.00	0.00	655.35		任意峻改	立即生效
	Ē	軸1	HD1-78	PL和CPL感激时间		4000	1	0	65535		停机修改	立即生效
	Ē	1 1 1 1	H02-00	控制模式选择		1[1-位置模式]	1	0	8		停机经改	立即生效
108「位害比药输	• E	1 袖1	H02-01	絕对值系统选择		0[0-提里模式]	0	0	4		停机修改	再次通电
III F		4401	H02-02	台埠北东,市 町内町19年4年		010-Elocationth	0	0	1		-(W-10 6/525-	南:水涌由

• Inertia auto-tuning: Generates the load inertia ratio automatically.

	[H]	×	ı← →I	\oplus	\wedge	→∳←	\rightleftharpoons	-Q			0~0
l	Inertia	Installation	Tuning	IO	Fault	Reset	Position	Mechanical	Param	Encoder	Continuous
l	identification	wizard		Setting	Management	to zero	JOG	analysis	List	setting	Osc
	Function										

_	cific se			tion at 3 limit) —	_
In	ertia re	cognitio	n		
-				300	rpm
	(100	- 1000)			
	(20 -			peed tim	ms
P	ning	1		r	(0-100)

• Mechanical characteristic analysis: Analyzes the resonance frequency of the mechanical system.

• Motion JOG: Generates position references to make the motor reciprocate.

⊡	Choose axis: Axisi 💌
 NewProject2022-01-07 Open Faram File Continuous Osc Open wave data file Trigger Setting Param Monitor SV680P_1[1] 	STEP1-Enable Rotating 60 speed Acceleration 200 ms (1, 65535) time Deceleration 200 time STEP2-Limit position setting
	Current positionCurrent position0pulse(-2147483648, 2147483647)Set to positive limit positionSet to negative limit position
	STEP3-Run Operating mode: mode: Running times Yaiting 500 ms (0, 65535)

• Gain tuning: Adjusts the stiffness level and monitors the motion data.

10 Commissioning and Operation

10.1 Commissioning Flowchart

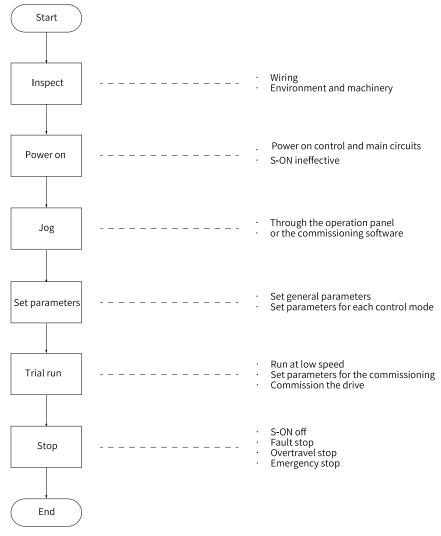


Figure 10-1 Commissioning flowchart of the drive

10.2 Inspection Before Commissioning

Check the following items before commissioning the servo drive and the servo motor.

Log	No.	Description					
	Wiring						
	1	The power input terminals (L1, L2/L1, L2, L3/L1C, L2C/R, S, T) of the servo drive are connected properly.					
	2	The main circuit cables (U, V, W) of the motor are connected to the U/V/W terminals of the drive correctly.					
	3	No short circuit exists in the power input terminals (L1, L2/L1, L2, L3/R, S, T) or main circuit output terminals (U, V, W) of the servo drive.					

Table 10–1 Checklist

Log	No.	Description				
	4	The signal cables of the servo drive are connected correctly. The external signal cables such as the brake cable and the overtravel protection cable are connected reliably.				
	5	The servo drive and servo motor are grounded properly.				
	6	The stress suffered by the cable is within the specified range.				
	7	All the wiring terminals are insulated properly.				
	Environment and Mechanical Conditions					
	1	There are no unwanted objects (such as cable terminals and metal chippings) that may cause short circuit of the signal cable and power cable inside or outside the servo drive.				
	2	The servo drive and the external regenerative resistor are placed on incombustible objects.				
	3	The servo motor is installed properly. The motor shaft is connected to the machine securely.				
	4	The servo motor and the connected machine are in good condition and ready to run.				

10.3 Power-on

- Switching on the input power supply
 - The power input terminals for a single-phase 220 V power supply are L1 and L2.
 - The power input terminals for a three-phase power supply are L1, L2, L3/L1C, L2C (control circuit power input terminals)/R, S, T (main circuit power input terminals).

After the power supply is switched on, if the bus voltage indicator is in the normal state and the keypad displays "reset" \rightarrow "nr" \rightarrow "ry" in sequence, the servo drive is ready to run and waits for the S-ON signal.

Note

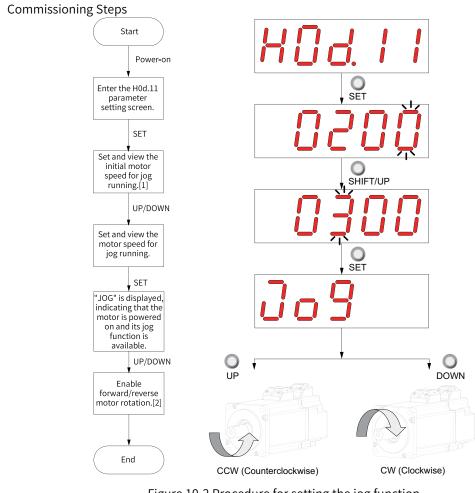
- If the keypad keeps displaying "Nrd", rectify the fault according to section "Troubleshooting".
- If the keypad displays other faults, rectify the fault according to section "Troubleshooting".
- Turn off the servo ON signal.

Allocate a certain DI of the servo drive with function 1 (FunIN.1:S-ON, servo ON) and set the active logic of this DI. Then deactivate this DI through communication with the host controller or through an external switch. Then, it can be disabled through the host controller or an external switch.

 \And Related parameters:

Code	Parameter Name	Function Name	Function		
EvelN 1	C ON	Carrie ON	Inactive: Servo motor de-energized		
FunIN.1	S-ON	Servo ON	Active: Servo motor energized		

10.4 Jog



To use the jog function, deactivate the S-ON signal first.

The jog function can be used in trial run to check whether the motor rotates properly, without abnormal vibration or noise generated during rotation. You can activate the jogging function through the keypad, two pre-configured external DIs, or the software tool. The motor takes the value saved in H06.04 as the jog speed.

Jogging through the keypad

•

Figure 10-2 Procedure for setting the jog function

Note

- [1] Press the UP or DOWN key to increase or decrease the jog speed. After exiting from the jog mode, the initial speed applies.
- [2] Press the UP or DOWN key to make the motor rotate forwardly or reversely. After you release the key, the motor stops immediately.

- Procedure:
 - 1. Enter the jog mode by setting H0d.11 through the keypad.

The keypad displays the default jog speed at this moment.

2. Adjust the jog speed through the UP/DOWN key and press the SET key to enter the jog state.

The keypad displays "JOG".

- 3. Press the UP/DOWN key to make the motor run forwardly or reversely.
- 4. Press the MODE key to exit the jog mode and return to the upper-level menu.

The setpoint of H06.04 returns to the default value.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.04	2006-05h	Jog speed setpoint	0 RPM to 6000 RPM	100	RPM	Real-time	" H06_en.04" on page 438

• Exiting the jog running Press the MODE key to exit from jog and return to the previous menu.

Jogging through the DI

Note

Note: The jog function can be activated through the DI in any control mode.

Assign two external DIs with FunIN.18 and FunIN.19 respectively. After setting the jog speed through H06.04, switch on the S-ON signal to perform jog through the DI status.

☆ Related parameters:

Code	Parameter Name	Function Name	Description
FuelN 19	FunIN.18 JOGCMD+ Forward jog		Active: Input based on command
FUNIN.18	JOGCMD+	Forward jog	Inactive: Command input stopped
EvelN 10			Active: Input in reverse to the command
FunIN.19	JOGCMD-	Reverse jog	Inactive: Command input stopped

Jogging through the software tool

Enter the jog interface of the software tool first, and then set the jog speed through H06.04. After clicking the S-ON button in the interface, you can perform forward or reverse jog through the forward/ reverse button in the interface.

When you close the jog interface to exit from the jog mode, H06.04 returns to the default value, with previous setpoint abandoned.

CONTRACTOR OF STREET, ST.	InoDriverShop - [SV660P_1]速度JOG
通用 工程 SV660P_	
● ● 為停 取消急停 软件复位	
	空制 功能
工作区 平 ×	SV660P_1[1]参数列表 [] [SV660P_1]速度JOG ×
	轴选择: 独: ● 建度JOG JOG速度: 100 JOG速度: 500 nco加減速时損: 500 「周期OM/OFF: Off ◆ 长按正托 ◆ 长按匹托

10.5 Setting Parameters

Rotation direction selection

Set H02.02 to change the direction of rotation directly.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.02	2002-03h	Forward direction	0: Counterclockwise (CCW) as forward direction 1: Clockwise (CW) as forward direction	0	-	At stop	" H02_en.02" on page 393

The change of H02.02 does not affect the pulse output form or the sign (+/-) of monitoring parameter values.

The direction of "forward drive" in overtravel prevention is the same as that defined by H02.02.

Selection of output pulse phase

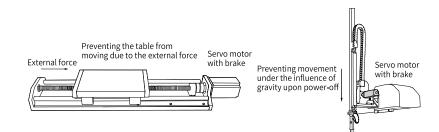
The output pulse of the servo drive is phase A + phase B quadrature pulse.

The relation between phase A and phase B pulses can be changed directly through H02.03.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.03	2002-04h	Output pulse phase	0: Phase A leads phase B 1: Phase A lags behind phase B	0	-	At stop	" H02_en.03" on page 394

The change of H02.02 does not affect the pulse output form or the sign (+/-) of monitoring parameter values.


The direction of "forward drive" in overtravel prevention is the same as that defined by H02.02.

Brake setting

The brake is used to prevent the motor shaft from moving and lock the position of the motor and the motion part when the drive is in the non-operational status.

- Use the built-in brake for position-lock purpose only. Do not use this brake for any other purposes (such as braking) other than position-lock in the stop state.
- The brake coil has no polarity.
- Switch off the S-ON signal after the motor stops.
- When the motor with brake runs, the brake may generate a click sound, which does not affect its function.
- When brake coils are energized (the brake is released), flux leakage may occur on the shaft end. Pay special attention when using magnetic sensors around the motor.

Figure 10-3 Application of the brake

Motor Model	Holding Torque (N∙m)	Supply Voltage (VDC) ±10%	Rated power (W)	Coil Resist ance (Ω)±7%	Exciting Current (A)	Release Time (ms)	Apply Time (ms)	Backlash (°)
MS1H1-05B/ 10B MS1H4-10B	0.32		6.1	94.4	0.25	≤ 20	≤ 40	≤ 1.5
MS1H1-20B/ 40B MS1H4-20B/ 40B	1.5		7.6	75.79	0.32	≤ 20	≤ 60	≤ 1.5
MS1H1-75B/ 10C MS1H4-75B/ 10C	3.2	24	10	57.6	0.42	≤ 40	≤ 60	≤1
MS1H2-10C/ 15C/20C/25C	8		17.6	32.73	0.73	≤ 40	≤ 100	≤1
MS1H2-30C/ 40C/50C	16		24	24	1	≤ 60	≤ 120	≤1
MS1H3-85B/ 13C/18C	16	5	24	24	1	≤ 60	≤ 120	≤1
MS1H3-29C/ 44C/55C/75C	50		31	18.58	1.29	≤ 100	≤ 200	≤1

Note

- Do not use a holding brake for braking.
- The release time and operation time of the brake depend on the discharge circuit. Be sure to confirm the operation delay of your equipment before use.
- You need to prepare the 24 VDC power supply yourself.
- Brake software setting

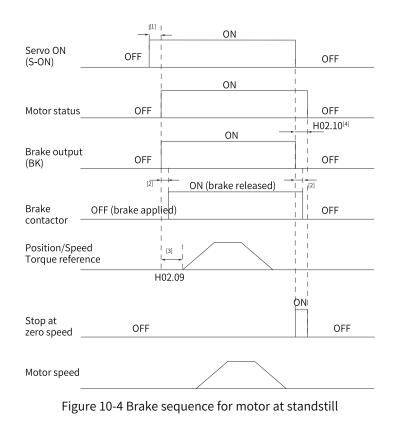
For the servo motor with brake, assign FunOUT.9 (BK, brake output) to a certain DO, and set the active logic of this DO.

☆ Related parameters:

Code	Parameter Name	Function Name	Function
FunOUT.9	ВК	Brake output	Inactive: The brake power supply is switched off and the brake applies. In this case, the motor is locked. Active: The brake power supply is switched on and the brake is released. In this case, the motor can rotate.

The operating sequences of the brake are different in the normal state and fault state.

Brake sequence in normal state


The brake sequence in the normal state is further divided into the following two types:

- Standstill: The actual motor speed is lower than 20 RPM.
- Rotating: The motor speed is equal to or higher than 20 RPM.
- Brake sequence for motor at standstill

If the servo enabling (S-ON) signal changes from ON to OFF, and the present motor speed is lower than 20 RPM, the servo drive acts according to the brake time sequence in the static state of the motor.

- After the brake output signal changes from "OFF" to "ON", do not input a position/speed/torque reference within the time defined by H02.09. Otherwise, reference loss or an operation error may occur.
- When the motor is used to drive a vertical axis, the motion part may move slightly under the influence of gravity or external force. If the S-ON signal is switched off, the brake output is set to "OFF" immediately when the motor is at standstill. However, within the time defined by H02.10, the motor is still energized, preventing the load from moving under the influence of gravity or external force.

Note

- [1]: When the S-ON signal is switched on, the brake output is set to "ON" at a delay of about 100 ms, with motor being energized at the same time.
- [2]: For delay of brake contactor actions, see "Table 10–2" on page 197.
- [3]: The interval time, starting from the moment when brake output is set to "ON" to the moment when a command is input, must be higher than the setpoint of H02.09.
- [4]: When the S-ON signal is switched off with motor at standstill (motor speed lower than 20 rpm), the brake output is set to "OFF". You can set in H02.10 the delay of the motor in entering the de-energized state after the brake output is set to "OFF".

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.09	2002-0Ah	Delay from brake output ON to command received	0ms to 500ms	250	ms	Real-time	" H02_en.09" on page 396
H02.10	2002-0Bh	Delay from brake output OFF to motor de- energized in the standstill state	1ms to 1000ms	150	ms	Real-time	" H02_en.10" on page 396

☆ Related parameters:

• Brake sequence for motor in the rotation state

If the S-ON signal changes from ON to OFF, and the present motor speed is equal to or higher than 20 RPM, the servo drive acts according to the brake time sequence in motor rotating state.

- When the S-ON signal is switched on, do not input a position/speed/torque reference within the time defined by H02.09. Otherwise, reference loss or an operation error may occur.
- If the S-ON signal is switched off when the motor is still rotating, the motor enters the "Stop at zero speed" state, but the brake output can be set to "OFF" only when one of the following conditions is met:
 - The motor has decelerated to the value defined by H02.11, but the time defined by H02.12 is not reached.
 - The time defined by H02.12 has been reached, but the motor speed is still higher than the value defined by H02.11.
- The motor is still energized within 50 ms after the brake output changes from "ON" to "OFF". This is to prevent the motion parts from moving under the influence of gravity or external force.

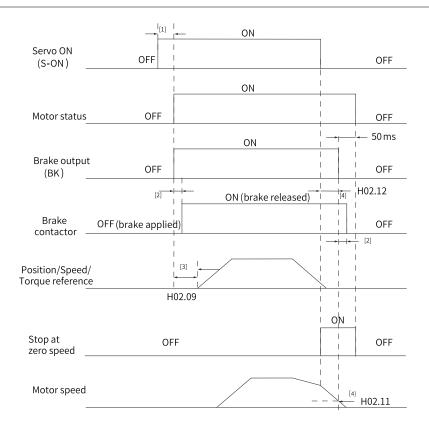


Figure 10-5 Brake sequence for a rotating motor

Note

- [1]: When the S-ON signal is switched on, the brake output is set to "ON" at a delay of about 100 ms, with motor being energized at the same time.
- [2]: For delay of brake contactor actions, see "Table 10–2" on page 197.
- [3]: The interval time, starting from the moment when brake output is set to "ON" to the moment when a command is input, must be higher than the setpoint of H02.09.
- [4]: You can set in H02.11 and H02.12 the delay in setting the brake output to "OFF" when the S-ON signal is switched off in the rotation state. The motor is de-energized at a delay of 50 ms after the brake output is set to "OFF".

 \cancel{a} Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.11	2002-0Ch	Motor speed threshold at brake output OFF in rotation state	0 RPM to 3000 RPM	30	RPM	Real-time	" H02_en.11" on page 396
H02.12	2002-0Dh	Delay from S-ON OFF to brake output OFF in rotation state	1ms to 1000ms	500	ms	Real-time	" H02_en.12" on page 396

• Brake sequence in the fault state

Servo drive faults can be classified into No. 1 faults and No. 2 faults based on the stop mode, see Chapter "Troubleshooting" for details. The brake sequences in the fault state are further divided into the following two types:

In case of No. 1 faults:

The conditions for brake output is the same as the brake time sequence for the motor in rotational state. Which is to say: The brake output can be set to "OFF" only when any one of the following conditions is met:

- The motor has decelerated to the value defined by H02.11, but the time defined by H02.12 is not reached.
- The time defined by H02.12 has been reached, but the motor speed is still higher than the value defined by H02.11.
- In case of No. 2 faults:

When a No. 2 fault occurs and the brake is enabled, the stop mode is forced to "Stop at zero speed, keeping dynamic braking status".

In this case, the servo motor stops at zero speed first. When the motor speed actual value is lower than 20 RPM, the brake output changes to "OFF" immediately but the motor is still energized within the time defined by H02.10, which is the same as the brake time sequence for the motor at standstill.

Braking settings

When the motor torque direction is opposite to the direction of rotation, the energy is fed back to the servo drive from the motor side, leading to bus voltage rise. Once the bus voltage rises to the braking threshold, the excessive energy must be consumed by a regenerative resistor. Otherwise, the servo drive will be damaged. The regenerative resistor can be a built-in or an external one. The internal and built-in regenerative resistors must not be used together. Specifications of the regenerative resistor are as follows.

	Specificatio	ns of Built-in Regenera	tive Resistor	External regenerative
Servo Drive Model	Resistance (Ω) Power (Pr) (W) Processing Power (Pa) (W)		resistor Min. Allowable Resistance (Ω) (H02.21)	
SV630PS1R6I	-	-	-	50
SV630PS2R8I	-	-	-	45
SV630PS5R5I	50	50	25	40
SV630PS7R6I	25	80	40	20
SV630PS012I	25	80	40	15
SV630PT3R5I	100	80 40		80
SV630PT5R4I	100	80	40	60
SV630PT8R4I	50	80	40	45
SV630PT012I	50	00	40	40
SV630PT017I				35
SV630PT021I	35	100	50	25
SV630PT026I				23

Table 10–3 Specifications of the regenerative resistor

Note

The built-in regenerative resistor is not available in S2R8 models. For these models, you can install an external regenerative resistor as needed.

• Without external load torque

The kinetic energy generated upon braking of a reciprocating motor is converted into electric energy that fed back to the bus capacitor. When the bus voltage rises above the braking voltage threshold, the regenerative resistor starts consuming the excessive energy fed back by the motor. The following figure shows the motor speed curve in no-load operation from 3000 rpm to a standstill.

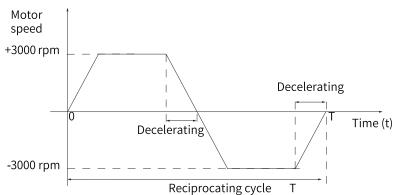


Figure 10-6 Example of motor speed curve (without external load torque)

• Energy calculation

The built-in braking resistor is not available in SV630PS1R6I and SV630PS2R8I models. For the energy that can be charged by a capacitor, see *"8.6 Wiring and Setting of the Regenerative Resistor" on page 172*. An external regenerative resistor is needed when the rotational energy of the motor and the load exceeds the values listed in the following table.

Drive Model	Regenerative Energy Can Be Absorbed	Remarks
SV630PS1R6I	13.15	The input voltage of the main circuit
SV630PS2R8I	26.29	power supply is 220 VAC.

• The following table shows the energy generated by a 220 V motor in decelerating from the rated speed to a standstill during no-load operation.

Capacity (kW)	Servo Motor Model MS1H*-******-	Rotor Inertia J (10 ⁻⁴ kgm ²)	EO Generated During Decelerating from Rated Speed to a Standstill (J)	Max. Braking Energy Absorbed by Capacitor E c (J)
	MS1H1-05B30CB-T330Z	0.026	0.13	
0.05	MS1H1-05B30CB-T332Z	(0.028)	(0.14)	
	MS1H1-10B30CB-T330Z	0.041	0.20	
0.1	MS1H1-10B30CB-T332Z	(0.043)	(0.21)	7.86
	MS1H1-20B30CB-T331R	0.0938	0.46	
0.2	MS1H1-20B30CB-T334R	(0.106)	(0.52)	
	MS1H1-40B30CB-T331R	0.145	0.72	
0.4	MS1H1-40B30CB-T334R	(0.157)	(0.78)	15.72
0.55	MS1H1-55B30CB-T331R	0.55	2.72	22.39
	MS1H1-75B30CB-T331R	0.68	3.36	
0.75	MS1H1-75B30CB-T334R	(0.71)	(3.51)	22.39
	MS1H1-10C30CB-T331R	0.82	4.05	
1	MS1H1-10C30CB-T334R	(0.87)	(4.30)	32.39
_	MS1H2-10C30CB-T331R	1.78	8.80	
1	MS1H2-10C30CB-T334R	(2.6)	(12.86)	32.39
	MS1H2-15C30CB-T331R	2.35	11.6	
1.5	MS1H2-15C30CB-T334R	(3.17)	(15.68)	32.39
	MS1H2-20C30CB-T331R	2.92	14.44	
2.0	MS1H2-20C30CB-T334R	(3.74)	(18.49)	32.39
	MS1H3-85B15CB-T331R	13.56	16.45	
0.85	MS1H3-85B15CB-T334R	(15.8)	(17.3)	32.39
	MS1H3-13C15CB-T331R	19.25	22	
1.3	MS1H3-13C15CB-T334R	(21.5)	(22.86)	32.39
	MS1H4-10B30CB-T330Z	0.102	0.50	
0.1	MS1H4-10B30CB-T332Z	(0.104)	(0.51)	7.86
	MS1H4-20B30CB-T331R	0.22	1.09	
0.2	MS1H4-20B30CB-T334R	(0.23)	(1.14)	7.86
	MS1H4-40B30CB-T331R	0.43	2.13	
0.4	MS1H4-40B30CB-T334R	(0.44)	(2.18)	15.72
0.55	MS1H4-55B30CB-T331R	1.12	5.54	22.39

Capacity (kW)	Servo Motor Model MS1H*-******	Rotor Inertia J (10 ⁻⁴ kgm ²)	EO Generated During Decelerating from Rated Speed to a Standstill (J)	Max. Braking Energy Absorbed by Capacitor E _C (J)	
0.75	MS1H4-75B30CB-T331R	1.46	7.22	22.20	
0.75	MS1H4-75B30CB-T334R	(1.51)	(7.47)	22.39	
1.0	MS1H4-10C30CB-T331R	1.87	9.25		
1.0	MS1H4-10C30CB-T334R	(1.97)	(9.74)	32.39	

• The following table shows the energy generated by a 380V motor in decelerating from the rated speed to a standstill during no-load operation.

– Capacity (kW)	Servo Motor Model MS1H*-******-*	Rotor Inertia J (10 ⁻⁴ kgm ²)	Braking Energy E _O Generated During Decelerating from Rated Speed to a Standstill (J)	Max. Braking Energy Absorbed by Capacitor E _C (J)
	MS1H2-10C30CD-T331R	1.78	8.8	
1.0	MS1H2-10C30CD-T334R	(2.6)	(12.86)	28.18
	MS1H2-15C30CD-T331R	2.35	11.62	
1.5	MS1H2-15C30CD-T334R	(3.17)	(15.68)	34.22
	MS1H2-20C30CD-T331R	2.92	14.44	
2.0	MS1H2-20C30CD-T334R	(3.74)	(18.49)	50.32
	MS1H2-25C30CD-T331R	3.49	17.26	
2.5	MS1H2-25C30CD-T334R	(4.3)	(21.26)	50.32
	MS1H2-30C30CD-T331R	6.4	31.65	
3.0	MS1H2-30C30CD-T334R	(9.38)	(46.38)	50.32
	MS1H2-40C30CD-T331R	9	44.51	
4.0	MS1H2-40C30CD-T334R	(11.98)	(59.24)	82.53
	MS1H2-50C30CD-T331R	11.6	57.36	
5.0	MS1H2-50C30CD-T334R	(14.58)	(72.10)	100.64
	MS1H3-85B15CD-T331R	13.56	16.76	
0.85	MS1H3-85B15CD-T334R	(15.8)	(19.53)	28.18
	MS1H3-13C15CD-T331R	19.25	23.8	
1.3	MS1H3-13C15CD-T334R	(21.5)	(26.58)	34.22
	MS1H3-18C15CD-T331R	24.9	30.78	
1.8	MS1H3-18C15CD-T334R	(27.2)	(33.63)	50.32
	MS1H3-29C15CD-T331R	44.7	55.26	
2.9	MS1H3-29C15CD-T334R	(52.35)	(64.72)	50.32
	MS1H3-44C15CD-T331R	64.9	80.23	00 -5
4.4	MS1H3-44C15CD-T334R	(72.55)	(89.69)	82.53
	MS1H3-55C15CD-T331R	86.9	107.43	100.04
5.5	MS1H3-55C15CD-T334R	(94.55)	(116.89)	100.64
7.5	MS1H3-75C15CD-T331R	127.5	157.62	100.04
7.5	MS1H3-75C15CD-T334R	(135.15)	(167.08)	100.64

Note

Values inside the parentheses "()" are for the motor with a brake.

Note

If the total braking time T is known, you can determine whether an external regenerative resistor is needed and the power required using the following flowchart and formula.

Regenerative resistor selection

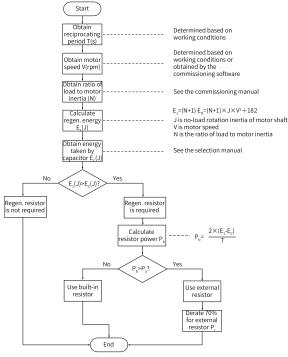


Figure 10-7 Flowchart for selecting the regenerative resistor

Note

- Take the process in which the motor decelerates from 3000 RPM to 0 RPM as an example. Assume that the load inertia is (N x Motor inertia), then the braking energy is (N + 1) x E₀ when the motor decelerates from 3000 RPM to 0 RPM. The energy consumed by the braking resistor is (N + 1) x E₀ E_c (E_c represents the energy absorbed by the capacitor). Suppose the reciprocating cycle is T, then the power of the regenerative resistor needed is 2 x [(N + 1) x E₀ E_c]/T. for the E₀ and E_c values of a specific motor, see the Braking Energy Data in "*Braking settings*" on page 201.
- Determine whether to use the regenerative resistor according to the preceding figure and select a built-in or an external regenerative resistor as needed. Then, set H02.25 accordingly.
- The resistor with aluminum case is recommended.

 \And Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.25	2002-1Ah	Regenerative resistor type	0: Built-in 1: External, natural ventilated 2: External, forced air cooling 3: Not needed	0	-	At stop	" H02_en.25" on page 399

Take the H1 series 750 W model as an example. Assume that the reciprocating cycle (T) is 2s, the maximum speed is 3000 RPM, and the load inertia is (4 x Motor inertia), then the required power of the braking resistor is as follows:

$$P_{b} = \frac{2 \times [(N+1) \times E_{o} - E_{c}]}{T} = \frac{2 \times [(4+1) \times 6.8 - 22.4]}{2} = 11.6W$$

The calculated result is smaller than the processing capacity (Pa = 40 W) of the built-in regenerative resistor, so a built-in regenerative resistor is enough.

If the inertia ratio in the preceding example is changed to 10 x motor inertia, and other conditions remain the same, the power of the regenerative resistor required will be as follows:

$$P_{b} = \frac{2 \times [(N+1) \times E_{0} - E_{c}]}{T} = \frac{2 \times [(10+1) \times 6.8 - 22.4]}{2} = 52.4W$$

The calculated result is larger than the processing capacity (Pa = 40 W) of the built-in regenerative resistor, so an external regenerative resistor is needed. so an external braking resistor is required. The recommended power of the external regenerative resistor is Pb/(1 - 70%) = 174.67W.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.21	2002-16h	Min. permissible resistance of braking resistor	0Ω to 65535Ω	40	Ω	Unchangea ble	" H02_en.21" on page 398
H02.24	2002-19h	Resistor heat dissipation coefficient	10 to 100	30	-	At stop	" H02_en.24" on page 399
H02.25	2002-1Ah	Regenerative resistor type	0: Built-in 1: External, natural ventilated 2: External, forced air cooling 3: Not needed	0	-	At stop	" H02_en.25" on page 399
H02.26	2002-1Bh	Power of external braking resistor	1W to 65535W	40	W	At stop	" H02_en.26" on page 400
H02.27	2002-1Ch	Resistance of external regenerative resistor	1Ω to 1000Ω	50	Ω	At stop	" H02_en.27" on page 400

☆ Related parameters:

• Using an external regenerative resistor

When P_b is greater than P_a , use an external braking resistor. Set H02.25 to 1 or 2 based on the cooling mode of the braking resistor.

Use the external regenerative resistor with 70% derated, that is, $P_r = P_b/(1 - 70\%)$, and ensure the resistance of the regenerative resistor is higher than the minimum permissible resistance allowed

by the servo drive. Remove the jumper bar between terminals $P \oplus$ and D, and connect the external regenerative resistor between terminals $P \oplus$ and C.

For the wiring diagram and lead wire specifications of the external regenerative resistor, see "8.6 *Wiring and Setting of the Regenerative Resistor" on page 172.* Set H02.25 to 1 or 2 based on the cooling mode of the braking resistor.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.21	2002-16h	Min. permissible resistance of braking resistor	0Ω to 65535Ω	40	Ω	Unchangea ble	" H02_en.21" on page 398
H02.26	2002-1Bh	Power of external braking resistor	1W to 65535W	40	W	At stop	" H02_en.26" on page 400
H02.27	2002-1Ch	Resistance of external regenerative resistor	1Ω to 1000Ω	50	Ω	At stop	" H02_en.27" on page 400

☆ Related parameters:

- Set the power (H02.26) and resistance (H02.27) of the external regenerative resistor.
- Ensure the resistance of the external regenerative resistor is higher than or equal to the permissible minimum resistance.
- When the regenerative resistor is used at its rated power rather than the processing power (average value) in environments within the specified temperature range, the temperature of the resistor will rise to above 120°C under continuous braking. To ensure safety, cool the resistor down through forced air cooling, or use the resistor with thermal switch. For the load characteristics of the regenerative resistor, consult with the manufacturer.

Set the heat dissipation coefficient based on the heat dissipation condition of the external regenerative resistor.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.24	2002-19h	Resistor heat dissipation coefficient	10 to 100	30	-	At stop	" H02_en.24" on page 399

Note

Higher resistor heat dissipation coefficient indicates higher braking efficiency.

Using the built-in braking resistor

When $P_b < P_a$ and $E_1 > E_c$, use the built-in regenerative resistor. In this case, set H02.25 to 0.

When using the built-in regenerative resistor, connect terminals $\mathsf{P}\oplus$ and D with a jumper bar.

• Regenerative resistor not needed

When $E_1 < E_c$, the regenerative resistor is not needed because the braking energy can be absorbed by the bus capacitor. In this case, set H02.25 to 3.

External load torque applied, motor in generating state

When the motor direction of rotation is the same with the shaft direction of rotation, the motor outputs energy to the outside. In some applications where the motor direction of rotation is opposite to the shaft direction of rotation, the motor is in the generating state and feeds the electric energy back to the servo drive.

When the load is in the generating state continuously, it is recommended to adopt the common DC bus mode.

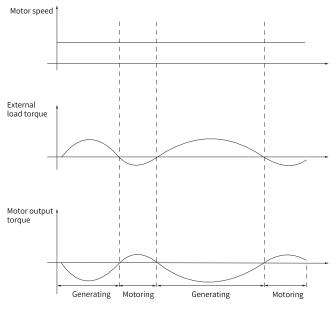


Figure 10-8 Example of the curve with external load torque

Take H1 series 0.75kW models (rated torque: 2.39 N · m) as an example. When the external load torque is 60% of the rated torque and the motor speed reaches 1500 rpm, the power fed back to the drive is (60% x 2.39) x (1500 x $2\pi/60$) = 225 W. As the regenerative resistor needs to be derated by 70%, the power of the external regenerative resistor is 225/(1 - 70%) = 0.75kW, with resistance being 50 Ω .

10.6 Trial Run

Switch on the S-ON signal.

When the servo drive is ready to run, the keypad displays "Run". If there is no reference input at this moment, the servo motor does not rotate and stays locked. After a reference is input, the motor starts rotating.

Log	No.	Description
	1	During initial operation, set a proper command to make the motor run at low speed and check whether the motor rotates properly.
	2	Observe whether the motor rotating direction is correct. If the direction of rotation is opposite to the expected direction, check the reference signal input and the reference direction setting signal.

Log	No.	Description
	3	If the motor rotates in the correct direction, you can view the actual speed in H0b.00 and the average load rate in H0b.12 through the keypad or the software tool.
	4	After checking preceding conditions, adjust related parameters to make the motor operate as desired.
	5	Adjust the drive according to section "Adjustment".

Power-on sequence diagram

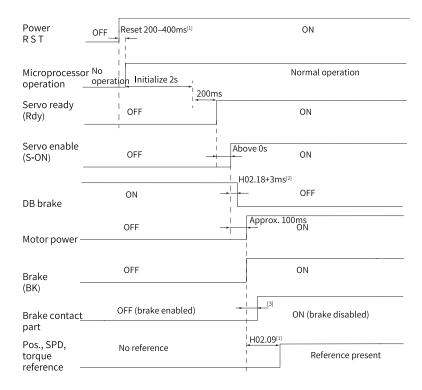


Figure 10-9 Power-on sequence diagram

Note

- [1] The reset time is determined by the setup time of the +5V power supply of the microprocessor.
- [2] The dynamic brake is included in the standard configuration.
- [3] For the delay of brake contactor actions, see for details. "Table 10–2" on page 197
- [4] When FunOUT.9 (BK, brake output) is not used, H02.09 is invalid.

Sequence diagram for stop at warning or fault

• No. 1 fault: Coast to stop, keeping de-energized status

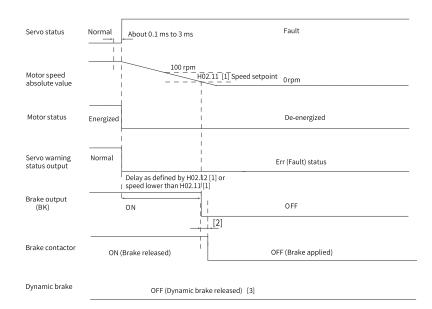


Figure 10-10 Sequence of "Coast to stop, keeping de-energized state" at No. 1 fault

Note

- [1] When FunOUT.9 (BK, brake output) is not used, H02.11 and H02.12 are invalid.
- [2] For the delay of brake contactor actions, see for details. *"Table 10–2" on page 197*
- [3] The dynamic brake is included in the standard configuration.
- No. 1 fault: Dynamic braking stop, keeping de-energized state

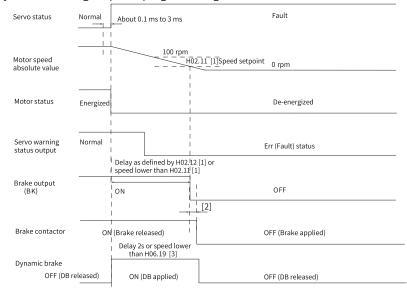


Figure 10-11 Sequence of "Dynamic braking stop, keeping de-energized state" at No. 1 fault

Note

- [1] When FunOUT.9 (BK, brake output) is not used, H02.11 and H02.12 are invalid.
- [2] For the delay of brake contactor actions, see for details. "Table 10-2" on page 197
- [3] The dynamic brake is included in the standard configuration.
- No. 1 fault: Dynamic braking stop, keeping dynamic braking state

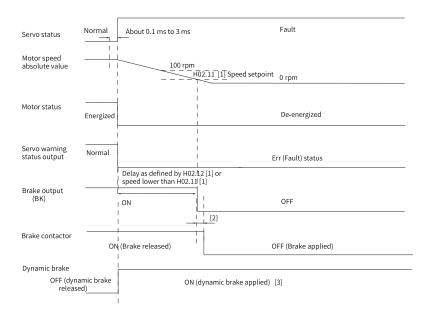


Figure 10-12 Sequence of "Dynamic braking stop, keeping dynamic braking state" at No. 1 fault

Note

- [1] When FunOUT.9 (BK, brake output) is not used, H02.11 and H02.12 are invalid.
- [2] For the delay of brake contactor actions, see for details. *"Table 10–2" on page 197*
- [3] The dynamic brake is included in the standard configuration.
- No. 2 fault (without brake): Coast to stop, keeping de-energized state

Servo status	Normal About 0.1 ms to 3 ms	Fault	
Motor speed absolute value		0 rpm	
Motor status	Energized	De-energized	
Servo warning status output	Normal status	Err (fault) status	
Dynamic brake		OFF	

Figure 10-13 Sequence of "Coast to stop, keeping de-energized state" at No. 2 fault

• No. 2 fault (without brake): Stop at zero speed, keeping de-energized status

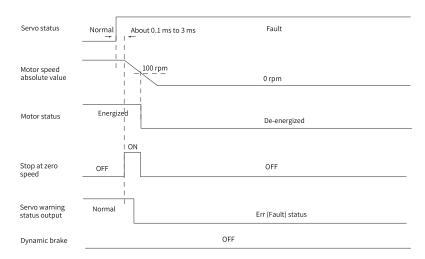


Figure 10-14 Sequence of "Stop at zero speed, keeping de-energized state" at No. 2 fault (without brake)

• No. 2 fault (without brake): Stop at zero speed, keeping dynamic braking state

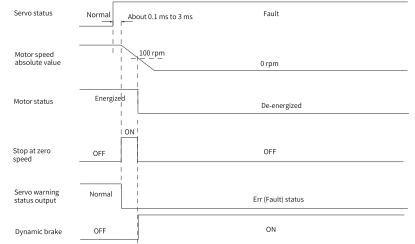


Figure 10-15 Sequence of "Stop at zero speed, keeping dynamic braking state" at No. 2 fault (without brake)

• No. 2 fault (without brake): Dynamic braking stop, keeping dynamic braking state

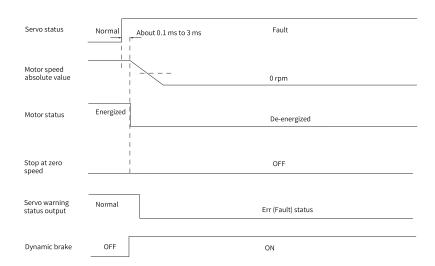


Figure 10-16 Sequence of "Dynamic braking stop, keeping dynamic braking state" at No. 2 fault (without brake)

• No. 2 fault (without brake): Dynamic braking stop, keeping de-energized state

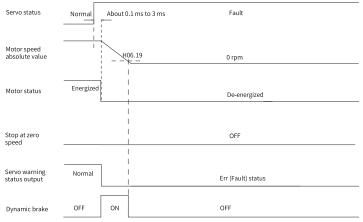


Figure 10-17 Sequence of "Dynamic braking stop, keeping de-energized state" at No. 2 fault (without brake)

• No. 2 fault (with brake): Stop at zero speed, keeping dynamic braking status

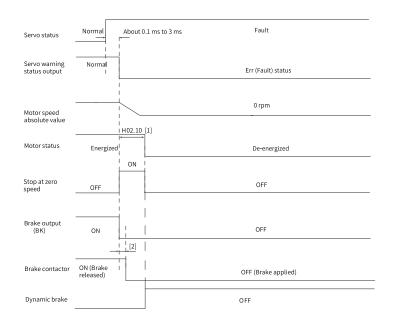


Figure 10-18 Sequence of "Stop at zero speed, keeping dynamic braking state" at No. 2 fault (with brake)

Note

- [1] When FunOUT.9 (BK, brake output) is not used, H02.10 is invalid.
- [2] For the delay of brake contactor actions, see for details. *"Table 10–2" on page 197*
- When a No. 3 warning occurs on the servo drive, such as E900.0 (DI emergency braking), E950.0 (Positive limit switch warning), and E952.0 (Negative limit switch warning), the servo drive stops according to *"Figure 10–19 Sequence for warnings that cause stop" on page 215.*
- Warnings that cause stop: Stop at zero speed, keeping position lock status

Servo status	Normal Abc	ut 0.1 ms to 3 ms	Warning		oout 0.1 3 ms	ms Normal
Motor speed absolute value	 	_100 rpm	0 rpm			
Stop at zero speed	OFF			OFF	 	
Position lock status	OFF		ON			OFF
Motor status			Energized	l	 	
Servo warning status output	Normal		Warning			Normal
Brake output (BK)			ON			
Brake contactor			ON (brake re	leased)		
Dynamic brake			OFF			

Figure 10-19 Sequence for warnings that cause stop

The other warnings do not affect the operation state of the drive. The sequence diagram for these warnings is shown in *"Figure 10–20 Sequence for warnings that do not cause stop" on page 215.*

• Warnings that do not cause stop

Normal	Warning	Normal
	Speed unchanged	
	Energized	
About 0,1 ms to 3 m	s	About 0.1 ms to 3 ms
Normal	Warning	l Normal
	ON	
	ON	
	ON (Brake released)	
	OFF	
	About 0,1 ms to 3 m	About 0,1 ms to 3 ms

Figure 10-20 Sequence for warnings that do not cause stop

• Fault reset

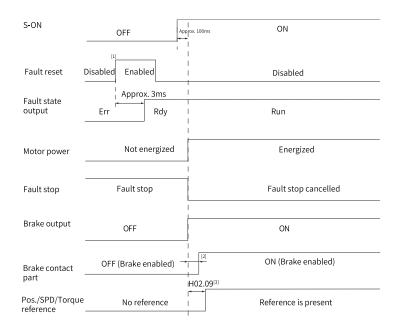


Figure 10-21 Sequence for fault reset

Note

- [1] The DI signal used for fault reset (FunIN.2: ALM-RST) is edge triggered.
- [2] For the delay of brake contactor actions, see for details. "Table 10–2" on page 197
- [3] When FunOUT.9 (BK, brake output) is not used, H02.09 is invalid.

10.7 Servo OFF

There are three type of stops modes: coast to stop, stop at zero speed, and dynamic braking stop, along with three stop status: de-energized, dynamic braking, and position lock. The stop state is classified into the de-energized state, dynamic Braking state and the position lock state. See the following table for details.

Stop Mode	Coast to stop	Stop at zero speed	Dynamic braking stop
Description	The motor is de-energized and coasts to 0 RPM. The deceleration time is affected by the mechanical inertia and mechanical friction.	The servo drive outputs the reverse braking torque and the motor decelerates to 0 RPM quickly.	The three motor phases are short-circuited and the motor decelerates to 0 RPM under the influence of back EMF.
Features	Smooth and slow deceleration with small mechanical shock.	Quick deceleration with obvious mechanical shock.	Quick stop, with deceleration speed between coast to stop and stop at zero speed.

Table 10–4 Comparison of three stop modes

De-energized	Position Lock	Dynamic Braking
motor shaft can be rotated freely	The motor shaft is locked and cannot be rotated freely after the motor stops rotating.	The motor shaft is braked after the motor stops rotating. The shaft can be rotated slowly under a large external force.

The stop causes can be divided into the following types: stop at S-ON OFF, stop at fault, stop at overtravel, and emergency stop. See the following descriptions for details.

Stop at S-ON OFF

Assign the S-ON function to a certain DI and deactivate the logic of this DI.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.05	2002-06h	Stop mode at S- OFF	 0: Coast to stop, keeping de- energized state 1: Stop at zero speed, keeping de- energized state 2: Stop at zero speed, keeping dynamic braking state 3: Dynamic braking stop, keeping dynamic braking state 	0	-	At stop	" H02_en.05" on page 394

Fault reaction

The stop mode varies according to the fault type. For fault classification, see section Fault Handling.

Param.	Hex	Name	Value Defa		Unit	Change Mode	Page
H02.06	2002-07h	Stop mode at No.2 fault	0: Coast to stop, keeping de- energized state 1: Stop at zero speed, keeping de- energized state 2: Stop at zero speed, keeping dynamic braking state 3: Dynamic braking stop, keeping DB state 4: DB stops, keeping operation state		-	At stop	" H02_en.06" on page 395
H02.08	2002-09h	Stop mode at No.1 fault	0: Coast to stop, keeping de- energized state1: DB stop, keeping de-energized state2: DB stop, keeping DB state	2	-	At stop	" H02_en.08" on page 395

\Rightarrow Related parameters:

Note

When the brake is enabled, the following parameters are set forcibly:

- H02.05 = 2: Stop at zero speed, keeping dynamic braking state
- H02.06 = 2: Stop at zero speed, keeping dynamic braking state
- H02.07 = 1: Stop at zero speed, keeping position locking state
- H02.08=2: Dynamic braking stop, keeping de-energized state

Stop at overtravel

- \star Definition of terms:
- "Overtravel": The mechanical motion exceeds the designed range of safe movement.
- Stop at overtravel: When a motion part moves beyond the range of safe movement, the limit switch outputs a level change signal, and the servo drive forcibly stops the motor.
- ☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.07	2002-08h	Stop mode at overtravel	0: Coast to stop, keeping de- energized state 1: Stop at zero speed, keeping position lock state 2: Stop at zero speed, keeping de- energized state	1	-	At stop	" H02_en.07" on page 395

When overtravel occurs on a motor used to drive a vertical axis, the workpiece may fall. To prevent the risk of falling, set H02.07 (Stop mode at overtravel) to 1. When the workpiece moves linearly, install the limit switch to prevent mechanical damage. When overtravel occurs, input a reverse running command to make the motor (workpiece) run in the opposite direction.

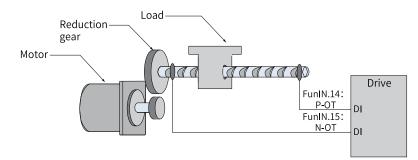


Figure 10-22 Installation of limit switches

To use the limit switches, assign FunIN.14 (P-OT, positive limit switch) and FunIN.15 (N-OT, negative limit switch) to two DIs of the servo drive and set the active logic of these DIs. This is to enable the servo drive to receive the level signals input from the limit switches. The servo drive determines whether to enable the limit switch function based on the state of the DI terminal level.

Code	Parameter Name	Function Name	Function
FunIN.14	P-OT	Positive limit switch	When the machine moves beyond the specified range, overtravel prevention applies. Inactive: Forward drive permitted Active: Forward drive inhibited
FunIN.15	N-OT	Negative limit switch	When the machine moves beyond the specified range, overtravel prevention applies. Inactive: Reverse drive permitted Active: Reverse drive inhibited

☆ Related parameters:

Emergency stop

The servo drive supports two emergency stop modes:

- Using DI function 34: FunIN.34 (EmergencyStop)
- Using the auxiliary function: emergency stop (H0d.05)

 \precsim Related parameters:

Code	Parameter Name	Function Name	Function
FunIN.34	Emergency- Stop	Braking	Inactive: Current operating state unaffected Active: Stop quickly as defined by H02.18, keeping position lock status, with E900.0 (DI emergency braking) reported.

$\stackrel{\text{\tiny theta}}{\sim}$ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0d.05	200d-06h	Emergency stop	0: No operation 1: Emergency stop	0	-	Real-time	" H0d_en.05" on page 507

11 Adjustment

11.1 Overview

The servo drive must drive the motor as quick and accurate as possible to follow the commands from the host controller or internal setting. Gain adjustment needs to be performed to meet such requirement.

Figure 11-1 Example of gain tuning Position loop gain: 40.0 Hz Position loop gain: 200.0Hz Position loop gain: 200.0Hz Speed loop gain: 200.0 Hz Speed loop gain: 25.0Hz Speed loop gain: 25.0Hz Speed loop integral time constant: Speed loop integral time constant: Speed loop integral time constant: 100.00 ms 50.00ms 50.00ms Speed feedforward gain: 0 Speed feedforward gain: 50.0% Speed feedforward gain: 0 Load inertia ratio: 30 Load inertia ratio: 30 Load inertia ratio: 30

The gain is defined by a combination of multiple parameters that affect each other. Such parameters include the position loop gain, speed loop gain, filter and load moment of inertia ratio. The values of these parameters must be balanced against each other during gain tuning.

Note

Before gain tuning, perform a trial run through jogging to ensure the motor operates properly.

The following figure shows the general flowchart for gain tuning.

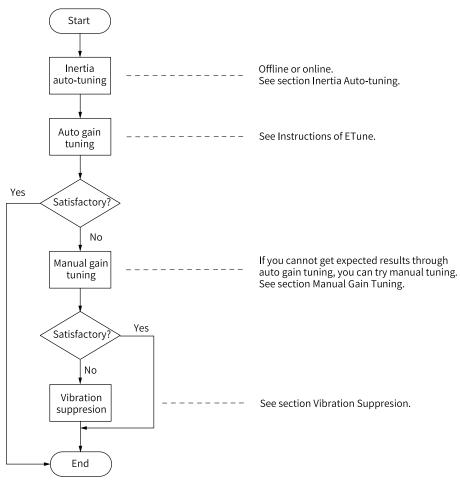


Figure 11-2 Steps

	Steps		Function	Reference
1	Inertia	Offline	The servo drive calculates the load inertia ratio automatically through inertia auto-tuning.	<i>"11.2.1 Offline Inertia Identification" on page 223</i>
	Identification	Online	The host controller sends a command to make the motor rotate, and the servo drive calculates the load inertia ratio in real time.	<i>"11.2.2 Online Inertia Auto- tuning" on page 225</i>
2	Auto Gai	n Tuning	The servo drive generates a group of gain parameters based on the correct inertia ratio.	"11.3.1 ETune" on page 227and "11.3.2 STune" on page 232

	Steps		Function	Reference
		Basic gains	If the auto-tuned gain values fail to deliver desired performance, fine-tune the gains manually to improve the performance.	"11.4.1 Basic Parameters" on page 236
3		Reference filter	Smoothens the position, speed, and torque references.	"11.4.3 Comparison of Filters" on page 244
	Manual Gain Tuning	Feedforward gain	Improves the follow-up behavior.	"11.4.4 Feedforward gain" on page 244
		Pseudo differential regulator	Adjusts the speed loop control mode to improve the anti-interference capability at low frequency range.	"11.4.5 PDFF Control" on page 246
		Torque disturbance observer	Improves the resistance against torque disturbance.	"11.4.6 Torque disturbance observer" on page 247
	4 Vibration 4 suppression	Mechanical resonance	Suppresses mechanical resonance through the notch.	<i>"11.6.1 Mechanical Resonance Suppression" on page 258</i>
4		Low-frequency resonance	Activate the filter used to suppress low- frequency resonance.	<i>"11.6.2 Low- Frequency Resonance Suppression at the Mechanical End" on page 262</i>

11.2 Inertia Identification

The load inertia ratio (H08.15) is calculated through the following formula:

Load inertia ratio = Total mechnical load moment of inertia Motor moment of inertia

The inertia ratio is an important parameter of the servo system, and quick commissioning can be implemented with the correct setting of this parameter.

You can set the load inertia ratio manually or get the inertia ratio through inertia auto-tuning.

The following two inertia auto-tuning modes are available:

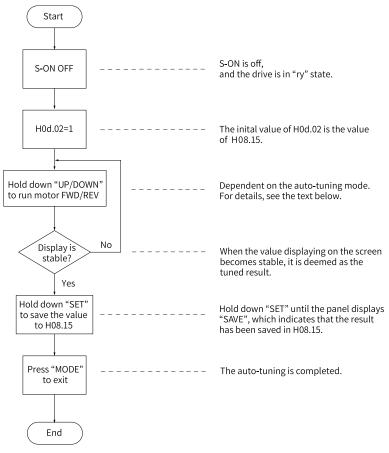
- Offline Inertia Identification To enable offline inertia auto-tuning, use H0d.02 (Offline inertia auto-tuning) and make the motor rotate and execute inertia auto-tuning through the keypad. Offline inertia auto-tuning does not involve the host controller.
- Online Inertia Auto-tuning Send a command to the servo drive through the host controller to make motor act accordingly to finish inertia auto-tuning. Online inertia auto-tuning involves the host controller.

Note

- The following requirements must be met to ensure correct calculation of the inertia ratio:
 - The actual maximum speed of the motor is higher than 150 rpm.
 - The acceleration rate during acceleration/deceleration of the motor is higher than 3000 rpm/s.
 - The load torque is stable without dramatic changes.
 - The actual inertia ratio does not exceed 120.
- If the actual inertia ratio is large but the gain is low, the motor may not be able to meet the maximum speed and acceleration requirements as motor actions will be slowed down. In this case, increase the speed loop gain (H08.00) and perform auto-tuning again.
- If vibration occurs during auto-tuning, stop inertia auto-tuning immediately and decrease the gains.
- Inertia auto-tuning may fail in case of a large backlash of the transmission mechanism.

11.2.1 Offline Inertia Identification

The following two methods for offline inertia auto-tuning are available: Method 1: H09.05 = 0 or 1: The setpoint of H08.15 is taken as the initial inertia ratio for inertia auto-tuning. Method 2: H09.05 = 2 or 3: No initial inertia ratio is required for inertia auto-tuning.


Method 1

Set H09.05 (Offline inertia auto-tuning mode) to 0 or 1, switch to "H0d.02" in the parameter display mode, and press the SET key to enable offline inertia auto-tuning.

Check the following before performing offline inertia auto-tuning:

- The motor must meet the following requirements:
 - A travel distance of more than one revolutions in the forward/reverse direction is available between the mechanical limit switches.
 Ensure limit switches are installed to the machine and a travel distance as described above is reserved to prevent overtravel during inertia auto-tuning.
 - The required number of revolutions (H09.09) is fulfilled.
 View the values of H09.06 (Maximum speed of inertia auto-tuning), H09.07 (Time constant for accelerating to the maximum speed during inertia auto-tuning), and H09.09 (Number of revolutions per inertia auto-tuning) to ensure the travel distance that starts from the stop position is larger than the value of H09.09. Otherwise, decrease the value of H09.06 or H09.07 until this requirement is met.
- Estimate the value of H08.15 (Load rotational inertia ratio). If the default value of H08.15 (1.00) is used but the actual inertia ratio is 30.00, the motor may run very slowly, resulting in auto-tuning failure. To solve this problem, take the following measures:
 - Set H08.15 to a large value first.
 It is recommended to set H08-15 to a large value first, such as 5.00. Then increase the value of H08-15 gradually until the display value on the keypad changes with it.
 - Increase the stiffness level (H09.01) properly so that the actual motor speed can reach H09.06 (Maximum speed of inertia auto-tuning).

The following figure shows general flowchart for offline inertia auto-tuning.

Offline inertia auto-tuning is divided into two modes: positive/negative triangle wave mode and jog mode. The command forms for these two modes are different, as shown below.

Item	Positive and Negative Triangular Wave Mode (H09.05 = 0)	Jog mode (H09.05 = 1)
Command form	Symmetric triangle wave Spead (rpm) Max. Spead H09:06 Motor revolutions for a complete inertia auto-turing H09:06 Motor revolutions for a complete inertia auto-turing H09:06 Motor Revolutions Stop at zero speed, keeping position lock status	Portational speed (rpm) Maximum speed H09.06
Max. speed	H09.06	H09.06
Acceleration/ Deceleration time Time	H09.07	H09.07

Table 11–2 Descriptions of two offline inertia auto-tuning modes

Item	Positive and Negative Triangular Wave Mode (H09.05 = 0)	Jog mode (H09.05 = 1)
	UP key held down: The motor rotates forwardly and then reversely.	UP key pressed: The motor rotates forwardly.
Key description	DOWN key held down: The motor rotates reversely and then forwardly.	DOWN key pressed: The motor rotates reversely.
	UP/DOWN key released: The motor stops at zero speed, keeping position lock state.	UP/DOWN key released: The motor stops at zero speed, keeping position lock state.
Time interval	H09.08	Interval between two key operations
Motor revolutions	≤ H09.09	Controlled manually
Applicable Occasion	Applications where the motor travel is short	Applications where the motor travel is long and manual control is allowed

Method 2:

Set H9.05 to 2 or 3 and perform inertia auto-tuning based on the same flowchart for Method 1. To make the motor stop at zero speed, release the UP/DOWN key. Pressing the UP/DOWN key again starts a new inertia auto-tuning. The initial direction of operation is determined by the UP/DOWN key. For applications allowing unidirectional operations only, set H09-05 to 3. The running direction at start is determined by the UP/DOWN key. For applications requiring unidirectional movement, set H09.05 to 3.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.05	2009-06h	Offline inertia auto-tuning mode	 0: Positive/Negative triangular wave mode 1: JOG mode 2: Bidirectional auto-tuning mode 3: Unidirectional auto-tuning mode 	0	-	At stop	" H09_en.05" on page 469
H09.06	2009-07h	Max. speed of inertia auto-tuning	100 RPM to 1000 RPM	500	RPM	At stop	" H09_en.06" on page 469
H09.07	2009-08h	Time constant for accelerating to max. speed during inertia auto-tuning	20ms to 800ms	125	ms	At stop	" H09_en.07" on page 470
H09.08	2009-09h	Interval time after an individual inertia auto-tuning	50ms to 10000ms	800	ms	At stop	" H09_en.08" on page 470
H09.09	2009-0Ah	Motor revolutions for an inertia auto- tuning	0.00 to 100.00	1.00	-	Real-time	" H09_en.09" on page 470

 \cancel{a} Related parameters:

11.2.2 Online Inertia Auto-tuning

The servo drive supports online inertia auto-tuning. The online inertia auto-tuning flowchart is shown as follows.

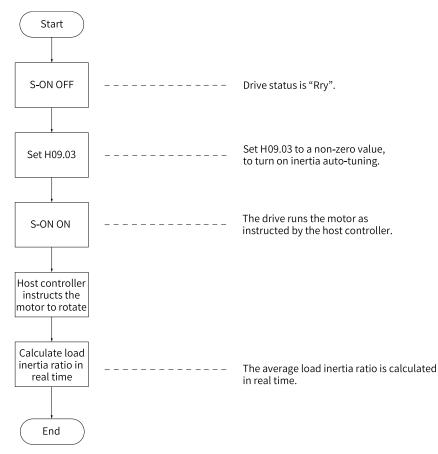


Figure 11-4 Online inertia auto-tuning flowchart

Note

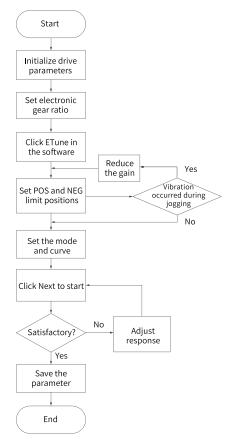
H09.03 defines the real-time updating speed of the load inertia ratio (H08.15).

- H09.03 = 1: Applicable to the scenario where the actual inertia ratio rarely changes, such as machine tool and wood carving machine.
- H09.03 = 2: suitable for applications where the actual inertia ratio changes slowly
- H09.03 = 3: Applicable to cases where the actual inertia ratio changes rapidly, such as handling manipulators.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.03	2009-04h	Online inertia auto-tuning mode	0: Disabled 1: Enabled, changing slowly 2: Enabled, changing normally 3: Enabled, changing quickly	0	-	Real-time	" H09_en.03" on page 468

☆Related parameter

11.3 Auto Gain Tuning

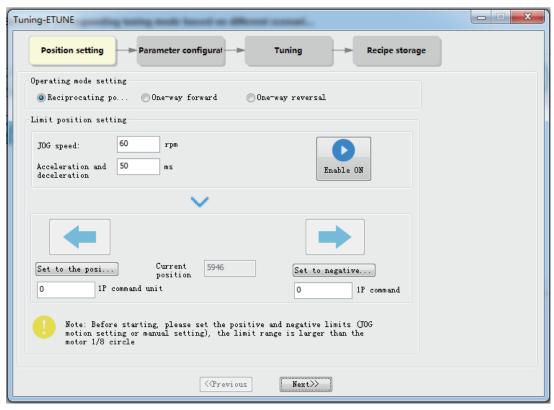

11.3.1 ETune

Overview

ETune is a wizard-type auto-adjustment function used to guide users to set corresponding curve trajectories and response parameters. After the curve trajectories and response parameters are set, the servo drive performs auto-tuning automatically to generate the optimal gain parameters. The auto-tuned parameters can be saved and exported as a recipe for use in other devices of the same model.

The ETune function is intended to be used in applications featuring slight load inertia change.

Description of ITune operation



• Operation flowchart

Figure 11-5 Operation flowchart

• Detailed Description

1. Click Tuning in the software tool, and select ETUNE.

- 2. Select any of the following three operation modes based on the operating direction allowed by the machine.
 - In the Reciprocating po... mode, the motor keeps reciprocating within the positive and negative position limits.
 - In the One-way forward mode, the motor takes the difference between the positive and negative position limits as the maximum distance per action and keeps running in the forward direction.
 - In the One-way forward mode, the motor takes the difference between the positive and negative position limits as the maximum distance per action and keeps running in the reverse direction.
- 3. Designate the positive and negative limit positions allowed by the motor. The difference between the positive and negative limits defines the position reference pulses for the motor, which is also the value before multiplication/division by the electronic gear ratio.

You can set the positive and negative position limits through the following two methods.

- Method 1: click Enable ON in JOG, and click the left arrow to make the motor move to the
 positive limit. Next, click Set to the posi.... Follow the same procedure for setting the negative
 position limit, and click Enable OFF (the Enable ON button changes to Enable OFF after a
 click).
- Method 2: Enter the positive and negative limits directly.

Note

The difference between the positive and negative position limits must be larger than 1/8 of one revolution. The larger the value of the limit position, the better the adaptability of the auto-tuned parameters, but the longer will ETune adjustment take.

4. Click Next to switch to the mode parameter setting interface. The adjustment mode is divided into Positioning mode and Track mode.

Auto-tuning of the inertia ratio is optional. If you choose not to perform inertia auto-tuning, set the correct inertia ratio (the inertia ratio can be modified directly). You can adjust the response level and position filter time constant based on the responsiveness needed and the position reference noise generated during operation. Then configure the motion profile by setting the maximum speed, acceleration/deceleration time and interval time for auto-tuning.

💿 Positi	ioning mode		🔘 Track mode		
Response m	ode				
🔘 Hi gh	🔘 Cen	iter	C Low		
	tio setting ertia identification				
	_		[0, 120]		
🥅 No ine	ertia identification				
🥅 No ine	ertia identification Inertia 3	rpm	[0, 120] Acceleration 100	ms	
No ine Running cu	ertia identification Inertia 3 rve parameter	rpm		ms	

- 5. Click the "start" button to start auto-tuning.
 - If you choose to perform inertia auto-tuning, the drive starts inertia auto-tuning based on the set motion profile. After inertia auto-tuning is done, the drive starts gain auto-tuning.
 - If you choose not to perform inertia auto-tuning on the start page, the drive starts gain autotuning directly after start.

	Identification re			Response fine-tuning coefficient (%)
nertia identification	Inertia value:	0		70 100
*	-Gain adjustment r	esult		
Speed gain tuning	H0800:	0	Hz	Update
	H0801 :	0	ms	① Response fine-tuning
+	H0802:	0	Hz	coefficient (%)@ The smaller the trimming coefficient, the
Position gain tuning	H0705:	0	ms	larger the gain margin. (final response gain =
	H0843:	0	Hz	adjusted maximum gain *
Tuning completed	Finished time:	0	ms	Stop Launch osc
In tuning	Advanced conf	iguration		

6. During gain auto-tuning, if you modify the Response fine-tuning coefficient and click "Apply", gain auto-tuning will be continued based on the fine-tuning coefficient entered. After gain auto-tuning is done, you can click "Done" to save parameters to E2PROM and export parameters as a recipe file.

1	uning-ETUNE	
	Position setting	Parameter configural Tuning Recipe storage
	Inertia identification	Identification result Inertia value: 0 50 70 100
		Gain adjustment result
	Speed gain tuning	InoDriverShop
	Position gain tuning	Gain tuning is completed, click the DONE button to save parameters to e2prom!
	Tuning completed	OK h osc
		oleted
		< Completi

Row	Paramet	Parameter Name	Parameter Value	Defau	Unit		Export
001	H07-05	Torque reference filter time	0.14	0.50	ms		
002	H08-00	Speed loop gain	135.9	40.0	Hz		
003	H08-01	Speed loop integral time con	5.85	19.89	ms		
004	H08-02	Position loop gain	135.9	64.0	Hz	E	
005	H08-09	Gain switchover condition	0[Fixed at the 1st gain (PS)]	0			
006	H08-15	Load moment of inertia ratio	0.00	1.00			
007	H08-24	PDFF control coefficient	100.0	100.0	%		
008	H08-31	Disturbance cutoff frequency	600	600	Hz		
009	H08-32	Disturbance compensation g	0	0	%		
010	H08-33	Inertia correction coefficient	100	100	%		
011	H08-37	Phase modulation of medium	0	0	度		
012	H08-38	Frequency of medium-frequ	0	0	Hz		
013	H08-39	Compensation gain of mediu	0	0	%		
014	H08-42	Model control selection	1[Enable]	0			
015	H08-43	Model gain	375.8	40.0			
016	H08-46	Feedforward value	99.0	95.0		-	
015	H08-43	Model control selection Model gain	1[Enable] 375.8	40.0		-	

Precautions

- Before gain tuning, set an electronic gear ratio that fits the actual application.
- You can adjust the maximum speed and acceleration/deceleration time of the motion profile based on actual conditions. The acceleration/deceleration time can be increased properly because positioning will be quickened after auto-tuning.
- If the acceleration/deceleration time is too short, overload may occur. In this case, increase the acceleration/deceleration time properly.
- For vertical axes, take anti-drop measures beforehand and set the stop mode upon fault to "Stop at zero speed".
- For lead screw transmission, shorten the travel distance if the tuning duration is too long.

Solutions to Common Faults

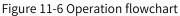
Fault	Cause	Solution
	1. Vibration cannot be suppressed.	1. Enable the vibration suppression function manually.
FCC2 FTure feilure	2. The positioning overshoot is too large.	2. Check whether the positioning threshold is too low. Increase the acceleration/deceleration time and reduce the response level.
E662: ETune failure	3. The reference is disturbed by noise.	3. Modify the electronic gear ratio to improve the reference resolution or increase the reference filter time constant in the "Parameter configuration" interface.
	4. The current fluctuates.	4. Check whether the current of the machine fluctuates regularly.
	1. Vibration cannot be suppressed.	1. Enable the vibration suppression function manually and perform ETune again.
E600: Inertia auto-	2. The auto-tuned values fluctuate dramatically.	2. Increase the maximum operating speed and decrease the acceleration/ deceleration time. For the lead screws, shorten the travel distance.
tuning failure	3. Mechanical couplings of the load are loose or the mechanism is eccentric.	3. Rectify the mechanical fault.
	4. Interruption occurs due to a fault that occurs during auto-tuning.	4. Clear the fault and perform ETune again.
	5. The position reference filter time is set to an excessively high value.	Decrease the values of H05.04–H05.06 and perform ETune again.

11.3.2 STune

Overview

STune performs gain auto-tuning based on the set stiffness level to fulfill the needs for rapidity and stability.


The ETune function is intended to be used in applications featuring slight load inertia change.



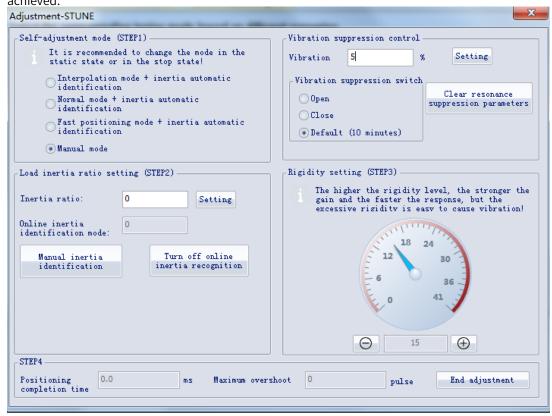
Ensure that the correct load inertia ratio has been obtained before enabling automatic gain adjustment.

Description of ITune operation

• Operation flowchart

Detailed Description

You can set the gain auto-tuning mode through the keypad or the software tool.


1. Select the gain auto-tuning mode.

- In modes 0, 1 and 2 shown in the following table, you need to set the inertia ratio before stiffness tuning. If the inertia is unknown, adjust the inertia manually. If vibration occurs on the machine, decrease the stiffness level before adjusting the inertia manually.
- In modes 3, 4, and 6 shown in the following table, you can perform adjustment through the wizard-type interface directly, without the need for setting an inertia ratio.

Mode	Parameter Name	Function
0	Inactive	The gains need to be adjusted manually.
1	Standard stiffness level mode	Gains are set automatically based on the set stiffness level.
2	Positioning mode	Gains are set automatically based on the set stiffness level. This mode is applicable to occasions requiring quick positioning.
3	Interpolation mode + Inertia auto-tuning	Gains are set automatically based on the set stiffness level. In this mode, inertia is auto-tuned and vibration is suppressed automatically. This mode is applicable to multi- axis interpolation.

Mode	Parameter Name	Function
4	Normal mode + Inertia auto- tuning	Gains are set automatically based on the set stiffness level. The inertia is auto-tuned and vibration is suppressed automatically.
6	Quick positioning mode + Inertia auto-tuning	Gains are set automatically based on the set stiffness level. Inertia is auto-tuned and vibration is suppressed automatically. This mode is applicable to occasions requiring quick positioning.

2. Adjust the stiffness level gradually during operation of the load. The present stiffness level value will be written to the drive automatically. Keep monitoring the operating waveform after increasing the stiffness level (increase by one level at a time) until desired performance is achieved.

Precautions

Load inertia ratio range

- In scenarios requiring high response, the inertia ratio must be lower than 500% and should not exceed 1000%.
 - For belt pulley or gear rack requiring not high rigidity and accuracy, the inertia ratio should not exceed 1000%.
 - For lead screw or cardan shaft requiring high rigidity and accuracy, the inertia ratio should not exceed 500%.
 - In scenarios where high positioning accuracy or response is required, the inertia ratio should not exceed 200%.
- In scenarios requiring a certain accuracy and dynamic response, the inertia ratio should not exceed 3000%.

• When the inertia ratio exceeds 3000%, it is hard to adjust and the trajectory control cannot be performed. It is only applicable to mechanisms for point-to-point control and rotary motion but the acceleration/deceleration time should be large.

Rigidity meter setting

The setting range of H09.01 (Stiffness level selection) is 0–41. The level 0 indicates the weakest stiffness and lowest gain and level 41 indicates the strongest stiffness and highest gain.

The following table lists the stiffness levels for different load types for your reference.

Recommended Stiffness Level	Load Mechanisms
Level 8 to level 12	Large-scale machineries
Level 12 to level 18	Applications with low stiffness such as the conveyors
Above level 18	Applications with high stiffness such as the ball screws and direct- connected motors

Table 11–3 Reference of stiffness l	evels
	CVCIS

The following five gain auto-tuning modes are available.

- If H09.00 is set to 3, 4, or 6, the servo drive will suppress the vibration and perform inertia auto-tuning automatically within 5 min (or other time defined by H09-37) after power-on or stiffness level setting, and then the servo drive exits from automatic adjustment.
- Do not set H09.00 to 3, 4, or 6 in applications with slow acceleration/deceleration, large vibration, and unstable mechanical couplings.
- Standard rigidity meter mode (H09.00 set to 1)

The 1st gain parameters (H08.00 to H08.02 and H07.05) are automatically updated and saved based on the rigidity level set in H09.01.

Param.	Parameter Name
H08.00	Speed loop gain
H08.01	Speed loop integral time constant
H08.02	Position loop gain
H07.05	Filter time constant of torque reference

Table 11–4 Parameters up	dated automatically	in the standard mode

Positioning mode (H09.00 = 2)

On the basis of *"Table 11–4" on page 235*, the 2nd gain set (H08.03...H08.05, H07.06) are also updated and saved automatically according to the stiffness level defined by H09.01. The position loop gain in the 2nd gain set has a higher stiffness level than that in the 1st gain set.

Param.	Parameter Name	Description
H08.03	2nd speed loop gain	-
H08.04	2nd speed loop integral time constant	If H08.04 is set to remain at 512.00 ms, the 2nd speed loop integral action is invalid and only proportional control is used in the speed loop.

Param.	Parameter Name	Description
H08.05	2nd position loop gain	-
H07.06	2nd torque reference filter time constant	-

Values of speed feedforward parameters are fixed.

Table 11–6 Parameters with fixed values in the positioning moc
--

Param.	Parameter Name	Value
H08.19	Speed feedforward gain	30.0%
H08.18	Speed feedforward filter time constant	0.50ms

Values of gain switchover parameters are fixed.

Gain switchover is activated automatically in the positioning mode.

Param.	Parameter Name	Value	Description
H08.08	2nd gain mode setting	1	Switchover between the 1st gain set (H08.00H08.02, H07.05) and 2nd gain set (H08.03H08.05, H07.06) is active in the positioning mode.
			In other modes, the original setting is used.
H08.09	Gain switchover		In positioning mode, the gain switchover condition is that H08.09 is set to 10.
	condition		In other modes, the original setting is used.
H08.10	Gain switchover H08.10	5.0ms	In positioning mode, the gain switchover delay is 5.0 ms.
	delay		In other modes, the original setting is used.
	Gain switchover		In the positioning mode, the gain switchover level is 50.
H08.11	level	50	In other modes, the original setting is used.
H08 12	Gain switchover hysteresis	30	In the positioning mode, the gain switchover dead time is 30.
			In other modes, the original setting is used.

In automatic gain adjustment mode, the parameters automatically updated along with H09-01 (Stiffness level) and those with fixed values cannot be modified. To modify these parameters, set H09-00 to 0 to exit automatic adjustment mode.

11.4 Manual Gain Tuning

11.4.1 Basic Parameters

When gain auto-tuning cannot fulfill the application needs, perform manual gain tuning. to achieve better result.

The servo system consists of three control loops, which are position loop, speed loop, and current loop from external to internal. The basic control diagram is shown in the following figure.

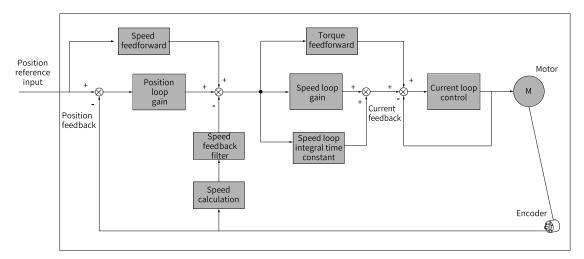


Figure 11-7 Basic control for manual gain tuning

Note

The response level of the inner loop must be higher than that of the outer loop. If it is not observed, the system may be unstable.

The current loop gain has been set with the highest level of responsiveness by default, avoiding the need for adjustment. you only need to adjust the position loop gain, speed loop gain and other auxiliary gains. For gain tuning in the position control mode, the position loop gain must be increased together with the speed loop gain, and the responsiveness of the former must be lower than the latter.

The following table describes how to adjust the basic gain parameters.

Step	Param.	Parameter Name	Description
		H08.00 Speed loop gain	Function: Determines the maximum frequency of a variable speed reference that can be followed by the speed loop.
1	H08.00		 When H08.15 (Load inertia ratio) is set correctly, the maximum frequency that can be followed by the speed loop is the setpoint of H08.00. Increase H08.00 Actual speed Note: Increasing the setpoint without incurring extra noise or vibration shortens the positioning time, stabilizes the speed, and improves the follow-up behavior.
			 If noise occurs, decrease the setpoint. If mechanical vibration occurs, enable mechanical resonance suppression. For details, see "<i>Vibration suppression</i>" on page 257.
		Speed loop integral time constant	Function:
			Eliminates the speed loop deviation. Decrease H08.01 Actual speed Note:
2	H08.01		Set H08.01 according to the following formula: 500 \leqslant H08.00 x H08.01 \leqslant 1000
2 H08.01			For example, if H08.00 is set to 40.0 Hz, the setpoint of H08.01 must meet the following requirement: 12.50 ms \leq H08.01 \leq 25.00 ms
			Decreasing the setpoint strengthens the integral action and shortens the positioning time, but an excessively low setpoint may easily lead to mechanical vibration.
			An excessively high setpoint prevents the speed loop deviation from being cleared.
			When H08.01 is set to 512.00 ms, the integral is invalid.

Step	Param.	Parameter Name	Description
3	H02 02	H08.02 Position loop gain	Function: It sets the position reference maximum frequency followed by the position loop. The maximum follow-up frequency of the position loop equals the value
			of H08.02. Increase H08.00 Increase H08.02 Note: To ensure system stability, the maximum follow-up frequency of the speed loop must be 3 to 5 times higher than that of the position loop.
			$3 \leqslant \frac{2 \times \pi \times H08.00}{H08.02} \leqslant 5$ For example, when H08.00 is set to 40.0 Hz, H08.02 must meet the
			following requirement: 50.2 Hz ≤ H08.02 ≤ 83.7 Hz
			Adjust the setting based on the positioning time. Increasing the setpoint shortens the positioning time and improves the anti-interference capacity of a motor at standstill.
			An excessively high setpoint may easily lead to system instability and oscillation.
4 H07.05		5 Torque reference filter time constant	Function: Eliminates the high-frequency noise and suppresses mechanical resonance. Increase H07.05 Actual speed Note:
	4 HU/U5		Ensure the cutoff frequency of the torque reference low-pass filter is 4 times higher than the maximum follow-up frequency of the speed loop, as shown in the following formula: $\frac{1000}{2 \times \pi \times 1007.05} \ge (H08.00) \times 4$
			For example, when H08.00 is set to 40.0 Hz, the setpoint of H07.05 must be lower than or equal to 1.00 ms.
			If vibration occurs after H08.00 is increased, adjust H07.05 to suppress the vibration. For details, see <i>"Vibration suppression" on page 257</i> .
			An excessively high setpoint weakens the responsiveness of the current loop.
			To suppress vibration upon stop, increase the setpoint of H08.00 and decrease the setpoint of H07.05.
			If strong vibration occurs upon stop, decrease the setpoint of H07.05.

 \cancel{x} Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.05	2007-06h	Torque reference filter time constant	0.00ms to 30.00ms	0.50	ms	Real-time	" H07_en.05" on page 448
H08.00	2008-01h	Speed loop gain	0.1Hz to 2000.0Hz	40.0	Hz	Real-time	" H08_en.00" on page 453
H08.01	2008-02h	Speed loop integral time constant	0.15ms to 512.00ms	19.89	ms	Real-time	" H08_en.01" on page 454
H08.02	2008-03h	Position loop gain	0.0Hz to 2000.0Hz	64.0	Hz	Real-time	" H08_en.02" on page 454

11.4.2 Gain Switchover

Gain switchover, which is active in the position control and speed control modes only, It is only effective in position and speed control modes. achieve the following purposes:

- Switching to the lower gain when the motor is at a standstill (servo ON) to suppress vibration
- Switching to the higher gain when the motor is at a standstill to shorten the positioning time
- Switching to the higher gain during operation of the motor to achieve better reference tracking performance
- Switching between different gain settings through an external signal to fit different conditions of the load devices

H08.08 = 0

When H08.08 is set to 0, the 1st gain (H08.00 to H08.02 and H07.05) is used, but you can switch between proportional control and proportional integral control through FunIN.3 (GAIN_SEL, gain switchover) for the speed loop.

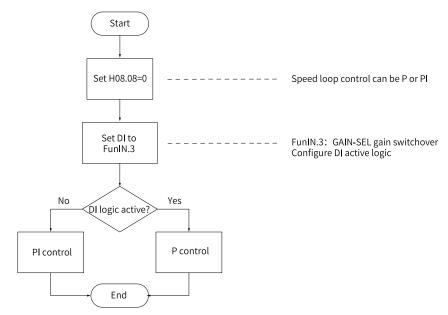


Figure 11-8 Gain switchover flowchart when H08.08 is set to 0

H08.08 = 1

You can switch between the 1st gain set (H08.00...H08.02, H07.05) and 2nd gain set (H08.03...H08.05, H07.06) based on the condition defined by H08.09.

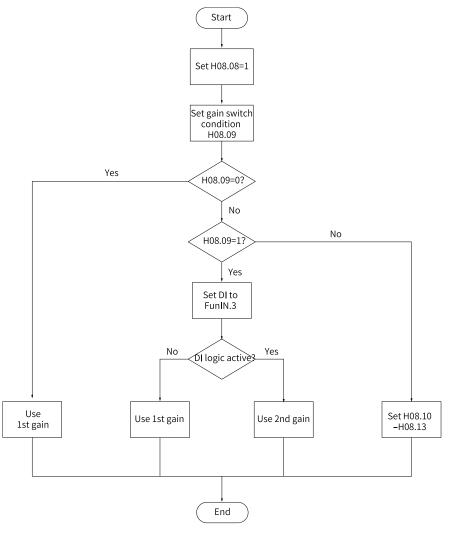
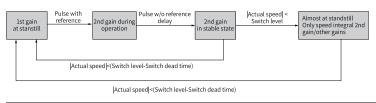


Figure 11-9 Gain switchover flowchart when H08.08 is set to 1

Table 3-8 shows diagrams and parameters for 11 kinds of gain switchover conditions. The following table describes the diagrams and related parameters of different conditions.

	Gain Switch	over Condition	Related Parameters		
H08.09	Condition	Diagram	Delay Time (H08.10)	Gain switchover level (H08.11)	Switchover Dead Time (H08.12)
0	Fixed to the 1st gain set	-	Inactive	Inactive	Inactive
1	External DI signal	-	Inactive	Inactive	Inactive


	Gain Switcl	nover Condition	Related Parameters			
H08.09	Condition	Diagram	Delay Time (H08.10)	Gain switchover level (H08.11)	Switchover Dead Time (H08.12)	
2	Torque reference	Actual speed	Active	Active (%)	Active (%)	
3	Speed reference	Speed reference Switchover	Active	Active	Active	
4	Speed reference change rate	Speed reference change rate Switchover level Switchover level Switchover level 1	Active	Active (10 rpm/s)	Active (10 rpm/s)	
5	Speed reference high/low-speed threshold	Problem solitchover deced time Solitchover level Registric analytic and the solit of the solit o	Inactive	Active (rpm)	Active (rpm)	
6	Position deviation	Speed reference Position deviation 1 Switchover delay Switchover 1	Active	Active (encoder unit)	Active (encoder unit)	
7	Position reference	Position reference I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Active	Inactive	Inactive	
8	Positioning uncompleted	Position reference Positioning completed signal I I I Ist 2nd 1st	Active	Inactive	Inactive	

	Gain Switch	nover Condition	Related Parameters		
H08.09	Condition	Diagram	Delay Time (H08.10)	Gain switchover level (H08.11)	Switchover Dead Time (H08.12)
9	Actual speed	Switchover delay Switchover delay level	Active	Active (rpm)	Active (rpm)
10	Position reference + Actual speed	See the following note for details.	Active	Active (rpm)	Active (rpm)

Caution

H08.10 (Gain switchover delay) is valid only during switching to the 1st gain set.

Note

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H08.02	2008-03h	Position loop gain	0.0Hz to 2000.0Hz	64.0	Hz	Real-time	" H08_en.02" on page 454
H08.09	2008-0Ah	Gain switchover condition	0: Fixed to the 1st gain set (PS) 1: Switch with external DI (PS) 2: Torque reference too large (PS) 3: Speed reference too large (PS) 4: Speed reference change rate too large (PS) 5: Speed reference low/high speed threshold (PS) 6: Position deviation too large (P) 7: Position reference available (P) 8: Positioning unfinished (P) 9: Actual speed (P) 10: Position reference + Actual speed (P)	0	-	Real-time	" H08_en.09" on page 455
H08.10	2008-0Bh	Gain switchover delay	0.0 ms to 1000.0 ms	5.0	ms	At stop	" H08_en.10" on page 457

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H08.11	2008-0Ch	Gain switchover level	0 to 20000	50	-	Real-time	" H08_en.11" on page 457
H08.12	2008-0Dh	Gain switchover hysteresis	0 to 20000	30	-	At stop	" H08_en.12" on page 457
H08.13	2008-0Eh	Position gain switchover time	0.0 ms to 1000.0 ms	3.0	ms	At stop	" H08_en.13" on page 458

11.4.3 Comparison of Filters

Parameter Name	Function	Applicable Occasion	Impact of Excessive Filtering
Pulse input pin filter	Prevents interference to ensure the number of pulses received by the servo drive is accurate.	The system wiring does not comply with specifications. The ambient interference is strong.	The number of pulses received by the servo drive is smaller than those sent by the host controller.
Position reference filter	Filters the position references (encoder unit) divided or multiplied by the electronic gear ratio to smoothen the operation process of the motor and reduce shock to the machine.	The acceleration/deceleration process is not performed on the position references sent from the host controller. The pulse reference frequency is low. The electronic gear ratio is larger than 10.	The response delay is prolonged.

11.4.4 Feedforward gain

Speed feedforward

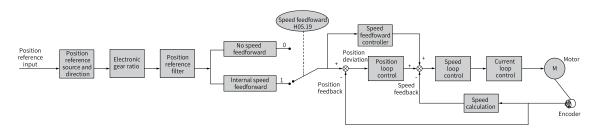


Figure 11-10 Operating procedure for speed feedforward control

Speed feedforward can be applied to the position control mode. The speed feedforward function can be used to improve the speed reference responsiveness and reduce the position deviation at fixed speed.

Operating procedure for speed feedforward:

1. Set the speed feedforward signal source.

Set H05.19 (Speed feedforward control) to a non-zero value to enable the speed feedforward function. The corresponding signal source will be selected as well.

Param.	Parameter Name	Value	Remarks
		0: No speed feedforward	-
H05.19	Speed feedforward control	1: Internal speed feedforward	Defines the speed corresponding to the position reference (encoder unit) as the speed feedforward signal source.

2. Set speed feedforward parameters.

Set the speed feedforward gain (H08.19) and speed feedforward filter time constant (H08.18).

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H08.18	2008-13h	Time constant of speed feedforward filter	0.00ms to 64.00ms	0.50	ms	Real-time	" H08_en.18" on page 459
H08.19	2008-14h	Speed feedforward gain	0.0% to 100.0%	0.0	%	Real-time	" H08_en.19" on page 459

Torque feedforward

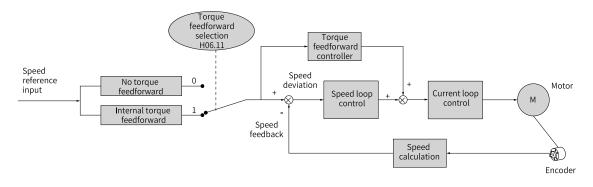


Figure 11-11 Operation diagram of torque feedforward control

In the position control mode, torque feedforward can be used to improve torque reference responsiveness and reduce the position deviation during operation at constant acceleration/ deceleration rate.

In the speed control mode, torque feedforward can be used to improve speed reference responsiveness and reduce the speed deviation during operation at constant speed.

The procedure for setting torque feedforward is as follows:

1. Set the torque feedforward signal source.

Set H06.11 (Torque feedforward control) to 1 to enable the torque feedforward function. The corresponding signal source will be selected as well.

Param.	Parameter Name	Value	Remarks
		0: No torque feedforward	-
H06.11	Torque feedforward control	1: Internal torque feedforward	Use the speed reference as the source of the torque feedforward signal. In the position control mode, the speed reference is outputted from the position controller.

2. Set torque feedforward parameters.

Param.	Parameter Name	Description
H08.20		Function: • Increasing the value of H08.21 improves the response but may cause overshoot during acceleration/ deceleration.
	Torque feedforward filter time constant	• Decreasing the value of H08.20 suppresses overshoot during acceleration/deceleration. Increasing the value of H08.20 suppresses the noise. Note:
		 Keep H08.20 to the default value, and then gradually increase the setpoint of H08.21 from 0 to a certain value at which torque feedforward achieves the required effect. Adjust H08.20 and H08.21 repeatedly until a balanced performance is achieved.
H08.21	Torque feedforward gain	See this section for details.

11.4.5 PDFF Control

The pseudo derivative feedback and feedforward (PDFF) control can be used to adjust speed loop control in the non-torque control mode.

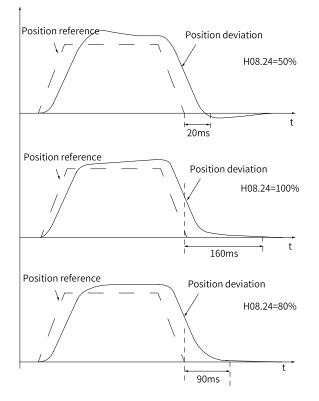
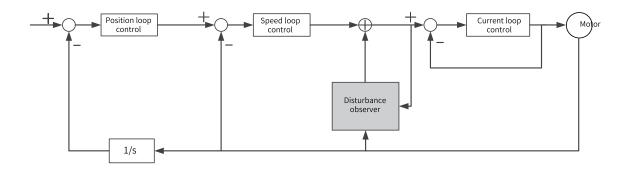


Figure 11-12 Example of PDFF control

Through adjusting the speed loop control method, PDFF control enhances the anti-disturbance capacity of the speed loop and improves the performance in following the speed references.

Param.	Parameter Name	Description
		Function: • Defines the control method of the speed loop in the non-torque control modes. Note: Sotting H08 24 to an excessively low value slows down the
H08.24	PDFF control coefficient	 Setting H08.24 to an excessively low value slows down the responsiveness of the speed loop. When the speed feedback overshoots, gradually decrease the setpoint of H08.24 from 100.0 to a certain value at which the PDFF control achieves the desired effect. When H08.24 is set to 100.0, the speed loop control method does not change and the default proportional integral control is used.


11.4.6 Torque disturbance observer

This function is intended to be used in the non-torque control modes.

Disturbance observer 1

The disturbance observer is used to observe external disturbance. You can set different cutoff frequencies and compensation values to observe and suppress the disturbance within the frequency range.

The following figure depicts the control block diagram for disturbance observer 1.

Note

1/s: Integral element

Param.	Parameter Name	Description
H08.31	Disturbance observer cutoff frequency	The higher the cutoff frequency, the more easily will vibration occur.
H08.32	Disturbance observer compensation coefficient	Defines the compensation percentage for the observer.
H08.33	Disturbance observer inertia correction	H08.33 needs to be changed only when the inertia ratio does not reflect the actual condition. The acting inertia is the product of the set inertia and H08.33. It is recommended to use the default value of H08.33.

ARelated parameters

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H08.31	2008-20h	Disturbance observer cutoff frequency	1Hz to 1700Hz	600	Hz	Real-time	" H08_en.31" on page 462
H08.32	2008-21h	Disturbance observer compensation coefficient	0% to 100%	0	%	Real-time	" H08_en.32" on page 462
H08.33	2008-22h	Disturbance inertia correction coefficient	1% to 10000%	100	%	Real-time	" H08_en.33" on page 462

Disturbance observer 2

The following figure depicts the control block diagram for disturbance observer 2.

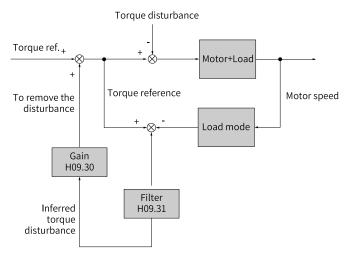


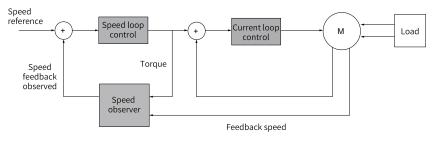
Figure 11-13 Block diagram for disturbance observation

The disturbance observer detects and estimates the external disturbance torque suffered by the system and compensates the torque reference accordingly, reducing the effect of external disturbance on the servo system and suppressing vibration.

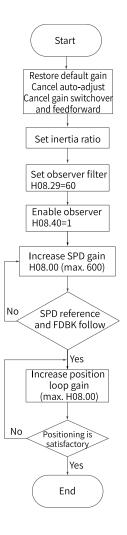
Param.	Parameter Name	Description
H09.30	Torque disturbance compensation gain	Function:Increasing the value of H09.30 improves disturbance
H09.31	Filter time constant of torque disturbance observer	 Increasing the value of H09.30 miproves distributed examples increases the noise. Increasing the value of H09.31 reduces the noise. Decreasing the value of H09.31 allows detection and estimation of the external disturbance torque featuring short delay, which improves the disturbance suppression capacity but increases the noise. Note: Set H09.31 to a large value first and then gradually increase the value of H09.30 from 0 to a certain value at which the desired performance is achieved. Finally, decrease the value of H09.31 gradually without affect the effectiveness of the disturbance observer. Adjust H09.30 and H09.31 repeatedly until a balanced
		performance is achieved.

☆ Related parameters:	☆	Related	parameters:
-----------------------	---	---------	-------------

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H08.18	2008-13h	Time constant of speed feedforward filter	0.00ms to 64.00ms	0.50	ms	Real-time	" H08_en.18" on page 459
H08.19	2008-14h	Speed feedforward gain	0.0% to 100.0%	0.0	%	Real-time	" H08_en.19" on page 459
H08.20	2008-15h	Torque feedforward filter time constant	0.00ms to 64.00ms	0.50	ms	Real-time	" H08_en.20" on page 459


Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H08.21	2008-16h	Torque feedforward gain	0.0% to 200.0%	0.0	%	Real-time	" H08_en.21" on page 459
H08.24	2008-19h	PDFF control coefficient	0.0% to 1000.0%	100.0	%	Real-time	" H08_en.24" on page 461

11.4.7 Speed Observer


The speed observer, which facilitates quick positioning, applies in applications with slight load characteristic change and constant inertia.

It improves the responsiveness and filters high frequencies automatically, improving the gains and shortening the positioning time without incurring high-frequency vibration.

The block diagram for the speed observer is as follows.

Commissioning Steps

Related parameters

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H08.00	2008-01h	Speed loop gain	0.1Hz to 2000.0Hz	40.0	Hz	Real-time	" H08_en.00" on page 453
H08.27	2008-1Ch	Cutoff frequency of speed observer	10Hz to 2000Hz	170	Hz	Real-time	" H08_en.27" on page 461
H08.28	2008-1Dh	Speed inertia correction coefficient	10% to 10000%	100	%	Real-time	" H08_en.28" on page 461
H08.29	2008-1Eh	Speed observer filter time	0.02ms to 20.00ms	0.80	ms	Real-time	" H08_en.29" on page 461
H08.40	2008-29h	Speed observer selection	0 to 1	0	-	At stop	" H08_en.40" on page 463

11.4.8 Model Tracking

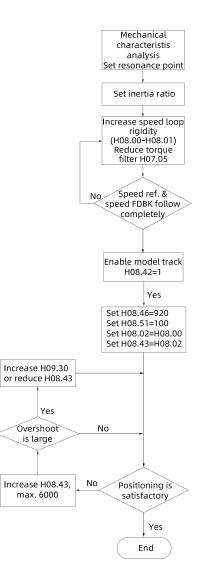
The model tracking control, which is only available in the position control mode, can be used to improve responsiveness and shorten the positioning time. It is only available in the position control mode.

Parameters used by model tracking are normally set automatically through ITune or ETune along with the gain parameters.

However, manual tuning is needed in the following situations:

- The auto-tuned values cannot deliver desired performance.
- Improving the responsiveness takes priority over the auto-tuned or customized values.
- User-defined gain parameters or model tracking control parameters are needed.

The block diagram for model tracking control is as follows.


Speed SPD mode	Motion reference Model track control mKp, mVFF, mLPF	Speed feedforward	Torque feedforward	
Position loop		Speed loop		
	+ Dev. 	SPD loop Kv、Ti Speed loop	Current loop	M
	Position loop			PG
	Servo unit		t	Encoder
Host device		Kp: Position loop gain (Kv: Speed loop gain (H(Ti: Speed loop integral Tf: Torque reference filt	08.00)	

mLPF: Model filter time

mKp: Model track control gain (H08.43)

mVFF: Model track control SPD FDFWD compensation (H08.46)

Commissioning Steps

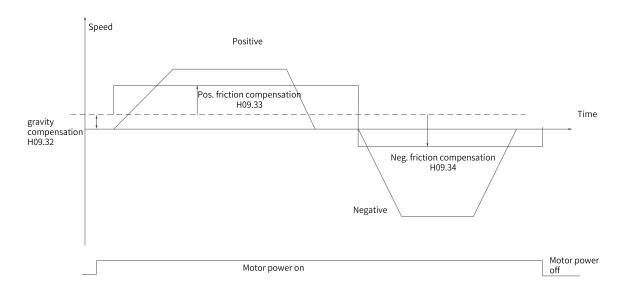
Related parameters

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.05	2007-06h	Torque reference filter time constant	0.00ms to 30.00ms	0.50	ms	Real-time	" H07_en.05" on page 448
H08.00	2008-01h	Speed loop gain	0.1Hz to 2000.0Hz	40.0	Hz	Real-time	" H08_en.00" on page 453
H08.01	2008-02h	Speed loop integral time constant	0.15ms to 512.00ms	19.89	ms	Real-time	" H08_en.01" on page 454
H08.02	2008-03h	Position loop gain	0.0Hz to 2000.0Hz	64.0	Hz	Real-time	" H08_en.02" on page 454
H08.42	2008-2Bh	Model control selection	0 to 1	0	-	At stop	" H08_en.42" on page 464
H08.43	2008-2Ch	Model gain	0.0 to 2000.0	40.0	-	Real-time	" H08_en.43" on page 464

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H08.46	2008-2Fh	Model feedforward	0.0 to 102.4	95.0	-	Real-time	" H08_en.46" on page 464
H08.51	2008-34h	Model filter time 2	0.00ms to 20.00ms	0.00	ms	Real-time	" H08_en.51" on page 464

11.4.9 Friction Compensation

Friction compensation is used to reduce the impact of the friction on the operating effect during mechanical transmission. Use different positive/negative compensation values according to the direction of operation.


Note

Friction compensation is effective only in the position mode.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.32	2009-21h	Gravity compensation value	0.0 to 50.0	0.0	-	Real-time	" H09_en.32" on page 474
H09.33	2009-22h	Positive friction compensation	-100.0% to 100.0%	0.0	%	Real-time	" H09_en.33" on page 474
H09.34	2009-23h	Negative friction compensation	-100.0% to 100.0%	0.0	%	Real-time	" H09_en.34" on page 474
H09.35	2009-24h	Friction compensation speed threshold	0.1 RPM to 30.0 RPM	2.0	RPM	Real-time	" H09_en.35" on page 474
H09.36	2009-25h	Friction compensation speed	0: Speed reference 1: Model tracking speed 2: Speed feedback	0	-	Real-time	" H09_en.36" on page 474

 \therefore Related parameters

The diagram for friction compensation is as follows.

Note

Note: When the speed is less than the speed threshold, static friction applies. When the speed exceeds the speed threshold, dynamic friction applies. The compensation direction is determined by the direction of the actual position reference. Forward direction requires positive compensation value. Reverse direction requires negative compensation value.

11.5 Parameter Adjustment in Different Control Modes

Perform parameter adjustment in the sequence of "Inertia auto-tuning" => "Gain auto-tuning => "Manual gain tuning" in all the control modes.

11.5.1 Parameter Adjustment in the Position Control Mode

Obtain the value of H08.15 (Load inertia ratio) through inertia auto-tuning.

2) Perform gain adjustment.

• 1st gain set:

Param.	Parameter Name Function		Default
H07.05	107.05 Torque reference filter time Defines the torque reference filter time constant.		0.79ms
H08.00	H08.00 Speed loop gain Defines		40.0Hz
H08.01	H08.01 Speed loop integral time constant constant Defines the integral time constant of the speed loop.		19.89ms
H08.02	Position loop gain	Defines the position loop proportional gain.	64.0Hz

• 2nd gain set:

Param.	Parameter Name	Function	Default
H07.06	2nd torque reference filter time constant	Defines the torque reference filter time constant.	0.79ms
H08.03	2nd speed loop gain	Defines the speed loop proportional gain.	40.0Hz
H08.04	2nd speed loop integral time constant	Defines the integral time constant of the speed loop.	20.00ms
H08.05	08.05 2nd position loop gain Defines the position loop proportional gain.		64.0Hz
H08.08	2nd gain mode setting	Defines the mode of the 2nd gain set.	1
H08.09	Gain switchover condition	Defines the gain switchover condition.	0
H08.10	Gain switchover delay	Defines the gain switchover delay.	5.0ms
H08.11	Gain switchover level	Defines the gain switchover level.	50
H08.12	Gain switchover hysteresis	Defines the dead time of gain switchover.	30
H08.13	Position gain switchover time	Defines the position loop gain switchover time.	3.0ms

• Common gain set

Param.	Parameter Name	Function	Default
H08.18	Time constant of speed feedforward filter	Defines the filter time constant of the speed feedforward signal.	0.50ms
H08.19	Speed feedforward gain	Defines the speed feedforward gain.	0.0%
H08.20	Torque feedforward filter time constant	Defines the filter time constant of the torque feedforward signal.	0.50ms
H08.21	Torque feedforward gain	Defines the torque feedforward gain.	0.0%
H08.22	Speed feedback filtering option	Defines the speed feedback filtering function.	0
H08.23	Cutoff frequency of speed feedback low-pass filter	Defines the cutoff frequency of the first-order low-pass filter for speed feedback.	4000Hz
H08.24	PDFF control coefficient	Defines the coefficient of the PDFF controller.	100.0%
H09.38	Model torque feedforward differential time	Sets the frequency of low- frequency resonance suppression 1 at the mechanical end.	100.0Hz
H09.39	Speed observer selection	Defines different low-frequency resonance suppression types at the mechanical load.	2

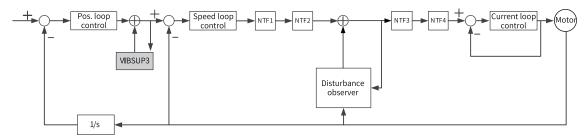
Perform gain auto-tuning to get the initial values of the 1st gain set (or 2nd gain set) and the common gain set.

Fine-tune the following gains manually.

Param.	Parameter Name	Function
H07.05	Torque reference filter time constant	Defines the torque reference filter time constant.
H08.00	Speed loop gain	Defines the speed loop proportional gain.
H08.01	Speed loop integral time constant	Defines the integral time constant of the speed loop.
H08.02	Position loop gain	Defines the position loop proportional gain.
H08.19	Speed feedforward gain	Defines the speed feedforward gain.

11.5.2 Parameter Adjustment in the Speed Control Mode

Parameter adjustment in the speed control mode is the same as that in the position control mode, except for the position loop gain (H08.02 and H08.05). For details, see *"11.5.1 Parameter Adjustment in the Position Control Mode" on page 255*.


11.5.3 Parameter Adjustment in the Torque Control Mode

Parameter adjustment in the torque control mode are differentiated based on the following conditions:

- If the actual speed reaches the speed limit, the adjustment method is the same as that described in *"11.5.2 Parameter Adjustment in the Speed Control Mode" on page 257.*
- If the actual speed does not reach the speed limit, the adjustment method is the same as that described in *"11.5.2 Parameter Adjustment in the Speed Control Mode" on page 257*, except the position/speed loop gain and speed loop integral time constant.

11.6 Vibration suppression

The block diagram for vibration suppression is as follows.

Where:

- NTF1-4: 1st notch to 4th notch
- VIBSUP3: Suppression of medium- and low-frequency vibration Reduction applied at a carrier frequency lower than 8 K below 300 Hz
- 1/s: Integral element

Note

- jitter suppression phase modulation coefficient: synchronous phase adjustment of the compensation value and vibration. It is recommended to use the default value. Adjustment is needed when the compensation value phase differs greatly from the vibration phase.
- Jitter suppression frequency: Defines the jitter frequency that needs to be suppressed.
- Jitter suppression compensation coefficient: Defines the compensation coefficient for jitter suppression.

11.6.1 Mechanical Resonance Suppression

Resonance frequency is present in the mechanical system. When the gain of the drive increases, resonance may occur near the resonance frequency, disabling further increase of the gain.

Mechanical resonance can be suppressed in the following two methods:

Torque reference filter (H07.05, H07.06)

To suppress the mechanical resonance, set the filter time constant to enable the torque reference to be attenuated in the frequency range above the cutoff frequency.

Filter cutoff frequency fc (Hz) = $1/[2\pi \times H07.05 \text{ (ms)} \times 0.001]$

Notch

The notch reduces the gain at certain frequencies to suppress mechanical resonance. After the vibration is suppressed by the notch, you can continue to increase the gain. The operating principle of the notch is shown in the following figure.

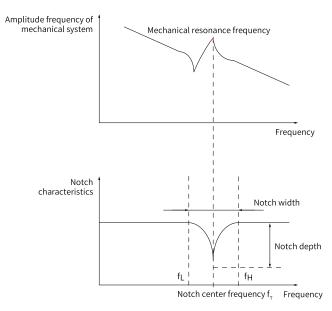


Figure 11-14 Operating principle of the notch

A total of four notches can be used, and each notch is defined by three parameters: frequency, width level, and depth level. The 1st and 2nd notches are manual notches whose parameters needs to be set by the user. Parameters of the 3rd and 4th notches can be either set by the user or set automatically after being configured as an adaptive notch (H09.02 =1 or 2).

ltem	Manua	l Notch	Manual/Adaptive Notch		
item	1st Notch	2nd Notch	3rd Notch	4th Notch	
Frequency	H09.12	H09.15	H09.18	H09.21	
Width level	H09.13	H09.16	H09.19	H09.22	
Depth level	H09.14	H09.17	H09.20	H09.23	

Table 11–9 Description of notch parameters

Note

- When the frequency is 4000Hz (default), the notch is inactive.
- The adaptive notch is preferred for resonance suppression. The manual notch can be used in cases where the adaptive notch cannot deliver desired performance.

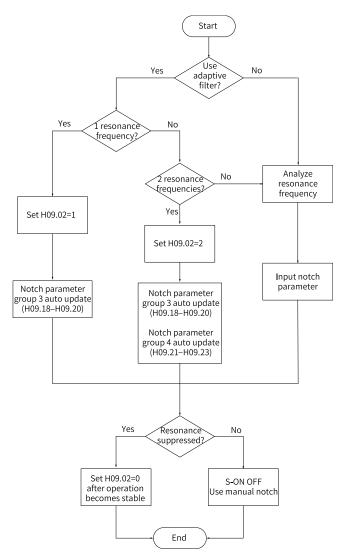


Figure 11-15 Using the notch

- Procedure for setting the adaptive notch:
 - 1. Set H09.02 (Adaptive notch mode) to 1 or 2 based on the number of resonance points.
 - 2. When resonance occurs, set H09.02 to 1 first to enable one adaptive notch. If new resonance occurs after gain adjustment, set H09.02 to 2 to enable two adaptive notches.

- 3. Parameters of the 3rd or 4th notches are updated automatically during operation, and parameter values are saved automatically to the corresponding parameters in group H09 every 30 min.
- 4. If resonance is suppressed, the adaptive notch works. After the servo drive runs stably for a period of time, set H09.02 to 0 and the parameters of the adaptive notch are fixed to the last updated values.

This is to prevent notch parameters from being updated to wrong values due to misoperation. Wrong values will intensity resonance.

- 5. If resonance persists after the notch is working for a period of time, switch off the S-ON signal.
- 6. If there are more than two resonance frequencies, the problem cannot be solved by only using the adaptive notches. In this case, add a manual notch, Additionally use the manual notch, or use all the four notches as manual ones (H09.02 = 0).

Note

- When adaptive notch is applied, if the S-OFF signal is activated within 30 min, the notch parameters will not be saved to the corresponding parameter
- When the resonance frequency is below 300 Hz, the suppression effect of the adaptive notch may be degraded.
- Procedure for setting the manual notch:
 - 1. Analyze the resonance frequency.
 - 2. When using the manual notch, set the notch frequency to same value as the actual resonance frequency obtained in the following ways: The resonance frequency can be obtained by using the following methods:
 - Use the "Mechanical characteristic analysis" function in Inovance software tool.
 - Calculate the resonance frequency based on the motor phase current displayed on the oscilloscope interface of the software tool.
 - Set H09.02 (Adaptive notch mode) to 3. The drive detects the resonance frequency and saves the detected value to H09.24 automatically during operation.
 - 3. Input the resonance frequency obtained in step 1 to the parameter of the selected notch, and input the width level and depth level of this notch.
 - 4. If resonance has been suppressed, it indicates the notch functions well and you can continue adjusting the gain. If resonance occurs again, repeat steps 1 and 2.
 - 5. If resonance persists after the notch is working for a period of time, switch off the S-ON signal.
- Notch width level

The width level indicates the ratio of the notch width to the center frequency of the notch.

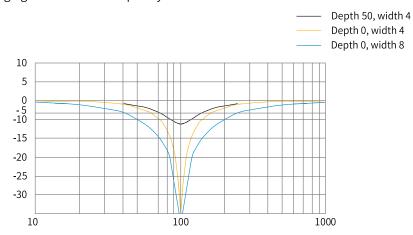
Notch width level =
$$\frac{f_{H}-f_{L}}{f_{T}}$$

Where:

 f_T : center frequency of the notch, which is also the mechanical resonance frequency

 f_H - f_L is the notch width, that is, the frequency bandwidth with an amplitude attenuation rate of -3 dB relative to the notch central frequency.

The following figure shows the correspondence. Use the default value 2 in normal cases.


Depth level of the notch

The notch depth level indicates the ratio of the input to the output at the center frequency.

When the depth level is 0, the input is completely suppressed at the center frequency. When the depth level is 100, the input can be fully passed at the center frequency. Therefore, the lower the depth level is, the higher the notch depth is, and the stronger the suppression effect will be. Note that an excessively low depth level may lead to system oscillation.

Note

If the amplitude frequency characteristic curve obtained through the mechanical analysis function does not have obvious peak, it indicates that vibration occurs actually. Such vibration may not be mechanical resonance, and cannot be suppressed by the notch. It occurs because the gain reaches the limit, and can be suppressed only by reducing the gain or the filter time of torque reference.

The following figure shows the frequency characteristics of the notch.

Figure 11-16 Notch frequency characteristics

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.02	2009-03h	Adaptive notch mode	 0: Adaptive notch no longer updated; 1: One adaptive notch activated (3rd notch) 2: Two adaptive notches activated (3rd and 4th notches) 3: Resonance point tested only (displayed in H09.24) 4: Adaptive notch cleared, values of 3rd and 4th notches restored to default 	0	-	Real-time	" H09_en.02" on page 468
H09.12	2009-0Dh	Frequency of the 1st notch	50Hz to 4000Hz	4000	Hz	Real-time	" H09_en.12" on page 470
H09.13	2009-0Eh	Width level of the 1st notch	0 to 40	2	-	Real-time	" H09_en.13" on page 471
H09.14	2009-0Fh	Depth level of the 1st notch	0 to 99	0	-	Real-time	" H09_en.14" on page 471

\Rightarrow Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.15	2009-10h	Frequency of the 2nd notch	50Hz to 4000Hz	4000	Hz	Real-time	" H09_en.15" on page 471
H09.16	2009-11h	Width level of the 2nd notch	0 to 20	2	-	Real-time	" H09_en.16" on page 471
H09.17	2009-12h	Depth level of the 2nd notch	0 to 99	0	-	Real-time	" H09_en.17" on page 472
H09.18	2009-13h	Frequency of the 3rd notch	50Hz to 4000Hz	4000	Hz	Real-time	" H09_en.18" on page 472
H09.19	2009-14h	Width level of the 3rd notch	0 to 20	2	-	Real-time	" H09_en.19" on page 472
H09.20	2009-15h	Depth level of the 3rd notch	0 to 99	0	-	Real-time	" H09_en.20" on page 472
H09.21	2009-16h	Frequency of the 4th notch	50Hz to 4000Hz	4000	Hz	Real-time	" H09_en.21" on page 472
H09.22	2009-17h	Width level of the 4th notch	0 to 20	2	-	Real-time	" H09_en.22" on page 473
H09.23	2009-18h	Depth level of the 4th notch	0 to 99	0	-	Real-time	" H09_en.23" on page 473
H09.24	2009-19h	Auto-tuned resonance frequency	0 to 2000	0	-	Unchangea ble	" H09_en.24" on page 473

11.6.2 Low-Frequency Resonance Suppression at the Mechanical End

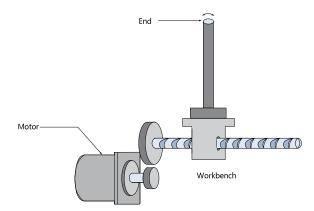


Figure 11-17 Low-frequency vibration at the mechanical end

If the mechanical load end is long and heavy, vibration may easily occur in this part during emergency stop, affecting the positioning effect. Such vibration is called low-frequency resonance as its frequency is generally within 100 Hz, which is lower than the mechanical resonance frequency mentioned in *"11.6.1 Mechanical Resonance Suppression" on page 258.* Use the low-frequency resonance suppression function to reduce such vibration.

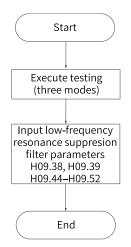


Figure 11-18 Procedure for setting low-frequency resonance suppression filter

First, use the oscilloscope function in the software tool to collect the position deviation waveform of the motor in the positioning state. Then calculate the position deviation fluctuation frequency, which is the low-frequency resonance frequency. Finally, input the value of H09.38 manually and use the default value of H09.39. Observe the resonance suppression effect after using the low-frequency resonance suppression filter.

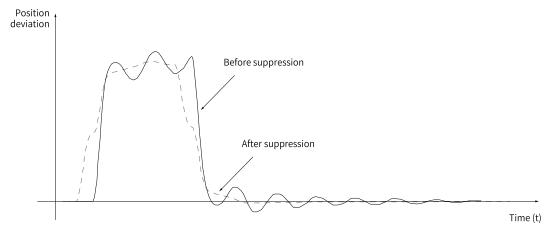


Figure 11-19 Low-frequency resonance suppression effect

\Rightarrow Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.38	2009-27h	Low-frequency resonance suppression frequency at the mechanical end	1.0Hz to 100.0Hz	100.0	Hz	At stop	" H09_en.38" on page 475
H09.39	2009-28h	Low-frequency resonance suppression at the mechanical end	0 to 3	2	-	At stop	" H09_en.39" on page 475

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.44	2009-2Dh	Frequency of low- frequency resonance suppression 1 at mechanical load end	0.0Hz to 200.0Hz	0.0	Hz	Real-time	" H09_en.44" on page 476
H09.45	2009-2Eh	Responsiveness of low-frequency resonance suppression 1 at mechanical load end	0.01 to 10.00	1.00	-	Real-time	" H09_en.45" on page 476
H09.47	2009-30h	Width of low- frequency resonance suppression 1 at mechanical load end	0.00 to 2.00	1.00	-	Real-time	<i>" H09_en.47"</i> on page 476
H09.49	2009-32h	Frequency of low- frequency resonance suppression 2 at mechanical load end	0.0Hz to 200.0Hz	0.0	Hz	Real-time	" H09_en.49" on page 476
H09.50	2009-33h	Responsiveness of low-frequency resonance suppression 2 at mechanical load end	0.01 to 10.00	1.00	-	Real-time	" H09_en.50" on page 476
H09.52	2009-35h	Width of low- frequency resonance suppression 2 at mechanical load end	0.00 to 2.00	1.00	-	Real-time	" H09_en.52" on page 476

11.7 Mechanical Characteristic Analysis

Overview

Mechanical characteristic analysis is used to determine the mechanical resonance point and system bandwidth. Up to 8 kHz response characteristic analysis is available and three modes including mechanical characteristics, speed open loop, and speed closed loop are supported.

Steps

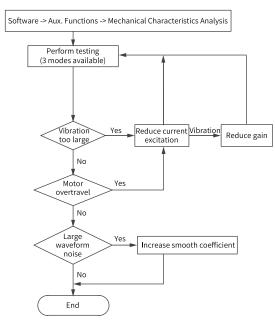


Figure 11-20 Operating procedure for mechanical characteristic analysis

Note

- To avoid large vibration during the test, set the current excitation to 10% during initial execution.
- The analysis waveform may be distorted if the current excitation is too low.
- If the vibration generated during test cannot be suppressed after reducing the current excitation, the possible causes and solutions may be: 1) The gain is too high, reduce the speed gain or set the notch based on the auto-tuned resonance point. 2) The set inertia is too high, set the correct inertia.
- After setting the notch, the waveform under mechanical characteristic test mode is the same with that before the setting, but the speed closed loop and speed open loop modes will be attenuated.



Figure 11-21 Example of the waveform obtained

An example of the waveform obtained with the mechanical characteristic analysis is shown in *"Figure 11–21 Example of the waveform obtained" on page 265*.

12 Function Overview

Functions of the servo drive are listed below. See details in corresponding chapters.

Function	Description
Position control mode	Used to make the servo drive operate in the position control mode.
Speed Control Mode	Used to make the servo drive operate in the speed control mode.
Torque control mode	Used to make the servo drive operate in the torque control mode.
Position/Speed control switchover	Used to switch between position control and speed control through external input signals.
Position/Torque control switchover	Used to switch between speed control and torque control through external input signals.
Torque/Position control switchover	Used to switch between torque control and position control through external input signals.
Torque/Speed/Position control switchover	Used to switch among torque control, speed control and position control through external input signals.
High-resolution encoder	The servo drive is equipped with a high-performance encoder with resolution up to 262144P/r.
Mechanical characteristics analysis	Used to analyze the resonance frequency and characteristics of the mechanical system through a PC installed with Inovance software tool.
Auto Gain Tuning	The servo drive generates gain parameters automatically to match present working conditions through just one parameter.
Gain switchover	Used to apply different gains to different status (operating or stop) of the motor. Gains can also be switched by external terminals during operation.
Torque disturbance observer	The servo drive estimates the disturbance torque suffered by the system to suppress vibration through compensation.
Resonance suppression	The servo drive sets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.
Torque Reference Filter	Used to suppress the mechanical resonance that may be generated when the response speed is excessively high.
Electronic gear ratio	Decreasing or increasing the pulse input by: 0.001 x Encoder resolution/ 10000 to 4000 x Encoder resolution/10000.
Position ramp	Smooth acceleration at position reference response is implemented.
Position first-order low-pass filter	Used to achieve smooth acceleration and deceleration.
Homing	Used to search for the mechanical home automatically to locate the relative position between the mechanical home and mechanical zero
Interrupt positioning	Used to interrupt present position reference and execute the set displacement.
Zero Clamp	Used to keep the motor speed below a certain value in the speed control mode to lock the position.
Reference pulse selection	Four pulse string input types can be selected.
External regenerative resistor	Used in case of insufficient braking capacity of the built-in regenerative resistor.
DI signal assignment	Used to assign functions such as S-ON to corresponding pins.
AI1	Analogs voltage input.
Alarm history	The servo drive records the latest ten faults/warnings, which can also be cleared.
Status display	Used to display the drive status through the LED on the keypad.
External I/O display	Used to display ON/OFF status of external I/O signals.

Function	Description
Forced DO	Used to output signals not related to the drive status forcibly or used to check the wiring of output signals.
Trial run mode	Used to enable the motor through the keypad without a start signal.
Inovance servo commissioning software	Used to set parameters, perform trial run, and check status through a PC.
Warning code output	Outputting a three-digit warning code upon a warning event

13 Basic Functions of the Servo Drive

13.1 Position control mode

13.1.1 Position control mode

 \star Definition of terms:

- Reference unit: Refers to the minimum identifiable value input from the host controller to the servo drive.
- Encoder unit: Refers to the value of the input reference multiplied by the electronic gear ratio.

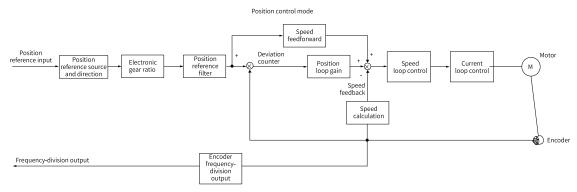


Figure 13-1 Position control diagram

Set H02.00 (Control mode selection) to 1 (Position control mode) through the keypad or Inovance software tool to make the servo drive operate in the position control mode. Set the drive parameters based on the mechanical structure and technical indicators.

The following describes basic parameter settings for the position control mode.

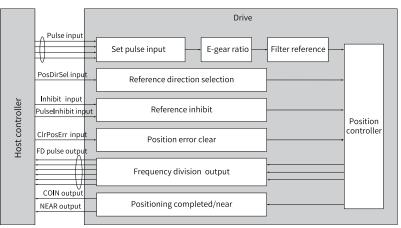
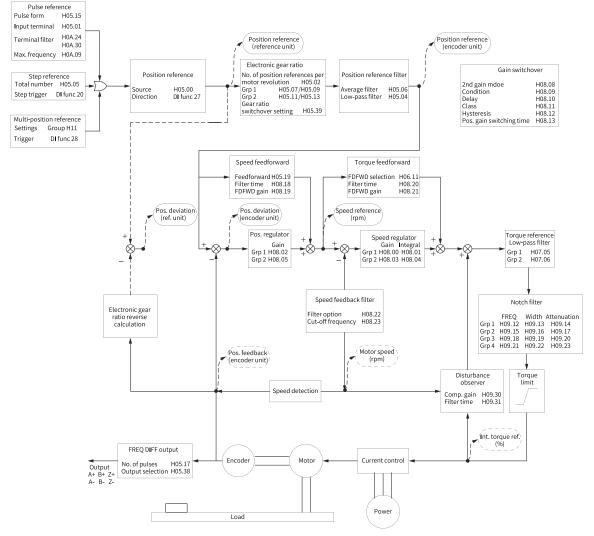



Figure 13-2 Signal exchange between the drive and the host controller

13.1.2 Block diagram of position control parameters

Figure 13-3 Block diagram of position control parameters

13.1.3 Position Reference Input Setting

The position reference input setting includes the position reference source, position reference direction, and FunIN.13 (Position reference inhibited).

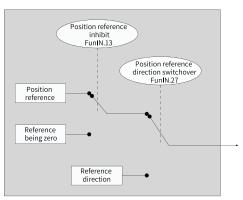
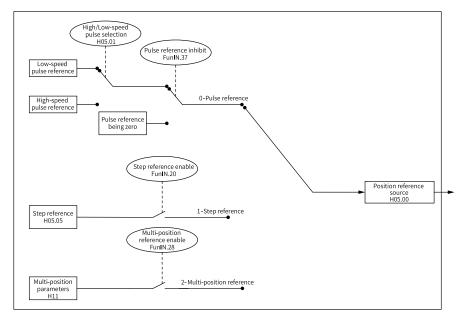



Figure 13-4 Position reference input setting

Position reference source

In the position control mode, set the position reference source in H05.00 first.

Figure 13-5 Setting the position reference source

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.00	2005-01h	Primary position reference source	0: Pulse reference 1: Step reference 2: Multi-position reference	0	-	At stop	" H05_en.00" on page 415

• Pulse reference as the source (H05.00 = 0)

Perform the following operations to obtain the correct pulse reference form.

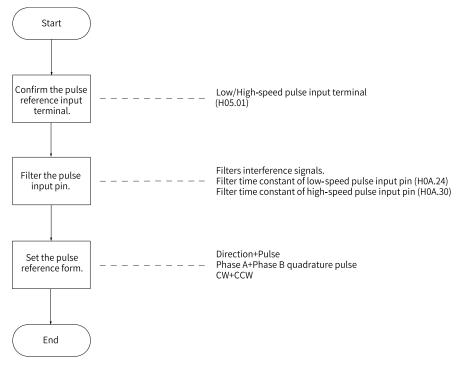
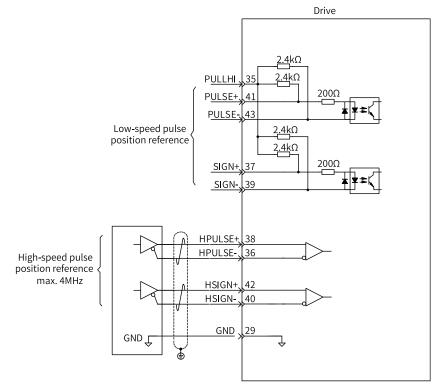



Figure 13-6 Flowchart for setting the pulse reference as the source

• Pulse reference input terminals

The drive provides two groups of pulse input terminals.

The low-speed pulse input terminals (PULSE+, PULSE-, SIGN+, SIGN-) receive differential input (maximum frequency up to 200 kpps) and open-collector input (maximum frequency up to 200 kpps).

The high-speed pulse input terminals (HPULSE+, HPULSE-, HSIGN+, HSIGN-) receive differential input (maximum frequency up to 4 Mpps) only.

\cancel{x} Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.01	2005-02h	Position pulse reference input	0: Low speed 1: High speed	0	-	At stop	" H05_en.01" on page 416
		terminal					

For details on the circuit, see "8.3.2 Position Reference Input Signals" on page 149.

Table 13–1 Specifications of pulse input

Pulse	Туре	Maximum Input Frequency	Voltage	Forward Current
High-speed pulse	Differential signal	4M	5V	< 25mA
	Differential signal	200k	5V	< 15 mA
Low-speed pulse	Open-collector signal	200k	24V	< 15 mA

Pulse input pin filter

Set the pin filter time for input terminals of low-speed and high-seed pulses. This is to prevent motor malfunction caused by interference signals.

☆ Related	parameters:
,,	p a

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0A.24	200A-19h	Filter time constant of low- speed pulse input terminal	0 to 255	30	-	At stop	" H0A_en.24" on page 481
H0A.30	200A-1Fh	Filter time constant of high- speed pulse input terminal	0ns to 255ns	2	ns	At stop	" H0A_en.30" on page 483

If the filter time constant for pulse input pins is tF, the minimum width of input signals is tmin, then the input signals before and after filtering are as follows. The filtered input signals will be delayed for tF over the unfiltered ones.

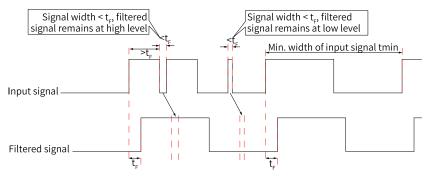


Figure 13-7 Example of filtered signal waveform

The pulse input pin filter time tF must meet the following requirement: t $_{F}$ \leqslant (20% to 25%) t $_{min}$

The recommended filter parameter setting based on the maximum frequency (minimum width) of input pulses is described in the following table.

Pulse Input Terminal	Related Parameters	Maximum Frequency of Input Pulses	Recommended Filter Time Constant (25 ns)
Low-speed pulse input terminal	H0A.24	< 167 kbps	30
Low-speed pulse input terminal	H0A.24	167 kbps to 200 kbps	20
High-speed pulse input terminal	H0A.30	200 kpps to 1 M	5
High-speed pulse input terminal	H0A.30	> 1 Mpps	3

Table 13–2 Recommended filter time constant

For example, if the filter time constant is set to 30, the actual filter time is $30 \times 25 = 750$ ns.

Pulse reference form

The drive supports the following three types of pulse references:

- Direction + Pulse (positive or negative logic)
- Phase A + Phase B quadrature pulse, quadrupled frequency
- CW + CCW

Select a pulse reference form appropriate for the host controller or other pulse generators.

☆ Related param	eters:
-----------------	--------

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.15	2005-10h	Pulse reference form	0: Direction + Pulse, positive logic 1: Direction + Pulse, negative logic 2: Phase A + phase B quadrature pulse, quadrupled frequency 3: CW + CCW	0	-	At stop	" H05_en.15" on page 420

H02.02 Rotation direction selection	H05.15 Reference form	Pulse input form	Signal	Diagram of forward pulses	Diagram of reverse pulses
	0	Pulse + Direction Positive Logic	PULSE SIGN	PULSE t_1, t_2, t_3 SIGN t_1, t_2, t_3 High	PULSE $t_1 t_2 t_3$ SIGN $t_2 t_3$ Low
	1	Pulse + Direction Negative Logic	PULSE SIGN	PULSE t_1, t_2, t_3 SIGN t_2 Low	PULSE $1_1 t_2 t_3$ SIGN $-t_1 t_2 t_3$ High
0	2	Phase A + Phase B Quadrature pulse Quadrupled frequency	PULSE (phase A) SIGN (phase B)	Phase A leads phase B by 90°. Phase A t_4 t_4 t_4 t_4 t_4 Phase B t_4 t_4 t_4	Phase B leads phase A by 90°. Phase A t_{4} t_{4} Phase B t_{4} t_{4} t_{4}
	3	CW+CCW	PULSE (CW) SIGN (CCW)	$\begin{array}{c c} CW & \underbrace{t_5 \ t_5} \\ CCW & \underbrace{t_5 \ t_5} \\ CW & \underbrace{t_5 \ t_5} \\ CCW & \underbrace{t_5 \ t_5} \\ CCW & \underbrace{t_5 \ t_5} \\ \end{array}$	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$
	0	Pulse + Direction Positive Logic	PULSE SIGN	PULSE $t_1 t_2 t_3$ SIGN $t_1 t_2 t_3$ Low	PULSE $++++$ $t_1 + t_2 + t_3$ SIGN $-+++$ High
	2	Pulse + Direction Negative Logic	PULSE SIGN	PULSE $t_1 t_2 t_3$ SIGN $t_7 t_7 t_9$ High	PULSE $t_1 \ t_2 \ t_3$ SIGN $t_2 \ Low$
1		Phase A + Phase B Quadrature pulse Quadrupled frequency	PULSE (phase A) SIGN (phase B)	Phase B leads phase A by 90°. Phase A t_4 t_4 t_4 Phase B t_4 t_4 t_4	Phase A leads phase B by 90°. Phase A t_4
		cw+ccw	PULSE (CW) SIGN (CCW)	$\begin{array}{c} CW & \overbrace{t_5 \ t_5} \\ CCW & \overbrace{t_5 \ t_5} \\ CW & \overbrace{t_5 \ t_5} \\ CW & \overbrace{t_5 \ t_5} \\ CCW & \overbrace{t_5 \ t_5} \\ \end{array}$	$\begin{array}{c} & & \\$

Table 13–3 Descriptions of the pulse form

The following table describes the maximum frequencies and minimum time widths of position pulse references corresponding to different input terminals.

Input terminal		Max.	Minimum Time Width (unit: us)					
input to	inninat	Frequency	t1	t2	t3	t4	t5	t6
High-speed terminal	pulse input	4 Mpps	0.125	0.125	0.125	0.25	0.125	0.125
Low-speed pulse input – terminal	Differen- tial input	200 kpps	2.5	2.5	2.5	5	2.5	2.5
	Collector input	200 kpps	2.5	2.5	2.5	5	2.5	2.5

Table 13–4 Specifications of pulse references

The rising time and falling time of position pulse references must be shorter than 0.1 us.

Pulse reference frequency

Set the maximum position pulse frequency in H0A.09. If the actual input pulse frequency is higher than H0A.09, EB01.0 (excessive pulse increment) will occur.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0A.09	200A-0Ah	Maximum position pulse frequency	100kHz to 4000kHz	4000	kHz	At stop	" H0A_en.09" on page 479

• Step reference as position reference source (H05.00 = 1)

When the S-ON (Servo ON) signal is active, the motor is locked when the step reference is disabled or in the rotational state when the step reference is enabled. After H05.05 (Step reference) is done executing, the motor stays locked when no step reference is triggered again.

The drive supports step operation, which means the drive can operate at a fixed speed until the set displacement is reached. The setting flowchart is as follows.

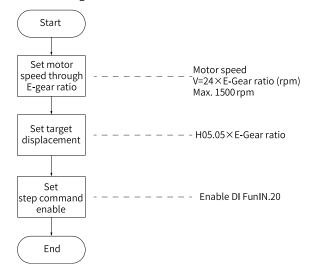


Figure 13-8 Flowchart for setting step reference as the position reference source

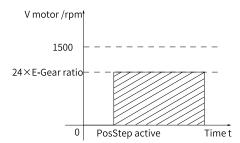


Figure 13-9 Motor operating curve (H05.00 = 1)

The hatched area in the preceding figure indicates the motor displacement: H05.05 x Electronic gear ratio (encoder unit).

Relationship between the motor speed and electronic gear ratio
 When the step reference is used as the position reference source, the set motor speed will be converted based on the following formula. The motor speed in this case cannot exceed 1500 rpm.

 V_{motor} = 24 x Electronic gear ratio (rpm)

Motor displacement

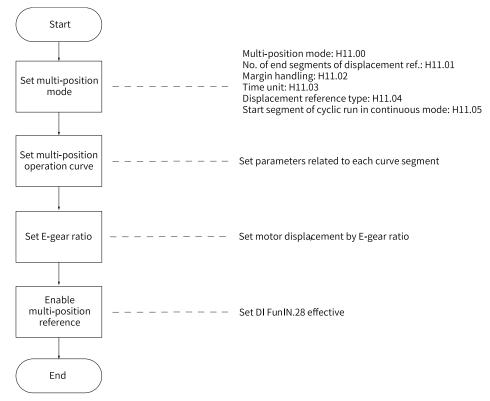
When the step reference is used as the position reference source, the sum of position references (reference unit) is set in H05.05. The sign of the setpoint of H05.05 determines whether the motor speed is a positive or a negative value.

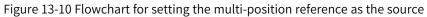
 \cancel{x} Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.05	2005-06h	Step amount	-9999 to +9999	50	Refer ence unit	At stop	" H05_en.05" on page 418

Step reference

To use the step reference as the position reference source, assign FunIN.20 (PosStep, step reference enable) to a certain DI of the servo drive, and set the active logic of this DI.


$rac{1}{\sim}$ Related p	parameters:
--------------------------	-------------


Code	Parameter Name	Function Name	Function
	c c		S-ON: Active: The position reference defined by H05.05 is
FunIN.20 PosStep		Step reference	input to the servo drive, driving the motor to run.
			Invalid: Servo motor in locked state

FunIN.20 (Step reference enable) is edge-triggered. The motor is locked after the step reference is done executing. When FunIN.20 is triggered again, the motor executes the step reference defined by H05.05 again.

• Multi-position reference as the position reference source (H05.00 = 2)

The servo drive supports multi-position operation. It stores 16 position references; the displacement, maximum running speed, and acceleration/deceleration time of each can be set. The interval time and switchover mode between positions can also be set according to actual requirements. The setting flowchart is as follows.

• Setting the multi-position operation mode

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H11.00	2011-01h	Multi-position running mode	0: Single run (number of displacements selected in H11.01) 1: Cyclic operation (number of displacement selected in H11.01) 2: DI-based operation (selected by DI) 3: Sequential operation 5: Axis-controlled continuous operation	1	-	At stop	" H11_en.00" on page 510
H11.01	2011-02h	End segments of displacement instruction	1 to 16	1	-	At stop	" H11_en.01" on page 513
H11.02	2011-03h	Starting displacement No. after pause	0: Continue to execute the unexecuted displacements 1: Start from displacement 1	0	-	At stop	" H11_en.02" on page 513
H11.03	2011-04h	Interval time unit	0: ms 1: s	0	-	At stop	" H11_en.03" on page 514

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H11.04	2011-05h	Displacement reference type	0: Relative displacement reference 1: Absolute displacement reference	0	-	Real-time	" H11_en.04" on page 514
H11.05	2011-06h	Starting displacement No. in sequential operation	0 to 16	0	-	At stop	" H11_en.05" on page 515

(1) Individual operation (H11.00 = 0)

Description	Operating Curve
	Speed (V) V1max V2max V_{2max} S_1 S_2 S_2 Time (t) Waiting time V1max, V2max: maximum operating speeds in
	displacement 1 and displacement 2
 The drive stops after one cycle of operation. The drive switches to the next displacement automatically. The interval time between displacements can be set as needed. The PosInSen (multi-position reference enable) signal is level-triggered. 	 S1, S2: displacement 1 and displacement 2 The positioning completed signal is active after each displacement is reached. If the PosInsen signal is switched off during operation, the drive abandons the unfinished displacement and stops. The COIN (positioning completed) signal is activated after the drive stops. After the PosInSen signal is enabled again, the drive executes the displacement defined by H11.02. If the S-ON signal is switched off during operation, the motor stops as defined by H02.05 (Stop mode at S-ON OFF). The COIN (positioning completed) signal is deactivated after the motor stops. When a certain displacement is in progress, the logic change of the DI assigned with FunIN.27 (PosDirSel) does not affect the operating direction in this displacement.

Table	13_5	Description	of individual	operation
Table	T2-2	Description		operation

\star Definition of terms:

A complete operation cycle covers all the position references defined by H11.01.

(2) Cyclic operation (H11.00 = 1)

Description	Operating Curve
 The drive starts from displacement 1 again after each cycle of operation. The drive switches to the next displacement automatically. The interval time between displacements can be set as needed. The cyclic operation mode is kept when the FunIN.28 (Multi-position reference enable) is active. The PosInSen (multi-position reference enable) signal is level-triggered. 	Speed (V) VImax V2max S1 S2 S1 S2 S2 S2 Time (t) V1max, V2max: maximum operating speeds in displacement 1 and displacement 2 S1, S2: displacement 1 and displacement 2 S1, S2: displacement 1 and displacement 2 The positioning completed signal is active after each displacement is reached. If the PosInsen signal is switched off during operation, the drive abandons the unfinished displacement and stops. The COIN (positioning completed) signal is activated after the drive stops. After the PosInSen signal is enabled again, the drive executes the displacement defined by H11.02. If the S-ON signal is switched off during operation, the motor stops as defined by H02.05 (Stop mode at S-ON OFF). The COIN (positioning completed) signal is deactivated after the motor stops. When a certain displacement is in progress, the logic change of the DI assigned with FunIN.27 (PosDirSel) does not affect the operating direction in this displacement.

Table 13–6 Descriptions of cyclic operation

(3) DI-based operation (H11.00 = 2)

Description	Operating Curve
 The displacement to be executed next can be set when the current displacement is in progress. The motor stops after current displacement is done executing. After the PoslnSen (position reference enable) signal is enabled again, the present displacement will be executed. The speed No. is determined by the DI logic. The interval time between displacements is determined by the command delay of the host controller. The PoslnSen (multi-position reference enable) signal is edge-triggered. 	 Speed (V) PostnSan activated again activated again Vx max Vy max Vy max Vy max Vx max Vy max Vx max Vy max Vx max Vy max Vx max Vy max Trime area that can be used to set displacement y The positioning completed signal is active after each displacement is reached. If the PosInsen (multi-position reference enable) signal is switched off during operation, the drive continues to execute the unfinished displacement and outputs the COIN (positioning completed) signal. The displacements must be switched in the following sequence: Wait until displacement no When displacement x is in progress or done, switch off the PosInSen (multi-position reference enable) signal first, and then change the displacement x again). After displacement x is done executing, switch on the PosInSen (multi-position reference enable) signal again to make the drive execute displacement y. If the S-ON signal is switched off during operation, the motor stops as defined by H02.05 (Stop mode at S-ON OFF). The COIN (positioning completed) signal is deactivated after the motor stops. When a certain displacement is in progress, the logic change of the DI assigned with FunIN.27 (PosDirSeI) does not affect the operating direction in this displacement.

Table 13–7 Descriptions of DI-based operation

In the multi-position operation mode, assign four DIs with FunIN.6 to FunIN.9 respectively, and set the active logic of these DIs.

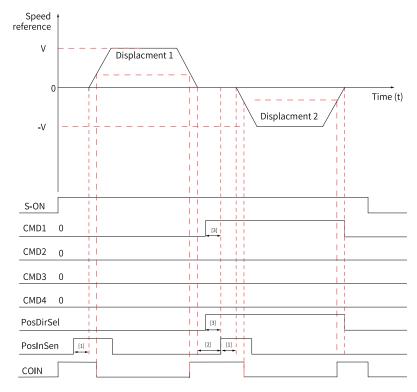


Figure 13-11 Multi-position sequence diagram

Note

- [1] The PosInSen signal is edge-triggered. The minimum signal widths required by the normal DI and high-speed DI are 3 ms and 0.25 ms respectively.
- [2] Area for switching the displacement No.: Refers to the range that start from the moment the last position reference is done transmitting to the moment the next PosInSen (multi-position reference enable) signal is activated again.
- [3] When a normal DI is used, an effective signal width of 0.125 ms must be kept.

Code	Parameter Name	Function Name	Function
FunIN.6	CMD1	Multi-reference switchover 1	The displacement No. is a 4-bit binary. The
FunIN.7	CMD2	Multi-reference switchover 2	relationship between the displacement No. and
FunIN.8	CMD3	Multi-reference switchover 3	CMD1 to CMD4 is shown in <i>"Table 13–8" on page</i>
FunIN.9	CMD4	Multi-reference switchover 4	282. The DI logic is level-triggered. The CMD value is 1 upon active level input or 0 upon inactive level input.

☆ Related parameters:

Table 13-8 Relationship	between the dis	placement No. a	and CMD1 to CMD4

CMD4	CMD3	CMD2	CMD1	Segment No.
0	0	0	0	1
0	0	0	1	2
1	1	1	1	16

Sequential running (H11.00 = 3)

Description	Operating Curve
 Description The drive stops after one cycle of operation. (H11.05 = 0 or H11.05 > H11.01). The starting displacement after the first cycle of operation is defined by H11.05. The drive switches to the next displacement automatically. There is no interval time between displacements. The PoslnSen (multi-position reference enable) signal is level-triggered. 	Operating Curve Speed (V) V1max V1max V2max V1max V2max V1max V2max V1max V2max V1max V1max V2max V2max V2max V1max V2max V2max V2max V1max<
	• When a certain displacement is in progress, the logic change of the DI assigned with FunIN.27 (PosDirSel) does not affect the operating direction in this displacement.

Table 13–9 Descriptions of sequential operation

Axis-controlled continuous operation (H11.00 = 5)

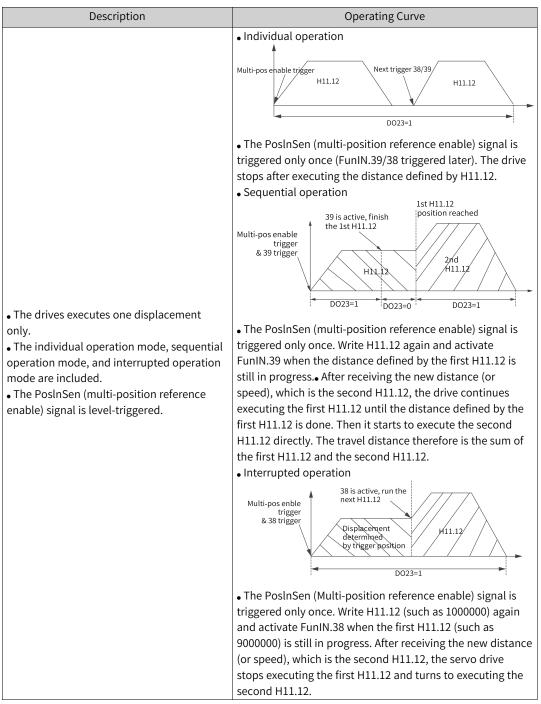


Table 13–10 Description of axis-controlled continuous operation

 \Rightarrow Related parameters:

Code	Parameter Name	Function Name	Function
FunIN.38	MultiBlockTrig	Write interrupt trigger signal	Active: Newly written command activated immediately Inactive: Newly written command not activated
FunIN.39	MultiBlockWr	Write non-interrupt trigger signal	Active: Newly written command activated after current displacement is done executing Inactive: Newly written command not activated
FunOUT.23	WrNextBlockEn	Next command input enable	Active: Next command input allowed Inactive: Next command input inhibited

• Setting multi-position operating curve

A total of 16 position references can be set during multi-position operation. The displacement, maximum operating speed, acceleration/deceleration time, and interval time between displacements can be set separately. The following takes displacement 1 as an example.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H11.12	2011-0Dh	Displacement 1	-1073741824 to 1073741824	10000	Refer ence unit	Real-time	" H11_en.12" on page 516
H11.14	2011-0Fh	Max. speed of displacement 1	1 rpm to 6000 rpm	200	RPM	Real-time	" H11_en.14" on page 517
H11.15	2011-10h	Acc/Dec time of displacement 1	0ms to 65535ms	10	ms	Real-time	" H11_en.15" on page 517
H11.16	2011-11h	Interval time after displacement 1	0 ms(s) to 10000 ms(s)	10	ms (s)	Real-time	" H11_en.16" on page 517

☆ Related parameters:

The actual operating curve of the motor based on preceding settings is shown in the following figure.

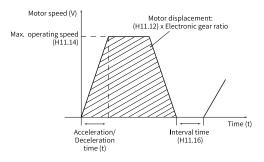


Figure 13-12 Motor operating curve in displacement 1

Actual time (t) taken to accelerate to H11.14:

$$t = \frac{(H11.14)}{1000} \times (H11.15)$$

For parameter settings of other 15 displacements, see Chapter "Parameter List".

• Setting multi-position reference enable mode

To use the multi-position reference as the position reference source, assign FunIN.28 (PosInSen, multi-position reference enable) to a certain DI of the drive, and set the active logic of this DI.

Code	Parameter Name	Function Name	Function
		Active: The motor executes the multi-position reference. Invalid: Servo motor in locked state	
FunIN.28	PosInSen	Multi-position reference enable	Note: • When H11.00 is set to 0, 1, or 3, the logic of the DI assigned with the PosInSen signal is level-triggered. • When H11.00 is set to 2, the logic of the DI assigned with the PosInSen signal is edge-triggered.

Position reference direction

A DI can be used to change the position reference direction, so as to change the motor direction of rotation. Assign FunIN.27 (PosDirSel, position reference direction) to a DI of the drive, and set the active logic of this DI.

☆ Related parameters:

Code	Parameter Name	Function Name	Function
FunIN.27	PosDirSel	Position reference direction	Inactive: Actual position reference direction same as the set direction Active: Actual position reference direction opposite to the set direction

The actual motor direction is related to the rotating direction in H02.02, positive/negative of position reference, position reference direction (FunIN.27).

H02.02	Sign of Position Reference	FunIN.27	Direction of Rotation
0	+	Inactive	CCW
0	+	Active	CW
0	-	Inactive	CW
0	-	Active	CCW
1	+	Inactive	CW
1	+	Active	CCW
1	-	Inactive	CCW
1	-	Active	CW

Table 13–11 Motor direction of rotation

Position reference inhibited

FunIN.13 (Inhibit) and FunIN.37 (PulseInhibit) are used to inhibit position references and pulse references.

• Position reference inhibited

The servo drive sets all the position references to 0, which means it does not respond to any internal or external position references, and the motor is in the locked state in the position control mode. In this case, the drive can switch to other control modes to continue operating.

When position reference inhibition is activated, the input position reference counter (H0b.13) continues counting the position references in the position control mode, but the references counted in this case are not responded to by the servo drive after position reference inhibition is deactivated.

To use FunIN.13 (Inhibit, position reference inhibited), assign FunIN.13 to a certain DI and set the active logic of this DI. It is recommended to use the high-speed DI (DI8 or DI9) terminal.

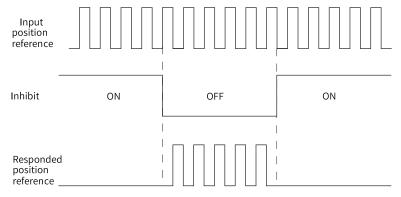


Figure 13-13 Waveform example for position reference inhibited

☆Related function No.:

Code	Parameter Name	Function Name	Function
FunIN.13		Position reference inhibited	Inactive: The drive responds to position references in the position control mode. Active: The drive does not respond to any internal or external position references in the position control modes.

Pulse reference inhibited

The servo drive sets all the pulse references to 0, which means it does not respond to any pulse references inputted from the pulse input terminal but it can respond to position references in other forms in the position control mode. In this case, the drive can be switched to other control modes to continue operating.

When the pulse reference is inhibited in the position control mode and no other forms of position references are used, the input position reference counter (H0b.13) continues counting the pulse references inputted from the pulse input terminal, but the pulse references counted in this case are not responded to by the drive after the pulse reference is no longer inhibited.

If position references in other forms are used in the position control mode, the input position reference counter (H0b.13) continues counting the these position references, and these references will be executed.

To use FunIN.37 (PulseInhibit, pulse reference inhibit), assign FunIN.37 to a certain DI and set the active logic of this DI. It is recommended to use the high-speed DI (DI8 or DI9) terminal.

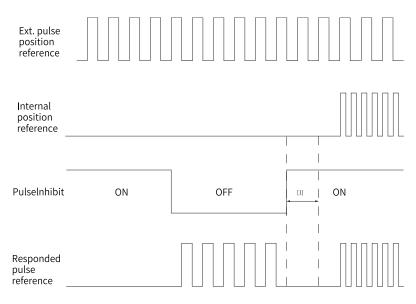


Figure 13-14 Waveform example for pulse reference inhibited

Note

[1] When DI is used, keep an interval of at least 0.5 ms from the moment the DI logic is deactivated to the moment the internal position reference is inputted.

 \therefore Related function No.:

Code	Parameter Name	Function Name	Function
FunIN.37	PulseInhibit	Pulse reference inhibited	When the position reference source is pulse reference (H05.00 = 0) in the position control mode: Inactive: The drive responds to pulse references. Active: The drive does not respond to pulse references.

13.1.4 **Reference Frequency Division/Multiplication (Electronic Gear Ratio)**

The electronic gear ratio must be within the following range:

0.001×Encoder resolution ≤ 4000×Encoder resolution B ≤ 10000

Otherwise, EB03.0 (electronic gear ratio beyond the limit) will occur.

10000

In cases where an operation error occurs due to an improper electronic gear ratio, it is recommended to reset the electronic gear ratio after the servo drive stops.

Definition of the electronic gear ratio

In the position control mode, the input position reference (reference unit) defines the load displacement; the motor position reference (encoder unit) defines the motor displacement. The electronic gear ratio is used to establish a proportional relationship between the input position reference and motor position reference.

The electronic gear ratio, which allows frequency division (electronic gear ratio < 1) or frequency multiplication (electronic gear ratio > 1), can be used to set the actual displacement corresponding to the input position reference per reference unit, or used to increase the position reference frequency when the motor speed needed cannot be fulfilled due to limited pulse output frequency of the host controller or limited parameter value range.

- ★ Definition of terms:
- Reference unit: Refers to the minimum identifiable value input from the host controller to the servo drive.
- Encoder unit: Refers to the value of the input reference multiplied/divided by the electronic gear ratio.

Procedure for setting the electronic gear ratio

The electronic gear ratio varies with the mechanical structure. Set the electronic gear ratio according to the following flowchart.

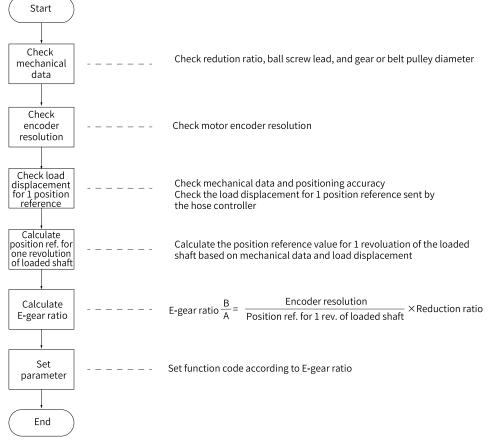


Figure 13-15 Procedure for setting the electronic gear ratio

See the following figure for how to set parameters.

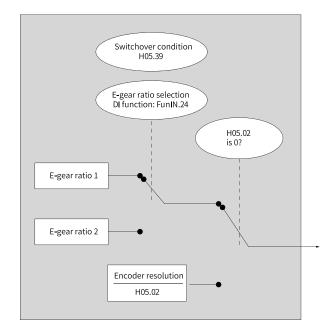


Figure 13-16 Procedure for setting the electronic gear ratio

Note

When the setpoint of H05.02 (Pulses per revolution) is not 0, the following formula applies:

Encoder resolution В Electronic gear ratio = H05.02

А

. In this case, electronic gear ratios 1 and 2 are invalid.

Related objects

Setting the electronic gear ratio • \cancel{k} Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.02	2005-03h	Pulses per revolution	0 P/Rev-1048576 P/Rev	0	PPR	At stop	" H05_en.02" on page 418
H05.07	2005-08h	Electronic gear ratio 1 (numerator)	1 to 1073741824	262144	-	Real-time	" H05_en.07" on page 419
H05.09	2005-0Ah	Electronic gear ratio 1 (denominator)	1 to 1073741824	10000	-	Real-time	" H05_en.09" on page 419
H05.11	2005-0Ch	Electronic gear ratio 2 (numerator)	1 to 1073741824	262144	-	Real-time	" H05_en.11" on page 419
H05.13	2005-0Eh	Electronic gear ratio 2 (denominator)	1 to 1073741824	10000	-	Real-time	" H05_en.13" on page 420

• Switching the electronic gear ratio

The motor speed may fluctuate significantly if the electronic gear ratio changes sharply in real time or electronic gear ratio 1 differs greatly from electronic gear ratio 2. In this case, set H05.04 (First-order low-pass filter time constant) properly to allow smooth switchover of position references.

- The electronic gear ratio can be switched when H05.02 (Pulses per revolution) is set to 0.
 Determine whether to switch between electronic gear ratios 1 and 2 based on mechanical conditions. Set the condition for switching the electronic gear ratio.
- Only one electronic gear ratio is effective at any moment.
- The effective time of real-time change in the electronic gear ratio is also restricted by the switchover condition.

 \Rightarrow Related parameters:

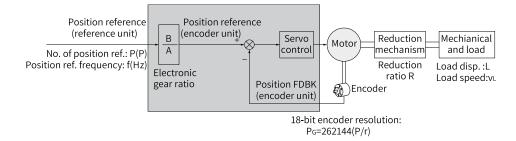
Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.39	2005-28h	Electronic gear	0: Switch after position reference is	0	-	At stop	"" on page
		ratio switchover by DI	kept 0 for 10ms 1: Switch in real time				

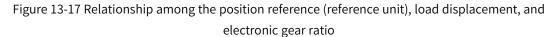
Assign FunIN.24 (GEAR-SEL, electronic gear ratio selection) to a certain DI and set the active logic of this DI.

 $\stackrel{\text{\tiny theta}}{\sim}$ Related parameters:

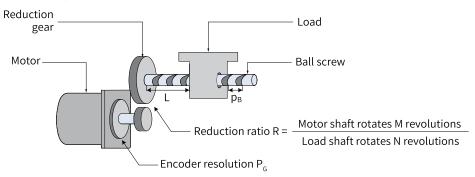
Code	Parameter Name	Function Name	Function
EupIN 24	FunIN 24 GEAR SEL	Electronic gear ratio	Inactive: Electronic gear ratio 1 used in the position control mode
FunIN.24 GE		selection	Active: Electronic gear ratio 2 used in the position control mode

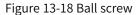
See the following table for the electronic gear ratio used by the servo drive.


H05.02	H05.39	Level of the DI Assigned with FunIN.24	Electronic gear ratio
	0	Inactive	<u>H05.07</u> H05.09
0	0	Active	<u>H05.11</u> H05.13
0	1	Inactive	H05.07 H05.09
	I	Active	H05.11 H05.13
1 to 1048576		-	-


The resolution of the serial encoder is 2n PPR, where "n" is the number of bits of the serial encoder.

For example, the resolution of a 18-bit serial encoder is 223 PPR, which is 262144 PPR.


• Calculating the electronic gear ratio


The following figure shows the relationship among the position reference (reference unit), load displacement, and electronic gear ratio.

Take the ball screw in linear motion as an example, with PB (mm) as the screw lead, PG as the encoder resolution, and R as the reduction ratio of the reducer.

When the load displacement per pulse ΔL (mm) is known:

The load shaft rotates $\frac{\Delta L}{p_B}$ circles and the motor shaft rotates $\frac{\Delta L}{p_B} \times R$ mechanical displacement is ΔL . Then the following formula applies:

$$1 \times \frac{B}{A} = \frac{\Delta L}{P_B} \times R \times P_G$$

circles when the

Therefore, the electronic gear ratio is as follows.

$$\frac{B}{A} = \frac{\Delta L}{p_B} \times R \times P_G$$

 When the load displacement L (mm) and position reference sum P (P) are known: The load shaft rotates <u>L</u> circles, and the motor shaft rotates <u>L</u> × R circles when the mechanical displacement is L. Then the following formula applies:

$$P \times \frac{B}{A} = \frac{L}{p_B} \times R \times P_G$$

Therefore, the electronic gear ratio is as follows.

$$\frac{B}{A} = \frac{L}{p_B} x R x P_G x \frac{1}{P}$$

• When the load moving speed VL (mm/s) and position reference frequency f (Hz) are known: Load shaft speed: $\frac{V_L}{P_B}$ (r/s)

Motor speed: $v_M = \frac{v_L}{p_B} \times R$ (r/s)

The relationship among the position reference frequency, electronic gear ratio, and motor speed is as follows:

$$fx - \frac{B}{A} = v_M x P_G$$

Therefore, the electronic gear ratio is as follows.

$$\frac{B}{A} = \frac{V_M \times P_G}{f}$$

• Example for setting the electronic gear ratio

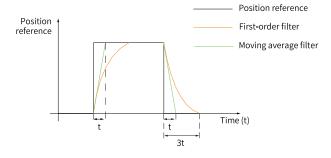
Step	Parameter Name		Mechanical Structure	
		Transmission With Ball Screw	Transmission With Belt Pulley	Rotary Load
-				
1	Mechanical parameters	Reduction ratio (R): 1/1 Screw lead: 0.01 m	Reduction ratio (R): 5/1 Diameter of belt pulley: 0.2 m (Circumference of belt pulley): 0.628 m	Reduction ratio (R): 10/ 1 Load angle of rotation per revolution of the load shaft: 360°
2	Resolution	18-bit = 262144P/r	18-bit = 262144P/r	18-bit = 262144P/r
3	Load displacement per position reference (reference unit)	0.0001m	0.000005m	0.01°
4	Position references per revolution of the load shaft (reference unit)	$\frac{0.01}{0.0001} = 100$	$\frac{0.628}{0.000005} = 125600$	$\frac{360}{0.01}$ = 36000
5	Calculation	$\frac{B}{A} = \frac{262144}{100} \times \frac{1}{1}$	$\frac{B}{A} = \frac{262144}{125600} \times \frac{5}{1}$	$\frac{B}{A} = \frac{262144}{36000} \times \frac{10}{1}$
6	Setting	H05.07 = 262144 H05.09 = 100	H05.07 = 1310720 H05.09 = 125600	H05.07 = 2621440 H05.09 = 36000

Table 13–12 Example for setting electronic gear ratio

13.1.5 Position Reference Filter

Position reference filter serves to filter the position references (in encoder unit) multiplied or divided by the electronic gear ratio, which includes first-order low-pass filtering and moving average filtering. It involves the first-order filter and moving average filter.

It is applicable to the following conditions:


- The acceleration/deceleration process is not performed on the position references sent from the host controller.
- The pulse reference frequency is low.

- The electronic gear ratio is larger than 10.
- ☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.04	2005-05h	First-order low- pass filter time constant	0.0 ms to 6553.5ms	0.0	ms	At stop	" H05_en.04" on page 418
H05.06	2005-07h	Time constant of moving average filter	0.0 ms to 128.0ms	0.0	ms	At stop	" H05_en.06" on page 419

This function does not affect the displacement value (position reference sum).

An excessively high setpoint delays the responsiveness, so set a proper filter time constant based on actual conditions.

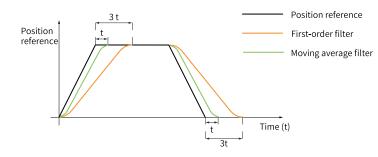


Figure 13-20 First-order filter and moving average filter for trapezoid position references

13.1.6 Position Deviation Clear

Position deviation = Position reference sum – Position feedback sum

This function serves to clear the position deviation when the condition defined by H05.16 (Clear action selection) is met.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.16	2005-11h	Clear action	0: Clear position deviation upon S- OFF and fault 1: Clear position deviation pulses upon S-OFF and fault 2: Clear position deviation by CIrPosErr signal input from DI	0	-	At stop	" H05_en.16" on page 421

When H05.16 is set to 2, assign FunIN.35 (ClrPosErr, clear position deviation) to a certain DI and set the active logic of this DI.

 \Rightarrow Related parameters:

Code	Parameter Name	Function Name	Function
FunIN.35	ClrDocErr	Position deviation cleared	Active: Position deviation cleared
Fullin.55	ClrPosErr	Position deviation cleared	Inactive: Position deviation not cleared

The setting method is shown as follows.

Value	Clear Condition	Clear Time			
H05.16 = 0	Clear the position deviation when the S-ON signal is switched off or when a fault occurs.	Servo running Servo stop Clear			
H05.16 = 1	Clear the position deviation when the S-ON signal is switched off or when the servo drive stops upon a fault event.	Servo running Servo stop Clear			
H05.16 = 2	Clear the position deviation cleared when the S-ON signal is switched off or when a fault occurs. Clear the position deviation when ClrPosErr signal is inputted through a DI when the servo drive is in the RUN state.	DI active DI inactive Clear (Rising edge-triggered) DI active DI inactive DI inactive Clear (Falling edge-triggered)			

Table 13–13 Position deviation clear

13.1.7 Frequency-Division Output

Caution

It is recommended to use the active edge output by the Z signal in cases where a high precision frequency-division output of Z signal is required.

- H05.41 = 0: Rising-edge triggered
- H05.41 = 1: Falling-edge triggered

The frequency-division output function outputs the position reference pulses or encoder feedback position references as A/B phase quadrature pulses.

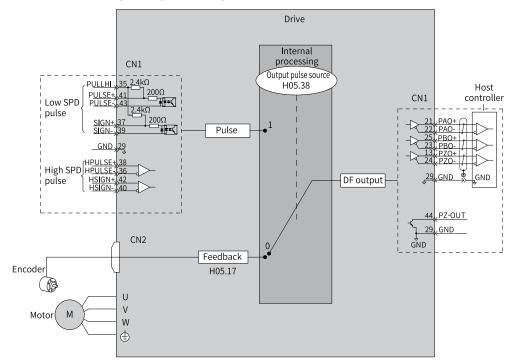


Figure 13-21 Schematic diagram of frequency-division output

It is recommended to use synchronous output (H05.38 = 1) of pulse references in case of synchronous tracing of multi-axis servo pulses. When the host controller is used for closed-loop feedback, it is recommended to use encoder frequency-division output (H05.38 = 0).

The drive offers one group of frequency-division terminals, as described below:

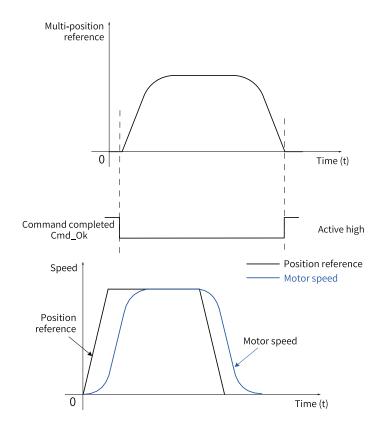
- Phase A pulses: PAO+ and PAO-, differential output, maximum output pulse frequency: 2 Mpps
- Phase B pulses: PBO+ and PBO-, differential output, maximum output pulse frequency: 2 Mpps
- Phase Z pulses: PZO+ and PZO-, differential output, maximum output pulse frequency: 2 Mpps
- PZ-OUT, GND, open-collector output, maximum output pulse frequency: 100 kpps

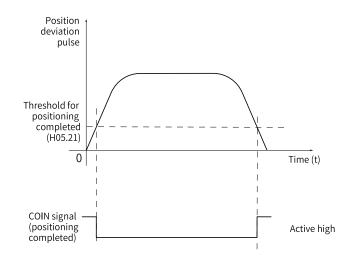
When using the frequency-division output function, set the output pulse source (H05.38), phase (H02.03), resolution (H05.17), and phase Z pulse polarity (H05.41) according to requirements.

When the output source is encoder frequency-division pulse (H05.38 = 0), the phase A/B output pulses per motor revolution are determined by H05.17 (Encoder frequency-division pulses) and H05.61 (Encoder frequency-division pulses). The pulse width (T) of phase A/B is determined by the motor speed. The phase Z, whose width is also T, is synchronized with phase A. Z signal is output once per motor revolution.

H02.03 (Output pulse phase)	H05.41 (Z pulse output polarity)	Pulse Output Diagram of Forward RUN	Pulse Output Diagram of Reverse RUN
	0	Phase A Phase B Phase Z Phase A leads phase B by 90°.	Phase A Phase B Phase Z Phase B leads phase A by 90°.
0	1	Phase A Phase B Phase Z Phase A leads phase B by 90°.	Phase A Phase B Phase Z Phase B leads phase A by 90°.
1	0	Phase A Phase B Phase Z Phase B leads phase A by 90°.	Phase A Phase B Phase Z Phase A leads phase B by 90°.
	1	Phase A Phase A Phase B Phase Z Phase B leads phase A by 90°.	Phase A Phase B Phase Z Phase Z Phase A leads phase B by 90°.

Table 13–14 Pulse diagrams of encoder frequency-division output (H05.38 = 0)


Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.03	2002-04h	Output pulse phase	0: Phase A leads phase B 1: Phase A lags behind phase B	0	-	At stop	" H02_en.03" on page 394
H05.17	2005-12h	Number of encoder frequency-division pulses	35 P/Rev-32767 P/Rev	2500	PPR	At stop	" H05_en.17" on page 422
H05.38	2005-27h	Servo pulse output source	0: Encoder frequency division output 1: Pulse reference synchronous output 2: Frequency division or synchronous output inhibited	0	-	At stop	" H05_en.38" on page 429
H05.41	2005-2Ah	Z pulse output polarity	0: Negative (Z pulse active low) 1: Positive (Z pulse active high)	1	-	At stop	" H05_en.41" on page 431
H05.61	2005-3Eh	Encoder frequency-division pulse output (32- bit)	0 P/Rev-262143 P/Rev	0	PPR	At stop	" H05_en.61" on page 435


13.1.8 Motion Control/Internal Command/Positioning Completed/Proximity

Functions

- "Motion control completed" refers to the completion of command transmission and positioning in the position control mode. In this case, the servo drive outputs a McOK (motion control completed) signal, and the host controller, upon receiving the signal, acknowledges the motion control is done.
- "Internal command completed" refers to the completion of command transmission. In this case, the internal multi-position reference is zero. The servo drive therefore outputs a CmdOk (Internal command completed) signal, and the host controller, upon receiving the signal, acknowledges the internal command transmission is done.
- Positioning completed: When the position deviation fulfills the condition set by users (H05.20), it indicates the positioning in position control mode is completed. Meanwhile, the servo drive outputs positioning completed (COIN) signal, and the host controller, after receiving this signal, confirms the positioning is completed.

The following figure shows the schematic diagram.

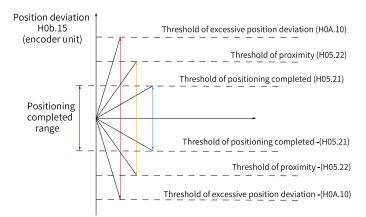
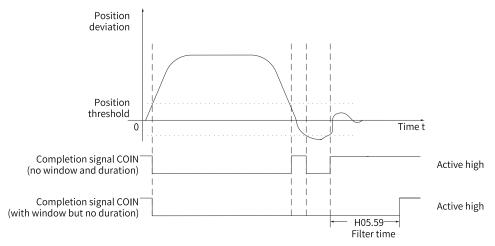



Figure 13-23 Signals related to position deviation

You can set the unit for positioning completed, proximity, and excessive position deviation in H0A.17. When position deviation meets the condition defined by H05.20, the servo drive outputs a NEAR signal to prepare for positioning completed.

Before applying the positioning completed/proximity function, set H05.20, H05.21, H05.22, H05.59, and H05.60 first. The schematic diagram for the window time (H05.59) and hold time (H05.60) of positioning completed signal is as follows.

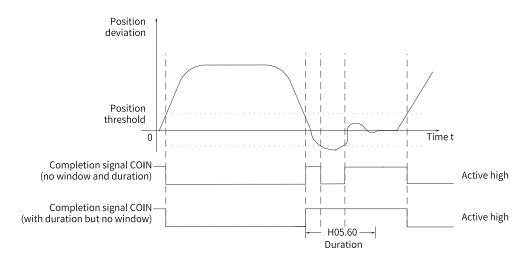


Figure 13-24 Schematic diagram for the window time (H05.59) and hold time (H05.60) of positioning completed signal

When the COIN (positioning completed) signal has a hold time of 0, it remains active until the next position reference is received.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0A.17	200A-12h	Reference/Pulse selection	0: Pulse unit 1: Reference unit	0	-	At stop	" HOA_en.17" on page 480
H05.20	2005-15h	Condition for positioning completed signal output	0: Absolute position deviation below H05.21 1: Absolute position deviation below H05.21 and filtered position reference is 0 2: Absolute position deviation below H05.21 and unfiltered position reference is 0 3: Absolute position deviation kept below H05.21 within the time defined by H05.60 and unfiltered position reference is 0	0	-	Real-time	" H05_en.20" on page 423
H05.21	2005-16h	Threshold of positioning completed	1 to 65535	183	Encoder unit	Real-time	" H05_en.21" on page 423
H05.22	2005-17h	Proximity threshold	1 to 65535	65535	Encoder unit	Real-time	" H05_en.22" on page 424
H05.59	2005-3Ch	Positioning window time	0ms to 30000ms	0	ms	Real-time	" H05_en.59" on page 435
H05.60	2005-3Dh	Hold time of positioning completed	0ms to 30000ms	0	ms	Real-time	" H05_en.60" on page 435

☆ Related parameters:

Caution

- Set H05.22 to a value higher than H05.21 in general cases.
- H05.21 only reflects the absolute threshold when the positioning completed signal is active. It is not related to the positioning precision.
- An excessively high speed feedforward gain (H08.19) or low-speed operation reduces the absolute position deviation. In this case, the COIN (positioning completed) signal may keep active if H05.21 is set to an excessively high value. To improve the positioning accuracy, decrease the value of H05.21.
- When H05.21 is set to a low value along with small position deviation, you can change the condition for outputting the COIN (positioning completed) signal in H05.20.
- An inactive S-ON signal deactivates the COIN (positioning completed) signal and NEAR (proximity) signal output.
- The NEAR (proximity) signal output is not affected by H05.60 (Hold time of positioning completed) or H05.59 (Positioning window time)and requires no detection on the change of position references.

To apply motion control/internal command/positioning completion and the proximity function, allocate four DO terminals with FunOUT.24 (McOk, motion control completed), FunOUT.22 (CmdOk, internal command completed), FunOUT.5 (COIN, positioning completed), and FunOUT.6 (NEAR, proximity) respectively, and set the active logic of these terminals.

☆ Related parameters:

Code	Parameter Name	Function Name	Function
FunOUT.5	COIN	Positioning completed	Active: The absolute position deviation meets the threshold defined by H05.21 in the position control mode, indicating positioning is done. Inactive: The servo drive is in the process of completion in the position control mode.
FunOUT.6	NEAR	Proximity	Active: The absolute position deviation meets the condition defined by H05.22, indicating the servo drive is close to the target position. Inactive: The servo drive is in the process of proximity in the position control mode.
FunOUT.22	CmdOk	Internal command completed	Active: The transmission of the multi-position reference or interrupt positioning reference is done in the position control mode. Inactive: The transmission of the multi-position reference or interrupt positioning reference is in progress in the position control mode.
FunOUT.24	McOk	Motion control completed	Active: The transmission of the multi-position reference or interrupt positioning reference and the positioning process are done in the position control mode. Inactive: The transmission of the multi-position reference or interrupt positioning reference or positioning is in progress in the position control mode.

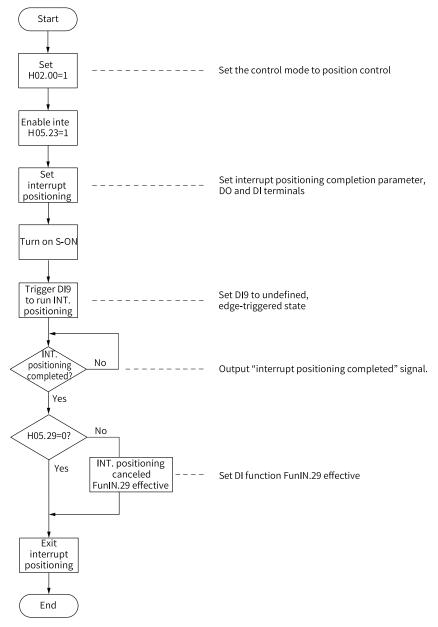
13.1.9 Interrupt Positioning

The interrupt positioning signal cannot be triggered during homing.

Description

If interrupt positioning is triggered in the position control mode, the servo drive halts current operation and turns to executing the pre-set fixed distance. To be specific, when the S-ON signal is active in the position control mode, if this function is enabled, the servo motor runs the position reference for interrupt positioning in the original direction (before the function is triggered).

When interrupt positioning is in progress, the servo drive does not respond to any other internal/ external position references (including another interrupt positioning command). In this case, the input position reference counter (H0b.13) counts the interrupt positioning reference only. After the running of this function is complete, the servo drive keeps shielding or responds to position references according to the setting of H05.29 (Interrupt positioning unlock), but discards the position references input in the running process.


After interrupt positioning is done, the servo drive outputs the interrupt positioning completed (FunOUT.15: XintCoin) signal and positioning completed (FunOUT.5: COIN) signal, while the host controller, upon receiving XintCoin signal, acknowledges interrupt positioning is done. The XintCoin signal output is not related to the S-ON signal or the logic of DI9.

Interrupt positioning is effective only when the following conditions are met:

- The motor speed is higher than or equal to 10 rpm before interrupt positioning is triggered, or the setpoints of H05.26 (Constant operating speed in interrupt positioning) and H05.24 (Displacement of interrupt positioning) are not 0.
- The DI assigned with FunIN.33 (Interrupt positioning inhibited) is not used or the logic of this DI is inactive.

Note

The moving average filter is inactive when interrupt positioning is in progress.

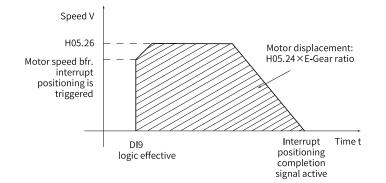
Parameter Settings

☆	Related	parameters:
---	---------	-------------

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.23	2005-18h	Interrupt positioning selection	0: Disable 1: Enabled	0	-	At stop	" H05_en.23" on page 424
H05.24	2005-19h	Interrupt positioning displacement	0 to 1073741824	10000	Refer ence unit	Real-time	" H05_en.24" on page 424

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.26	2005-1Bh	Constant operating speed in interrupt positioning	0rpm to 6000rpm	200	RPM	Real-time	" H05_en.26" on page 425
H05.27	2005-1Ch	Acc./Dec. time of interrupt positioning	0ms to 1000ms	10	ms	Real-time	" H05_en.27" on page 425
H05.29	2005-1Eh	Interruption fixed length unlock	0: Disabled 1: Enabled	1	-	Real-time	" H05_en.29" on page 425

$\boldsymbol{\bigstar}$ Related parameters:


Code	Parameter Name	Function Name	Function
FunIN.29	XintFree	Interrupt positioning clear	Active: The interrupt positioning state is cleared, which means the servo drive can respond to other position references. Inactive: The interrupt positioning state is locked, which means the servo drive cannot respond to other position references.
FunIN.33	XintInHibit	Interrupt positioning inhibited	Active: Interrupt positioning inhibited Inactive: Interrupt positioning allowed
FunOUT.15	VintCoin	Interrupt positioning completed	Active: Interrupt positioning completed in position control Inactive: Displacement in interrupt positioning not completed in position control

During interrupt positioning, DI9 is used to trigger interrupt positioning only, which means no other functions can be assigned to DI9 through H03.18 (DI9 function selection) and no other DIs can trigger interrupt positioning. The logic of DI9 (H03.18) is "edge-triggered".

H03.19	Active Logic of DI9	Waveform
0	Active low	
1	Active high	

The constant operating speed during interrupt positioning is shown in the following figure.

Figure 13-26 Motor operating curve during interrupt positioning

H05.26	Motor Speed before Triggering Interrupt Positioning	Interrupt Positioning	Constant operating speed in interrupt positioning
	< 10	Inactive	-
0	≥ 10	Active	Motor Speed before Triggering Interrupt Positioning
1 to 6000	-	Active	H05.26

Table 13–16 Motor speed durir	ng interrupt positioning
-------------------------------	--------------------------

13.1.10 Homing

- The homing trigger signal is hidden when interrupt positioning or multi-position reference is in progress.
- To use the homing function, ensure H11.00 is not set to 5 as the setpoint 5 indicates enhanced axis control mode, in which the homing function is hidden.

Description

- Home (or mechanical home): Indicates the position of the home switch or Z signal depending on the value of H05.31 (Homing mode).
- Zero: positioning target point, represented as home + offset (set in H05.36). When H05.36 (Mechanical home offset) is set to 0, the zero position coincides with the home.

In the position control mode, when homing is triggered after the S-ON signal is activated, the motor starts searching for the zero position.

When homing is in progress, the servo drive does not respond to other position references (including another homing trigger signal) until homing is done.

This function includes two actions:

• Home attaining: After receiving the homing signal, the servo drive proactively locates the relative position between the motor shaft and the preset mechanical home reference point; it finds the home and then moves through the offset from the home reference point to the zero point. The homing mode usually applies in initial searching for the zero position.

• Electrical homing: After determining the absolute zero position through homing, the drive takes current position as the start position to execute a relative displacement.

After the homing function (both homing and electrical homing) is executed, The absolute position of the motor (H0b.07) is consistent with the home offset (H05.36).

The servo drive outputs the homing completed signal (FunOUT.16: HomeAttain) or electrical homing completed signal (FunOUT.17: ElecHomeAttain), and the host controller, upon receiving these two signals, acknowledges the homing function is done executing. HomeAttain or ElecHomeAttain signal is not related to the operation mode or operation state of the servo drive.

Mode	Homing trigger mode (H05.30)	Homing Direction, Deceleration Point, Home	Trigger Signal	Total Motor Displacement
	0	-	-	-
	1		HomingStart signal	Determined by the
	3	Determined by H05.31	Servo ON	mechanical home
Homing	4	,	Servo ON	coordinate and offset displacement
	6	-	-	-
	8	-	-	-
	2	The homing direction is	HomingStart signal	
Electrical homing	5	consistent with the motor displacement sign (+/-). The deceleration point or home signal is not needed.	Servo ON	(H05.36 - H0b.07) x Electronic gear ratio

Table 13–17 Comparison between homing and electrical homing

Note

Both the moving average filtering and low-pass filtering are invalid during homing.

Homing

Note

- Set mechanical limit switches before enabling the homing function. For homing upon hit-and-stop, set the offset to a value within the travel range to prevent the machine from collision due to high-speed operation during homing.
- When the motor hits the limit switch during homing, the drive reports E950.0 (Forward overtravel) or E952.0 (Reverse overtravel), and the motor, if H05.40 is set to 0 or 1, stops in the stop mode defined by H02.07.

The following part takes an example to describe homing attaining:

- H05.31 = 0: Forward homing, home switch as the deceleration point and the home
- H05.31 = 2: Forward, Z signal as deceleration point and home
- H05.31 = 4: Forward homing, home switch as the deceleration point and Z signal as the home
- H05.31 = 6: Forward direction, deceleration point and home being forward limit switch signal
- Forward, positive limit switch as deceleration point and Z signal as home (H05.31 = 8)
- H05.31 = 10: Forward homing, mechanical limit position as the deceleration point and the home (H05-31 = 10)

- Forward, mechanical limit position as deceleration point and Z signal as home (H05.31 = 12)
- Forward single-turn homing (H05.31 = 14)
- Reverse single-turn homing (H05.31 = 15)
- Single-turn nearby homing (H05.31 = 16)

The other homing modes are the same as above, except the initial homing mode, which is contrary to the above.

- H05.31 = 0: Forward homing, home switch as the deceleration point and the home
 - The home switch (deceleration point) signal is inactive (0: inactive, 1: active) when the motor starts to run, and the forward limit switch is not sensed in the entire process.
 The motor starts searching for the deceleration point signal in the forward direction at a speed defined by H05.32. After reaching the rising edge of the deceleration point signal, it decelerates as defined by H05.34 to the setpoint of "-(H05.33)". After that, it starts searching for the falling edge of the deceleration point signal in the reverse direction at a speed defined by "-(H05.33)" After reaching this falling edge, it turns to searching for the rising edge of the home signal at the same speed but in the opposite direction. Finally it stops immediately after reaching the rising edge of the home signal during forward acceleration or forward operation at a constant speed.

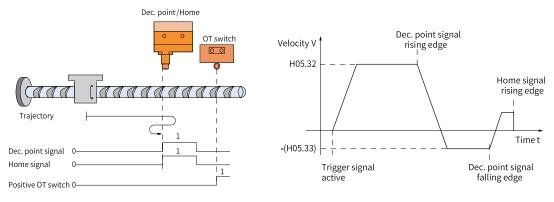


Figure 13-27 Motor running curve and speed in mode 0

• The home switch (deceleration point) signal is active when the motor starts running, with the positive limit switch not triggered in the whole process.

The motor starts searching for the falling edge of the deceleration point in the reverse direction at the speed defined by "-(H05.33)". After reaching this falling edge, the motor turns to run in the forward direction and searches for the rising edge of the home signal at the same speed. During forward acceleration or forward operation at a constant speed, the motor stops immediately upon reaching the rising edge of the home signal.

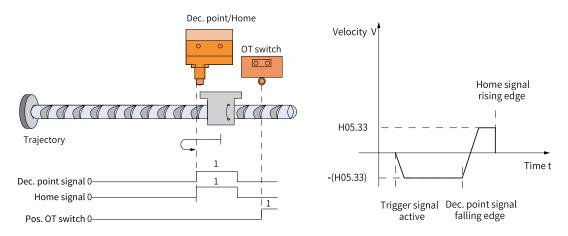


Figure 13-28 Motor running curve and speed in mode 0

• The home switch (deceleration point) signal is inactive when the motor starts to run, and the forward limit switch is sensed in the process.

The motor starts searching for the deceleration point signal in the forward direction at a speed defined by H05.32. After reaching the positive limit switch, it changes to execute reverse homing (H05.40 = 2 or 3) or stops and waits for another homing trigger signal (H05.40 = 0 or 1). After receiving the signal, it starts searching for the falling edge of the deceleration point signal in the reverse direction at a speed defined by "-H05.32". After reaching this falling edge, it decelerates as defined by H05.34 and changes to search for the rising edge of the home signal in the forward direction as defined by H05.33. Finally, it stops immediately after reaching the rising edge of the home signal during forward acceleration or forward operation at a constant speed.

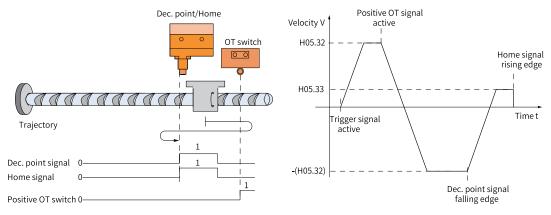


Figure 13-29 Motor running curve and speed in mode 0

• Mode 2: Forward homing, Z signal as the deceleration point and the home (H05.31 = 2)

Note: In Modes 2 and 3 (H05.31 = 2 or 3) where the motor Z signal acts as the home and deceleration point, the actual stop position of the motor may not be on the rising edge on the same side of the motor Z signal. A deviation of ± 1 pulse (in encoder unit) may be present in the stop position.

• The Z signal is inactive (0: inactive, 1: active) when the motor starts to run, and the forward limit switch is not sensed in the entire process.

The motor starts searching for the Z signal in the forward direction at the high speed defined by H05.32. After reaching the rising edge of the Z signal, the motor decelerates as defined by H05.34 and tuns to run in the reverse direction. Then it accelerates to the speed defined by "-(H05.33)". During reverse acceleration or reverse operation at a constant speed, the motor stops immediately after reaching rising edge of the Z signal on the other side.

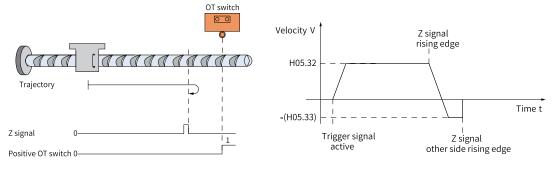


Figure 13-30 Motor running curve and speed in mode 2

• The Z signal is active when the motor starts to run, and the forward limit switch is not sensed in the entire process.

The running process is as follows: The servo motor directly searches for the falling edge of Z signal in forward direction at the speed defined by H05.33 (speed for low-speed home switch signal searching). After reaching the falling edge of Z signal, the motor changes to reverse direction, and searches for the rising edge of Z signal at the speed of -(H05.33). During reverse acceleration or reverse constant speed running, the motor stops immediately after reaching the rising edge of Z signal.

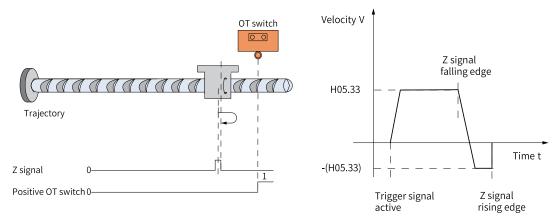


Figure 13-31 Motor running curve and speed in mode 2

• The Z signal is inactive when the motor starts to run, and the forward limit switch is sensed in the process.

The motor starts searching for the Z signal in the forward direction at the high speed defined by H05.32. After hitting the positive limit switch, the motor turns to executing reverse homing (H05.40 = 2 or 3) or stops and waits for another homing trigger signal (H05.40 = 0 or 1) sent from the host controller. After the signal is sent, the motor starts searching for the Z signal in the reverse direction at the speed defined by "-(H05.32)" until reaching the rising edge of the Z signal, where it decelerates as defined by H05.34 in the forward direction and turns to searching for the rising edge of the Z signal on the other side at the low speed defined by H05.33. During

forward acceleration or forward operation at a constant speed, the motor stops immediately after reaching rising edge of the Z signal on the other side.

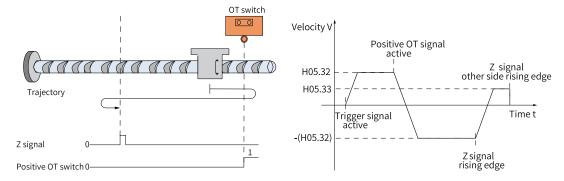


Figure 13-32 Motor running curve and speed in mode 2

- Mode 4: Forward homing, home switch as the deceleration point and Z signal as the home (H05.31 = 4)
 - The home switch signal is inactive (0: inactive, 1: active) when the motor starts running, with the positive limit switch not triggered in the whole process.

The motor starts searching for the home switch signal in the forward direction at the speed defined by H05.32. After reaching the rising edge of the home switch signal, it decelerates as defined by H05.34 and changes to search for the falling edge of the home switch signal at the speed defined by "-(H05.33)". After reaching this falling edge, it decelerates and changes to search for the rising edge of the home switch signal in the forward direction at the speed defined by "H05.33". After reaching this rising edge, it continues running and stops after reaching the first Z signal.

Figure 13-33 Motor running curve and speed in mode 4

 The home switch signal is active when the motor starts to run, and the forward limit switch is not sensed in the entire process.

The motor starts searching for the falling edge of the home switch signal in the reverse direction at the speed defined by "-(H05.33)". After reaching this falling edge, the motor decelerates and turns to searching for the rising edge of the home switch signal in the forward direction at the low speed defined by "H05.33". After reaching this rising edge, the motor continues running in the forward direction at the speed defined by H05.33 until it stops upon reaching the rising edge of the Z signal for the first time.

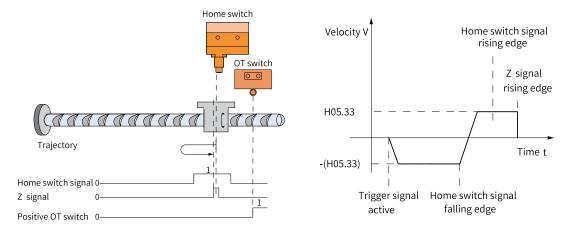


Figure 13-34 Motor running curve and speed in mode 4

• The home switch signal is inactive when the motor starts to run, and the forward limit switch is sensed in the process.

The motor starts searching for the home switch in the forward direction at the high speed defined by H05.32. After hitting the positive limit switch, the motor executes reverse homing (H05.40 = 2 or 3) as defined by H05.40 or stops and waits for another homing trigger signal (H05.40 = 0 or 1) sent from the host controller. After this signal is sent, the motor starts searching for the deceleration point in the reverse direction at the high speed defined by "-(H05.32)" until reaching the falling edge of the home switch signal, where it decelerates gradually as defined by H05.34 and turns to searching for the rising edge of the home switch signal in the forward direction at the low speed defined by H05.33. After reaching the rising edge of the home switch signal, the motor continues running until it stops at the first Z signal.

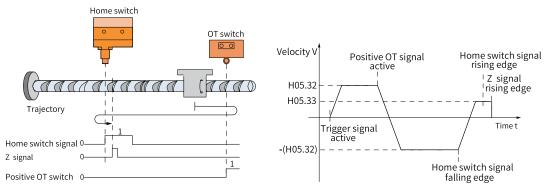


Figure 13-35 Motor running curve and speed in mode 4

- Mode 6: Forward homing, positive limit switch as the deceleration point and the home (H05.31 = 6)
 - The forward limit switch signal is inactive (0: inactive, 1: active) when the motor starts to run. The motor starts searching for the positive limit switch in the forward direction at the high speed defined by H05.32. After reaching the rising edge of the positive limit switch signal, the motor decelerates gradually as defined by H05.34 and turns to searching for the falling edge of the positive limit switch signal in the reverse direction at the low speed defined by "-(H05.33)". After reaching this falling edge, the motor decelerates and turns to searching for the rising edge of the positive limit switch signal in the forward direction at the low speed defined by H05.33. During forward acceleration or forward operation at a constant speed, the motor stops immediately after reaching the rising edge of the positive limit switch signal.

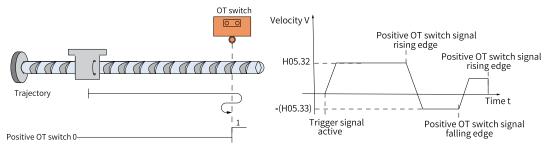


Figure 13-36 Motor running curve and speed in mode 6

- The forward limit switch signal is active when the motor starts to run.
- The motor starts searching for the falling edge of the positive limit switch signal in the reverse direction at the speed defined by "-(H05.33)". After reaching this falling edge, it decelerates and changes to search for the rising edge of the positive limit switch signal in the forward direction at the speed defined by H05.33. Finally, it stops immediately after reaching the rising edge of the positive limit switch signal during forward acceleration or forward operation at a constant speed.

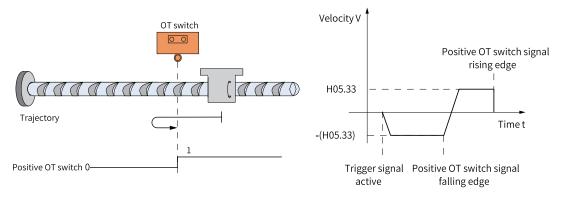


Figure 13-37 Motor running curve and speed in mode 6

- Mode 8: Forward homing, positive limit switch as the deceleration point and Z signal as the home (H05.31 = 8)
 - The forward limit switch signal is inactive (0: inactive, 1: active) when the motor starts to run. The motor starts searching for the positive limit switch in the forward direction at the high speed defined by H05.32. After reaching the rising edge of the positive limit switch signal, the motor decelerates gradually as defined by H05.34 and turns to searching for the falling edge of the positive limit switch signal in the reverse direction at the low speed defined by "-(H05.33)". After reaching this falling edge, the motor continues running until it stops upon reaching the Z signal for the first time.

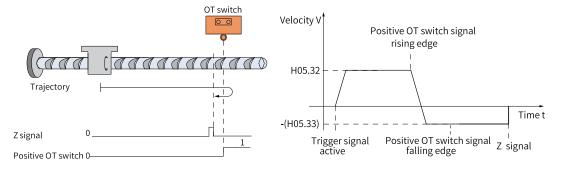


Figure 13-38 Motor running curve and speed in mode 8

The forward limit switch signal is active when the motor starts to run.
 The motor starts searching for the falling edge of the positive limit switch signal in the reverse direction at a low speed defined by "-(H05.33)". After reaching the falling edge of the positive limit switch signal, the motor continues running until it stops at the first rising edge of the Z signal.

Figure 13-39 Motor running curve and speed in mode 8

 Mode 10: Forward homing, forward mechanical limit as the deceleration point and the home (H05.31 = 10)

The motor starts running in the forward direction at the low speed defined by H05.33. After hitting the mechanical limit, the motor stops if the torque keeps reaching the upper limit (H05.58) and the speed keeps lower than H05.56 for a period of time.

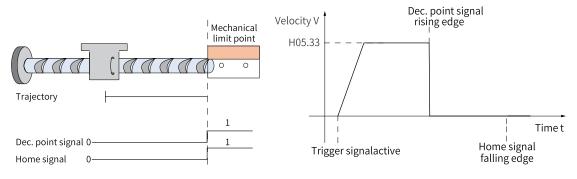


Figure 13-40 Motor running curve and speeds in Mode 10

• Mode 12: Forward homing, forward mechanical limit as the deceleration point and Z signal at the home (H05.31 = 12)

The motor runs in the forward direction at the low speed defined by H05.33. After hitting the mechanical limit, the motor changes to run in the reverse direction at the speed defined by H05.33 if the torque keeps reaching the upper limit (H05.58) and the speed keeps lower than H05.56 for a period of time. Then the motor stops after reaching the rising edge of the Z signal for the first time.

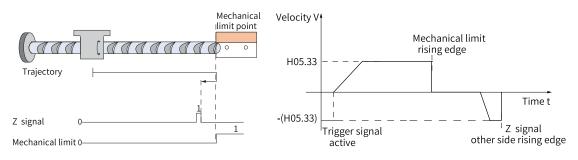


Figure 13-41 Motor running curve and speed in mode 12

- Forward single-turn homing (H05.31 = 14)
 - When H05.31 = 14, the motor performs forward homing. After you set H05.36, the servo motor can be moved from the current absolute position (H0b.07) to the specified position (H05.36). Motor displacement = (H05.36–H0b.07) * Electronic gear ratio.
 - If motor displacement is < 0, the actual motor displacement = (H05.36–H0b.07) * Electronic gear ratio + Encoder resolution. The motor stops immediately after the displacement command finishes.

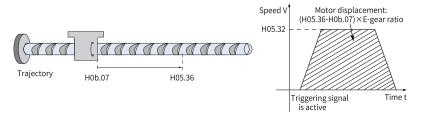


Figure 13-42 Motor running curve and speed in mode 14

- Reverse single-turn homing (H05.31 = 15)
 - When H05.31 = 15, the motor performs reverse homing. After you set H05.36, the servo motor can be moved from the current absolute position (H0b.07) to the specified position (H05.36).
 Motor displacement = (H05.36–H0b.07) * Electronic gear ratio.
 - If motor displacement is 0, the actual motor displacement = (H05.36–H0b.07) * Electronic gear ratio – Encoder resolution. The motor stops immediately after the displacement command finishes.

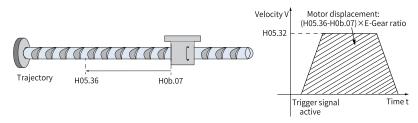


Figure 13-43 Motor running curve and speed in mode 15

• Single-turn nearby homing (H05.31 = 16)

When H05.31 = 16, the motor performs nearby homing. The actual motor displacement is the distance from the current position to the specified position (H05.36). The direction of operation is determined by the distance. The motor stops immediately after the displacement command finishes.

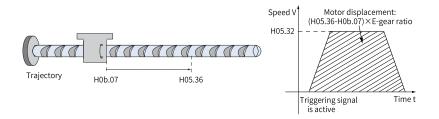


Figure 13-44 Motor running curve and speed in mode 16

Evaluation condition for torque homing: After the motor reaches the hard limit, and the torque feedback reaches the limit value defined in H05.58 (mechanical torque limit, in %), the first Z signal in the reverse direction is searched for and regarded as the home after the motor stops.

Electrical homing: starting electrical homing (H05.30 = 5)

The mechanical zero position is obtained after homing is done. In this case, you can make the motor move from current position (H0b.07) to the designated position (H05.36) by setting H05.36 (Mechanical home offset).

In the electrical homing mode, the motor runs at the speed defined by H05.32 in the direction defined by the sign (+/-) of the displacement value. The total displacement is determined by the difference between H05.36 and H0b.07. The motor stops immediately after the displacement reference is done executing.

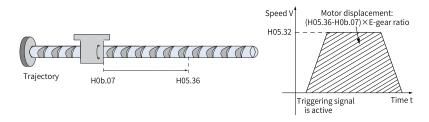
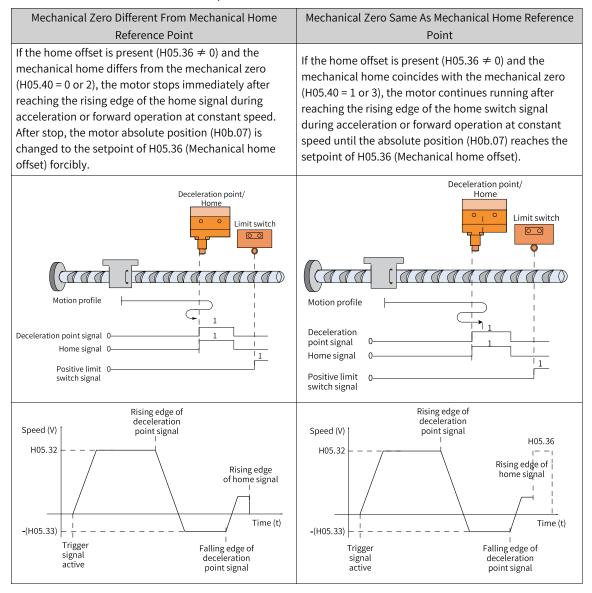



Figure 13-45 Motor running curve and speed in electrical homing

Mechanical home and mechanical zero

The following takes "H05.30 = 0" as example to describe the difference between mechanical home and mechanical zero.

Parameter Settings

 Homing mode setting ☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.30	2005-1Fh	Homing enable selection	0: Disabled 1: Homing enabled by ORGSET signal input from DI 2: Electrical homing enabled by ORGSET signal input from DI 3: Homing started immediately upon power-on 4: Homing executed immediately 5: Electrical homing started 6: Current position as home 8: D-triggered position as home	0	-	Real-time	" " on page
H05.31	2005-20h	Homing mode	0: Forward, home switch as deceleration point and home 1: Reverse, home switch as deceleration point and home 2: Forward, Z signal as deceleration point and home 3: Reverse, motor Z signal as deceleration point and home 4: Forward, home switch as deceleration point and Z signal as home 5: Reverse, home switch as deceleration point and Z signal as home 6: Forward, positive limit switch as deceleration point and home 7: Reverse, negative limit switch as deceleration point and home 8: Forward, positive limit switch as deceleration point and home 8: Forward, positive limit switch as deceleration point and A signal as home 9: Reverse, negative limit switch as deceleration point and Z signal as home 10: Forward, mechanical limit position as deceleration point and home 11: Reverse, mechanical limit position as deceleration point and home 12: Forward, mechanical limit position as deceleration point and home 13: Reverse, mechanical limit position as deceleration point and home 14: Forward, mechanical limit position as deceleration point and Z signal as home 13: Reverse, mechanical limit position as deceleration point and Z signal as home 14: Forward single-turn homing 15: Reverse single-turn homing 16: Nearby single-turn homing	0		Real-time	" H05_en.31" on page 427

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.40	2005-29h	Mechanical home offset and action upon overtravel	0: H05.36 as the coordinate after homing, reverse homing applied after homing triggered again on overtravel 1: H05.36 as the relative offset after homing, reverse homing applied after homing triggered again on overtravel 2: H05.36 as the coordinate after homing, reverse homing auto- applied on overtravel 3: H05.36 as the relative offset after homing, reverse homing auto- applied on overtravel	0	-	At stop	" H05_en.40" on page 431
H05.69	2005-46h	Auxiliary homing function	0: Disabled 1: Enable single-turn homing 2: Record deviation position 3: Start a new search for the Z signal (homing) 4: Clear the position deviation	0	-	At stop	" H05_en.69" on page 436

• Homing curve setting

If the home signal is activated before the deceleration triggered by an active deceleration point signal is fully done executing, the final positioning may be unstable. Take the displacement required by deceleration into account before setting the deceleration point and homing signal input position. The acceleration/deceleration time during homing (H05-34) also affect the positioning stability.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.32	2005-21h	Speed of high- speed search for home switch signal	0 RPM to 3000 RPM	100	RPM	Real-time	" H05_en.32" on page 428
H05.33	2005-22h	Speed of low- speed search for home switch signal	0 rpm to 1000 rpm	10	RPM	Real-time	" H05_en.33" on page 428
H05.34	2005-23h	Acceleration/ Deceleration time during homing	0ms to 1000ms	1000	ms	Real-time	" H05_en.34" on page 428
H05.35	2005-24h	Home search time limit	0ms to 65535ms	10000	ms	Real-time	" H05_en.35" on page 429
H05.36	2005-25h	Mechanical home offset	-1073741824 to 1073741824	0	Refer ence unit	Real-time	" H05_en.36" on page 429

☆ Related parameters:

☆ Related parameters:

Code	Parameter Name	Function Name	Function		
	HomeSwitch		Active: Current position as home		
FunIN.31		Home switch	Set the logic of the DI assigned with FunIN.31 to "active high" or "active low" based on the output of the host controller. See the following table for details. See the following table for details.		
FunIN.32	HomingStart	Homing enable	Active: Homing enabled (The HomingStart signal cannot be triggered repeatedly during homing.)		
			Inactive: Homing inhibited		
FunIN.41	HomingRecord	DI-triggered point as the home	The edge-triggered position is taken as the home.		
FunOut.16	HomeAttain	Homing is completed.	Active: Homing completed in the position control mode		
			Inactive: Homing not completed		
FunOut.17	FlocHomoAttain	Electrical homing	Active: Electrical homing completed in the position control mode		
		completed	Inactive: Electrical homing not completed		

DI Logic Set by HomeSwitch	Actual Active Level		
0 (low level)	Low level		
1 (high level)	High level		
3 (rising edge)	High level		
4 (falling edge)	Low level		
5 (edge-triggered)	Low level		

Sequence

• H05.30 = 1 or 2

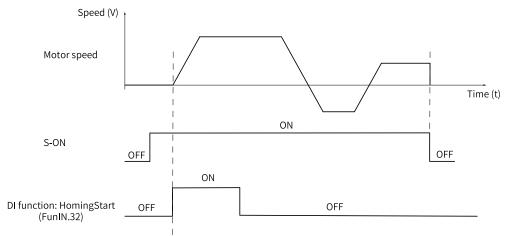


Figure 13-46 Sequence example

- Switch on the S-ON signal first and then the HomingStart signal.
- During homing, the S-ON signal remains active and the change of the HomingStart signal is shielded.

- During homing, the motor stops if the S-ON signal is switched off. To enable homing again, switch on the S-ON signal first and then the HomingStart signal.
- If E601.0 (Homing timeout) occurs, the motor stops, but the S-ON signal remains active. In this case, trigger the HomingStart signal again to reset E601.0, and execute homing again.
- The homing operation can be triggered repeatedly.
- H05.30 = 3
 - The homing operation is executed only when the S-ON signal is switched on for the first time after power-on.
 - The motor stops when E601.0 (Homing timeout) occurs. To reset E601.0, deactivate the S-ON signal.
 - The homing operation can only be triggered again at next power-on.
- H05.30 = 4 or 5
 - The homing operation is executed immediately after the S-ON signal is switched on upon poweron.
 - If the S-ON signal is deactivated during homing, the motor stops immediately. To trigger homing again, activate the S-ON signal again.
 - When E601.0 (Homing timeout) occurs, H05.30 is set to 0 and the motor stops. To reset E601.0, deactivate the S-ON signal. To perform homing again, reset H05.30. After homing is done, H05.30 is set to 0. To perform homing again, set H05.30 again.
- H05.30 = 6
 - To take the current position as the home and achieve home offset (H05.40 = 0 or 2, H05.36 ≠ 0), set H05.36 and H05.40 first, and then set H05.30 to 6. Failing to do so will cause H0b.07 to keep the previous value of H05.36 rather than the one set currently.
 - After homing is done, H05.30 will be set to 0. To enable homing again, re-write H05.36 and set H05.30 to 6.
- H05.30 = 8
 - To take the DI-triggered position as the home, assign FunIN.41 to a DI first and set the current position as the home.
 - To achieve home offset (H05.40 = 0 or 2, H05.36 ≠ 0), set H05.36 and H05.40 first, and then set H05.30 to 6. Failing to do so will cause H0b.07 to keep the previous value of H05.36 rather than the one set currently.

13.2 Speed Control Mode

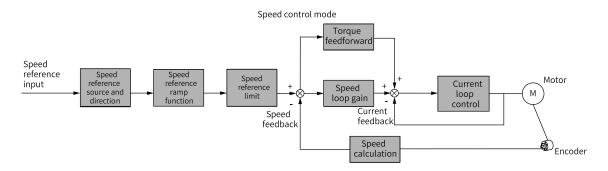


Figure 13-47 Block diagram of speed control

Set H02.00 (Control mode selection) to 0 (Speed control mode) through the keypad or Inovance software tool to make the servo drive operate in the speed control mode. Set the drive parameters based on the mechanical structure and technical indicators. The following part uses the basic parameter setting to describe the speed control mode.

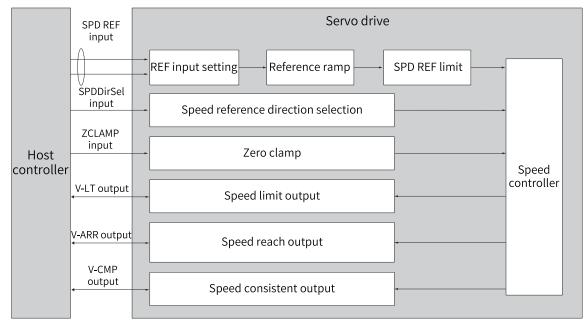
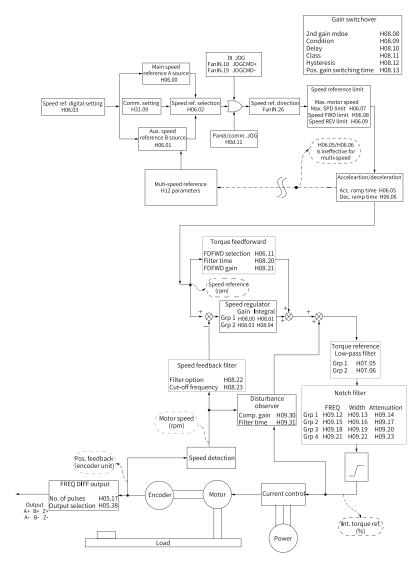



Figure 13-48 Signal exchange between the drive and the host controller

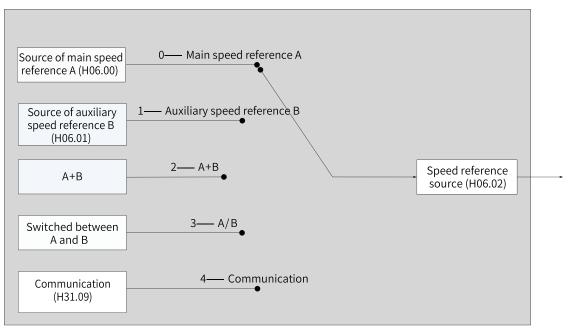
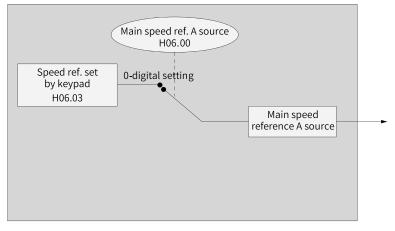
13.2.1 Block Diagram of Speed Control Parameters

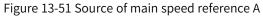
Figure 13-49 Block diagram of speed control parameters

13.2.2 Speed Reference Input Setting

Speed reference source

Five speed reference sources are available in the speed control mode, which can be set in H06.02.


Figure 13-50 Speed reference source

rightarrow Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.02	2006-03h	Speed reference source	0: Source of main speed reference A 1: Source of auxiliary speed reference B 2: A+B 3: Switched between A and B 4: Communication	0	-	At stop	" H06_en.02" on page 437

• Source of main speed reference A The main speed reference A is an internal speed reference that can be set through digital setting.

 \Leftrightarrow Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.00	2006-01h	Source of main speed reference A	0: Digital setting (H06.03)	0	-	At stop	" H06_en.00" on page 436

The speed reference is set in H06.03.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.03	2006-04h	Speed reference set through keypad	–6000 rpm to +6000 rpm	200	RPM	Real-time	" H06_en.03" on page 438

• Source of auxiliary speed reference B

The auxiliary speed reference B sources include digital setting and multi-speed references. Both are internal speed references.

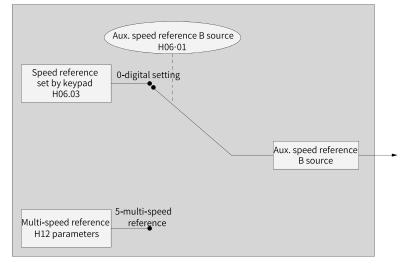


Figure 13-52 Source of auxiliary speed reference B

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.01	2006-02h	Source of auxiliary speed reference B	0: Digital setting (H06.03) 5: Multi-speed reference	5	-	At stop	" H06_en.01" on page 437

The digital setting mode is the same as H06.00. The following describes multi-speed references.

The servo drive supports multi-speed operation. The servo drive stores 16 speed references, and the maximum running speed and running time of each can be set. Four groups of acceleration/ deceleration time are optional. The setting flowchart is as follows.

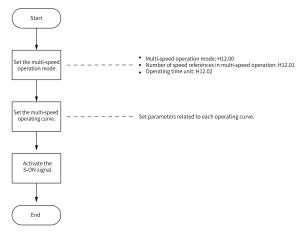


Figure 13-53 Flowchart for setting multi-speed operation

1. Set the multi-speed operation mode.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H12.00	2012-01h	Multi-speed operation mode	0: Individual operation (number of speeds selected in H12.01) 1: Cyclic operation (number of speeds selected in H12.01) 2: DI-based operation	1	-	At stop	" H12_en.00" on page 529
H12.01	2012-02h	Number of speed references in multi- speed mode	1 to 16	16	-	At stop	" H12_en.01" on page 530
H12.02	2012-03h	Operating time unit	0: sec 1: min	0	-	At stop	" H12_en.02" on page 531

☆ Related parameters:

You can assign FunIN.5 (DIR- SEL) to an external DI to select the multi-speed reference direction.

☆ Related parameters:

Code	Parameter Name	Function Name	Function
FunIN.5	DIR-SEL	Multi-reference direction	Inactive: Reference direction by default Active: Opposite to the reference direction

The following takes "H12.01 = 2" as an example to describe each mode.

Individual operation (H12.00 = 0)

Set H12.00 to 0 to select the individual operation mode.

Set H12.01 and H12.02 as needed. Then set the reference value, operating time, and acceleration/deceleration time of each speed. The drive executes multi-speed references in a sequence from speed 1 to speed N. After all the speeds are executed, the drive stops.

Description	Operating Curve		
 The drive stops after one cycle of operation. The drive switches to the next displacement automatically. 	 Speed (V) V1max V2max V2max V1max V2max V1max V2max V2max V1max V2max V1max V2max V2max V1max V2max V1max V2max V2max V1max V2max V2max		

Table 13–19 Description of individual operation

★ Definition of terms:

A complete operation cycle covers all the multi-speed references defined by H12.01.

• Cyclic running (H12.00 = 1)

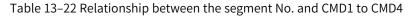
Set H12.00 to 1 to select the cyclic operation mode.

Set H12.01 and H12.02 based on the number of speeds and the operating time unit. Then set the reference value, operating time and acceleration/deceleration time for each speed. The drive executes the set speeds in a sequence from speed 1 to speed N (last speed). After all the speeds are executed, the drive jumps to speed 1 and repeats the preceding process.

Description	Operating Curve
 The drive starts from displacement 1 again after each cycle of operation. The drive switches to the next displacement automatically. The cyclic operation state remains 	Operating CurveSpeed (V) V_{1max} Speed 1 Speed 2 Speed 1 Speed 2 V_{2max} V_{2max} V_{1max} V_{2max} V_{1max} V_{2max} V_{1max} V_{1max} V_{1max} V_{2max} V_{1max} V_{1max} V_{1max} V_{1max} V_{1max} V_{1max} V_{2max} : maximum operating speeds in displacement 1 and displacement 2 . Operating time = Time taken in switching from the last speed to current speed + Duration of constant- speed operation at this speed (For example, the operating time of speed 1 is the sum of t1 and t2; the operating time of speed 2 is the sum of t3 and t4.)
active as long as the S-ON signal is active.	 Do not set the operating time of a certain speed to 0. Otherwise, the drive skips this speed and switches to the next speed directly. The speed reach signal is activated when the motor speed feedback reaches the maximum operating speed set for this speed. If the S-ON signal is switched off during operation, the motor stops in the mode defined by H02.05 (Stop mode at S-ON OFF).

Table 13–20 Descriptions of cyclic operation

DI-based operation (H12.00 = 2)
 Set H12.00 to 2 to select DI-based operation.


Set H12.01 and H12.02 based on the number of speeds to be executed and the operating time unit. Then set the reference value, operating time and acceleration/deceleration time for each speed. The drive executes the speed references according to ON/OFF combination of the external DIs (CMDx).

Description	Operating Curve
 The drive operates continuously as long as the S-ON signal is active. The speed No. is determined by the DI logic. The interval time between displacements is determined by the command delay of the host controller. The multi-speed reference is edge- triggered. 	 Speed (V) V_{zmax} V_{zmax} V_{zmax} V_{zmax} V_{ymax} Set DI Time (t) • x, y: speed No. (The relationship between the speed No. and the DI logic is described below.) • The operating time is independent of the parameter setpoint. If the speed No. changes during operation, the drive switches to the new speed No. immediately. • The speed reach signal is activated when the motor speed feedback reaches the maximum operating speed set for this speed. • If the S-ON signal is switched off during operation, the motor stops in the mode defined by H02.05 (Stop mode at S-ON OFF).

Table 13–21 Descriptions of DI-based operation

When the multi-speed operation mode is DI-based operation, assign DI functions 6...9 (multireference switchover) to four DIs and set the active logic of these DIs. In addition, assign FunIN.5 (DIR-SEL, direction selection in DI-based multi-speed operation) to a certain DI to switch the speed reference direction.

Code	Parameter Name	Function Name	Function
FunIN.5	DIR-SEL	Direction switchover through DI in multi-speed mode	Defines the speed reference direction in the DI-based operation mode. Inactive: Reference direction Active: Opposite to the reference direction
FunIN.6	CMD1	Multi-reference switchover 1	The speed No. is a 4-bit binary
FunIN.7	CMD2	Multi-reference switchover 2	value. The relationship between the
FunIN.8	CMD3	Multi-reference switchover 3	speed no. and CMD1 to CMD4 is
FunIN.9	CMD4	Multi-reference switchover 4	shown in <i>"Table 13–22" on page 328.</i> The value of CMD is 1 upon active DI level and 0 upon inactive DI level.

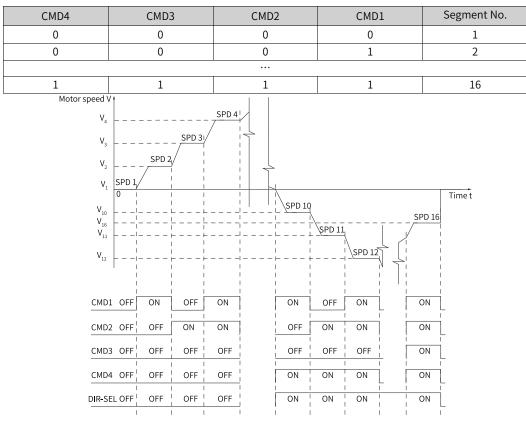


Figure 13-54 Example of multi-speed curve

2. Setting the multi-speed curve

The following takes speed 1 as an example.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H12.03	2012-04h	Acceleration time 1	0ms to 65535ms	10	ms	Real-time	" H12_en.03" on page 531
H12.04	2012-05h	Deceleration time	0ms to 65535ms	10	ms	Real-time	" H12_en.04" on page 531
H12.09	2012-0Ah	Acceleration time 4	0ms to 65535ms	150	ms	Real-time	" H12_en.09" on page 532
H12.10	2012-0Bh	Deceleration time 4	0ms to 65535ms	150	ms	Real-time	" H12_en.10" on page 533
H12.20	2012-15h	Speed reference 1	–6000 rpm to +6000 rpm	0	RPM	Real-time	" H12_en.20" on page 533
H12.21	2012-16h	Operating time of speed 1	0.0s(m) to 6553.5s(m)	5.0	s (m)	Real-time	" H12_en.21" on page 533
H12.22	2012-17h	Acc./dec. time of speed 1	0: Zero acceleration/deceleration time 1: Acceleration/Deceleration time 1 2: Acceleration/Deceleration time 2 3: Acceleration/Deceleration time 3 4: Acceleration/Deceleration time 4	0	-	Real-time	" H12_en.22" on page 533

\precsim Related parameters:

For speed references in the multi-speed operation mode, besides the reference value and operating time, four groups of acceleration/deceleration time options are also available. There is no acceleration/deceleration time by default.

The following describes the actual acceleration/deceleration time and the operating time in cases where H12.00 (Multi-speed operation mode) is set to 1 (Individual operation). Speed(V)_t

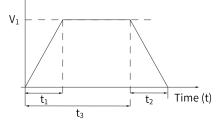


Figure 13-55 Example of multi-speed curve

As shown in the preceding figure, the speed reference is V1 and the actual acceleration time t1 is as follows.

$$t_1 = \frac{V_1}{1000} \times Acc.$$
 time set for the speec

The actual deceleration time t₂ is:

$$t_2 = \frac{V_1}{1000} \times Dec.$$
 time set for the speed

Operating time = Time taken in switching from the last speed to present speed + Duration of constant-speed operation at present speed (as shown by t3 in the preceding figure)

Switched between A and B

When setting H06.02 (speed reference source) to 3 (Switched between A and B), you need to assign FunIN.4 (DI-SEL) to the corresponding DI. The input signal of this DI determines which source (A or B) is active.

☆ Related parameters:

Code	Parameter Name	Function Name	Description
EupIN 4	FunIN.4 CMD-SEL	Main/Auxiliary reference	Inactive: Current reference being A
FunIN.4		switchover	Active: Current reference being B

Communication

When H06.02 (Speed reference source) is set to 4 (Communication), the speed reference is the setpoint of H31.09. H31.09 is not displayed on the keypad, it can be set through communication only.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H31.09	2031-0Ah	Speed reference set via communication	-6000.000 RPM to 6000.000 RPM	0.000	RPM	Real-time	" H31_en.09" on page 565

Speed reference direction setting

To switch the speed reference direction through DI, assign FunIN.26 to the corresponding DI. The input signal of this DI determines the speed reference direction.

 \Rightarrow Related parameters:

Code	Parameter Name	Function Name	Description
FunIN.26	SDDDirSol	Speed reference direction	Inactive: Forward
	SPDDirSel	Speed reference direction	Active: Reverse

The actual direction of rotation is related to the setting of H02.02 (Direction of rotation), the sign (+/-) of the speed reference value, and the logic of FunIN.26.

Table 13–23 Actual direction of rotation in the speed control mode

H02.02	Sign of Speed Reference	FunIN.26	Direction of Rotation
0	+	Inactive	CCW
0	+	Active	CW
0	-	Inactive	CW
0	-	Active	CCW
1	+	Inactive	CW
1	+	Active	CCW
1	-	Inactive	CCW
1	-	Active	CW

13.2.3 Ramp Function Setting

The ramp function is used to smooth the acceleration rate of speed references through acceleration/ deceleration time setting.

In the speed control mode, a high acceleration rate easily leads to motor jerk or intense vibration. In this case, increasing the acceleration/deceleration time smoothens the motor speed change, preventing mechanical damage caused by jerk or vibration.

- When the speed reference source is digital setting or jog speed, the acceleration time and deceleration time are set in H06.05 and H06.06.
- When the speed reference source is multi-speed reference, the acceleration time and deceleration time are set in parameter group H12. For details, see Chapter "Description of Parameters".

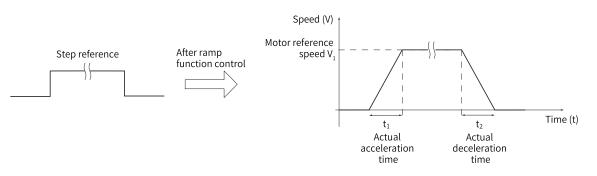


Figure 13-56 Ramp function definition

- H06.05 defines the time for the speed reference to change from 0 rpm to 1000 rpm.
- H06.06 defines the time for the speed reference to change from 1000 rpm to 0 rpm.

The formulas for calculating the actual acceleration/deceleration time are as follows:

Actual acceleration time $t_1 = \frac{\text{Speed reference}}{1000} \times \text{Speed reference acceleration ramp time}$

Actual deceleration time $t_2 = \frac{\text{Speed reference}}{1000} \times \text{Speed reference deceleration ramp time}$

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.05	2006-06h	Acceleration ramp time constant of speed reference	0ms to 65535ms	0	ms	Real-time	" H06_en.05" on page 438
H06.06	2006-07h	Deceleration ramp time constant of speed reference	0ms to 65535ms	0	ms	Real-time	" H06_en.06" on page 439

13.2.4 Zero Clamp

- Zero clamp is used in systems where position loop is unavailable in the speed control mode.
- If the motor oscillates in the zero clamp state, adjust the position loop gain.

In the speed control mode, if FunIN.12 (ZCLAMP) is enabled, and the speed reference amplitude is smaller than or equal to the value of H06.15, the motor enters zero position clamp state. In this case, a position loop is built inside the drive and the speed reference is invalid.

The motor is clamped within ± 1 pulse of the position at which zero clamp is activated. Even if it rotates due to external force, it will return to the zero position and be clamped.

When the speed reference amplitude exceeds the value of H06.15, the motor exits from the zero clamp state and continues running according to the speed reference received. Zero clamp is deactivated when the ZCLAMP (FunIN.12) signal is inactive.

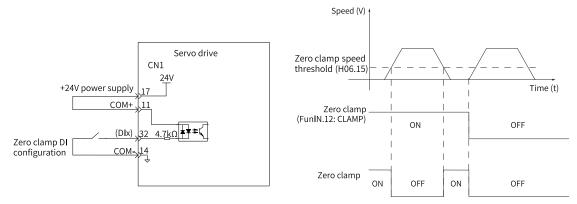
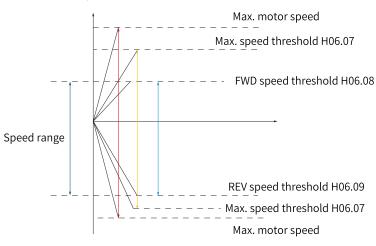


Figure 13-57 Wiring and waveform of zero clamp

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.15	2006-10h	Zero clamp speed threshold	0rpm to 6000rpm	10	RPM	Real-time	" H06_en.15" on page 441

ſ	Code	Parameter Name	Function Name	Description		
	FunIN.12		Zara speed slamp	Inactive: Zero clamp disabled		
		ZCLAMP	Zero speed clamp	Active: Zero clamp enabled		


13.2.5 Speed Reference Limit

When the actual speed of the motor exceeds H0A.08 (Overspeed threshold), E500.0 (Motor overspeed) occurs. For details of H0A.08, see Chapter "Parameter List". The speed reference limit must be lower than H0A.08.

In the speed control mode, the sources of speed reference limit include:

- H06.07 (Maximum speed limit): Defines the speed reference limit in both directions. The limit value applies when speed references exceed it.
- H06.08 (Forward speed limit): Defines the speed limit in the forward direction. The limit value applies when forward speed references exceed it.
- H06.09 (Reverse speed limit): Defines the speed limit in the reverse direction. The limit value applies when reverse speed references exceed it.
- Maximum speed of the motor (default threshold): Depends on the motor model.

Speed reference

Figure 13-58 Example of speed reference limit

The actual motor speed limit meets the following requirements:

- |Forward speed limit| ≤ min {maximum motor speed, H06.07, H06.08}
- |Reverse speed limit| ≤ min {maximum speed of the motor, H06.07, H06.09}

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.07	2006-08h	Maximum speed limit	0rpm to 6000rpm	6000	RPM	Real-time	" H06_en.07" on page 439
H06.08	2006-09h	Forward speed threshold	0rpm to 6000rpm	6000	RPM	Real-time	" H06_en.08" on page 439
H06.09	2006-0Ah	Reverse speed threshold	0rpm to 6000rpm	6000	RPM	Real-time	" H06_en.09" on page 440

13.2.6 Speed-Related DO

The filtered speed feedback can be compared with different thresholds, generating DO signals for use by the host controller. The filter time constant is set in H0A.27 (Speed DO filter time constant).

Motor rotation DO signal

When the absolute value of the filtered actual motor speed reaches the value of H06.16 (Threshold of TGON (motor rotation) signal), the motor is acknowledged to be rotating. In this case, the drive outputs the motor rotation signal (FunOUT.2: TGON) to acknowledge that the motor is rotating. When the absolute value of the filtered actual motor speed is lower than the value of H06.16, the motor is not rotating.

Judgment on the motor rotation signal (FunOUT.2, TGON) is not affected by the operating state or control mode of the drive.

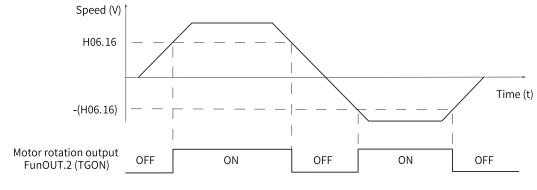


Figure 13-59 Waveform of motor rotation (TGON) signal

Note

In the preceding figure, "ON" indicates the TGON (motor rotation) signal is active. "OFF" indicates the TGON (motor rotation) signal is inactive.

☆	Related	parameters:
---	---------	-------------

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.16	2006-11h	Threshold of TGON (motor rotation) signal	0 rpm to 1000 rpm	20	RPM	Real-time	" H06_en.16" on page 442

To use the TGon signal, assign a DO with FunOUT.2 (TGon, motor rotation) and set the active logic of this DO.

☆	Related	parameters:
---	---------	-------------

Code	Parameter Name	Function Name	Description
FunOUT.2	TGon	Motor rotation	Inactive: The absolute value of filtered motor speed is lower than the setpoint of H06.16. Active. The absolute value of filtered motor speed reaches the setpoint of H06.16.

Speed matching DO signal

In speed control, when the absolute value of the difference between the motor speed after filter and the speed reference satisfies the setting of H06.17, the actual motor speed is considered to reach the speed reference. At this moment, the servo drive outputs the speed matching signal (FunOUT.4: V-CMP). When the absolute value of the difference between the motor speed after filter and the speed reference exceeds the setting of H06-17, the speed matching signal is inactive.

If the drive is not in the operational state or the speed control mode, the speed matching signal (FunOUT.4: V-Cmp) is always inactive.

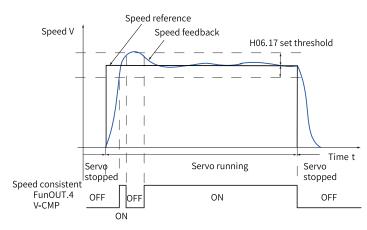


Figure 13-60 Waveform of speed matching (V-Cmp) signal

Note

In the preceding figure, "ON" indicates the V-Cmp signal is active. "OFF" indicates the V-Cmp signal is inactive.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.17	2006-12h	Threshold of V- Cmp (speed	0 RPM –100 RPM	10	RPM	Real-time	" H06_en.17" on page 443
		matching) signal					

To use the V-Cmp (speed matching) signal, assign FunOUT.4 (V-Cmp, speed matching) to a certain DO and set the active logic of this DO.

 \Rightarrow Related parameters:

Code	Parameter Name	Function Name	Description
FunOUT.4	V-Cmp	Speed matching	Inactive: The absolute difference between the filtered actual motor speed and the speed reference is higher than the value of H06.17. Active: The absolute difference between the filtered actual motor speed and the speed reference is lower than or equal to the value of H06.17.

Speed reach DO signal

When the absolute value of the motor speed after filter exceeds the setting of H06.18 (Threshold of speed arrival signal), the motor speed is considered to reach the desired value. At this moment, the servo drive outputs the speed arrival signal (FunOUT.19: V-Arr). When the absolute value of the motor speed after filter is smaller than or equal to the setting of H06-18, the speed arrival signal is inactive.

Acknowledgment of the speed reach (FunOUT.19: V-Arr) signal is not affected by the operating state or control mode of the drive.

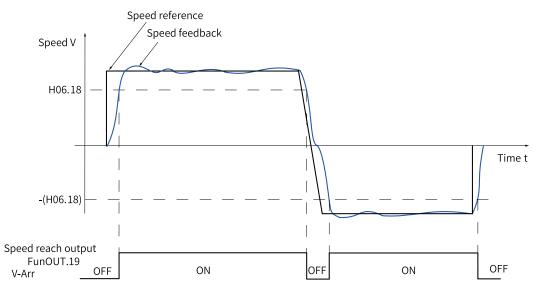


Figure 13-61 Waveform of the speed reach (V-Arr) signal

Note

In the preceding figure, "ON" indicates the V-Arr (speed reached) signal is active. "OFF" indicates the V-Arr (speed reached) signal is inactive.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.18	2006-13h	Threshold of speed reach signal	10rpm to 6000rpm	1000	RPM	Real-time	" H06_en.18" on page 443

To use the V-Arr signal, assign FunOUT.19 (V-Arr, speed reach) to a DO and set the active logic of this DO.

5	Related	parameters:
\sim	nciacca	purumeters.

Code	Parameter Name	Function Name	Description
FunOUT.19	V-Arr	Speed reach	Inactive: The absolute value of filtered motor speed feedback exceeds H06.18. Active: The absolute value of filtered motor speed
			feedback is lower than or equal to the value of H06.18.

Zero speed DO signal

The servo drive outputs the V-Zero (FunOUT.3: zero speed) signal only when the absolute value of actual motor speed is lower than the threshold defined by H06.19. When the absolute value of the motor speed after filter is equal to or large than to the setting of H06-19, the zero speed signal is inactive.

Acknowledgment of the zero speed (FunOUT.3: V-Zero) signal is not affected by the operating state and control mode of the drive.

The interference in the speed feedback can be filtered by the speed feedback DO filter. You can set the corresponding filter time constant in H0A.27.

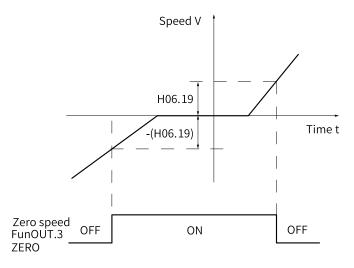


Figure 13-62 Waveform of the zero speed (V-Zero) signal

Note

In the preceding figure, "ON" indicates the V-Zero signal is active. "OFF" indicates the V-Zero signal is inactive.

삸	Related	parameters:
\sim	netucu	purumeters.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.19	2006-14h	Threshold of zero speed output signal	1 rpm to 6000 rpm	10	RPM	Real-time	" H06_en.19" on page 444

To use the zero speed (V-Zero) signal, assign FunOUT.3 (V-Zero, zero speed) to a DO and set the active logic of this DO.

Code	Parameter Name	Function Name	Description
FunOUT.3	V-Zero	Zero speed signal	Inactive: The difference between motor speed feedback and the reference value is higher than the setpoint of H06.19. Active: The difference between motor speed feedback and the reference value is lower than or equal to the value of H06.19.

13.3 Torque Control Mode

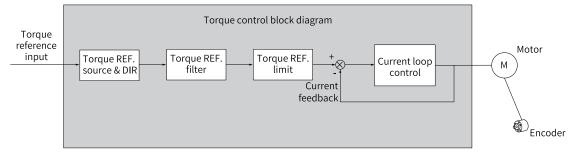


Figure 13-63 Block diagram of torque control mode

Set H02.00 (Control mode selection) to 2 (Torque control mode) through the keypad or the Inovance software tool to make the drive operate in the torque control mode. Set the drive parameters based on the mechanical structure and technical indicators. The following describes basic parameter settings in the torque control mode.

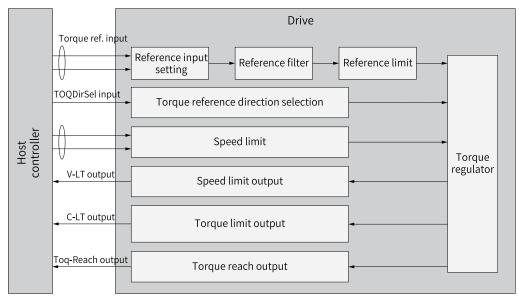
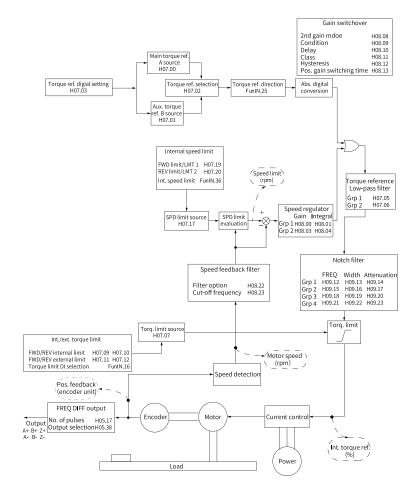



Figure 13-64 Signal exchange between the drive and the host controller

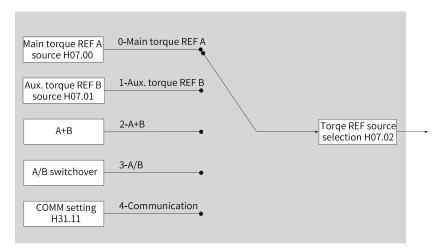

13.3.1 Block Diagram of Torque Control Parameters

Figure 13-65 Block diagram of torque control parameters

13.3.2 Torque Reference Input Setting

Torque reference source

Five torque reference sources are available in the torque control mode, which can be set in H07.02.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.02	2007-03h	Torque reference source	 0: Source of main torque reference A 1: Source of auxiliary torque reference B 2: Source of A+B 3: Switched between A and B 4: Communication 	0	-	At stop	" H07_en.02" on page 447

• Source of main torque reference A

The main speed reference A is an internal speed reference that can be set through digital setting.

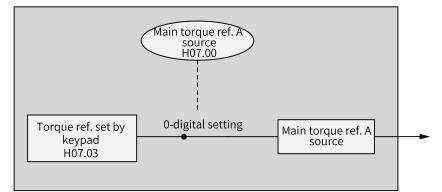


Figure 13-67 Description of source of main torque reference A

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.00	2007-01h	Source of main torque reference A	0: Keypad (H07.03)	0	-	At stop	" H07_en.00" on page 446

• Digital setting

In digital setting, the torque reference is set in H07.03, which defines the percentage of the torque reference to the rated torque of the motor.

\And Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.03	2007-04h	Torque reference set through keypad	-400.0% to 400.0%	0.0	%	Real-time	" H07_en.03" on page 447

• Source of auxiliary torque reference B

The source of auxiliary torque reference B is set in the same way as the main torque reference A. For the descriptions of related parameters, see Chapter "List of Parameters".

• Switched between A and B

When setting H07.02 (Torque reference source) to 3 (Switched between A and B), you need to assign FunIN.4 (DI-SEL) to the corresponding DI. The input signal of this DI determines which source (A or B) is active.

☆ Related parameters:

Code	Parameter Name	Function Name	Description
FunIN.4		-	OFF: Active reference being A
	CMD-SEL	Reference switchover	ON: Active reference being B

Communication

When H07.02 (Torque reference source) is set to 4 (Communication), the torque reference is the value of H31.11. H31.11 is not displayed on the keypad, it can be set through communication only.

 \cancel{x} Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H31.11	2031-0Ch	Torque reference set via communication	-100.000% to 100.000%	0.000	%	Real-time	" H31_en.11" on page 565

Torque reference direction

To switch the torque reference direction through DI, assign FunIN.25 (TorDirSel, torque reference direction) to the corresponding DI. The input signal of this DI determines the torque reference direction.

☆ Related parameters:

Code	Parameter Name	Function Name	Description
FunIN.25	ToqDirSel	Torque reference direction	Inactive: The actual torque reference direction is the same as the set direction. Active: The actual torque reference direction is opposite to the set direction.

The actual direction of rotation is related to the setting of H02.02 (Direction of rotation), the sign (+/-) of the torque reference value, and the logic of FunIN.25.

H02.02	Sign (+/-) of the Torque Reference Value	FunIN.25	Direction of Rotation
0	+	Inactive	CCW
0	+	Active	CW
0	-	Inactive	CW
0	-	Active	CCW
1	+	Inactive	CW
1	+	Active	CCW
1	-	Inactive	CCW
1	-	Active	CW

Table 13–24 Actual direction of rotation in the torque control mode

13.3.3 Torque Reference Filter

If the filter time constant is set to an excessively high value, the responsiveness will be degraded, so pay attention to the responsiveness when setting the filter time constant.

The servo drive smoothens torque references through the low-pass filter to reduce vibration in all the control modes.

The servo drive offers two low-pass filters for torque references, in which the low-pass filter 1 is used by default.

The servo drive switches to low-pass filter 2 when gain switchover is enabled (H08.08 = 1) and the condition defined by H08.09 (H08.09 \neq 0) is met.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.05	2007-06h	Torque reference filter time constant	0.00ms to 30.00ms	0.50	ms	Real-time	" H07_en.05" on page 448
H07.06	2007-07h	2nd torque reference filter time constant	0.00ms to 30.00ms	0.27	ms	Real-time	" H07_en.06" on page 448
				Input t	orque refere	ence	

☆ Related parameters:

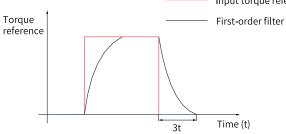


Figure 13-68 First-order filter for rectangular torque references

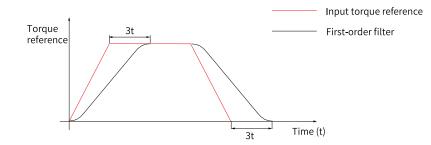


Figure 13-69 First-order filter for trapezoid torque references

13.3.4 Torque Reference Limit

Torque reference limit is active in and needed by all the control modes.

The torque reference limit is used to protect the servo drive and the motor.

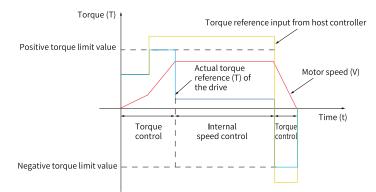


Figure 13-70 Torque reference and torque limit

When the absolute value of the torque reference input from the host controller or output by the speed regulator is higher than the absolute value of the torque reference limit, the actual torque reference of the drive is limited to the torque reference limit. Otherwise, the torque reference input from the host controller or output by the speed regulator is used.

Only one torque reference limit is valid at a moment. The positive/negative torque limit must be lower than or equal to the maximum torque of the drive and the motor and $\pm 300.0\%$ of the rated torque.

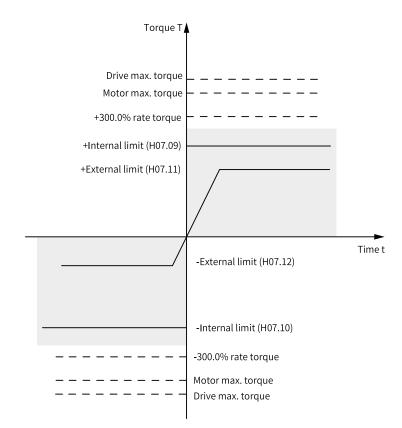


Figure 13-71 Example of torque limit

Torque limit source

You can set the torque limit source in H07.07.

After the torque limit is set, the torque limit applies when the torque reference exceeds the limit. The torque limit must be set according to the load conditions. An excessively low limit may weaken the acceleration/deceleration ability of the motor, causing the actual motor speed to fall below the required value during operating at a constant torque.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.07	2007-08h	Torque Limit source	0: Forward/Reverse internal torque limit (default) 1: Forward/Reverse external torque limit (selected through P-CL and N- CL)	0	-	At stop	" H07_en.07" on page 448

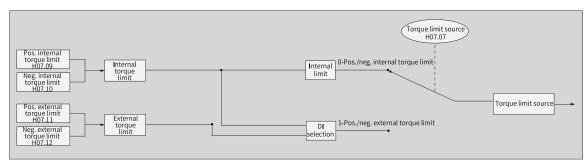


Figure 13-72 Torque Limit source

The following figures show examples in which absolute values of torque references input from the host controller exceed the absolute value of the torque limit in the torque control mode.

 H07.07 = 0 (Positive/Negative internal torque limit) The torque reference limit is determined only by H07.09 and H07.10.

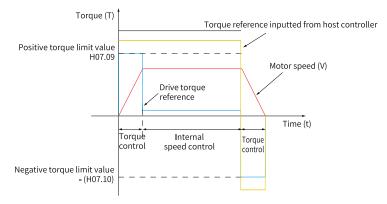


Figure 13-73 Torque limit curve (H07.07 = 0)

H07.07 = 1 (Positive/Negative external torque limit)

The torque reference limit is determined by the logic of the external DI signal. The positive torque limit is selected between H07.09 (Positive internal torque limit) and H07.11 (Positive external torque limit). The negative torque limit is selected between H07.10 (Negative internal torque limit) and H07.12 (Negative external torque limit).

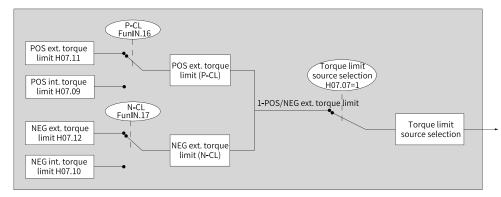
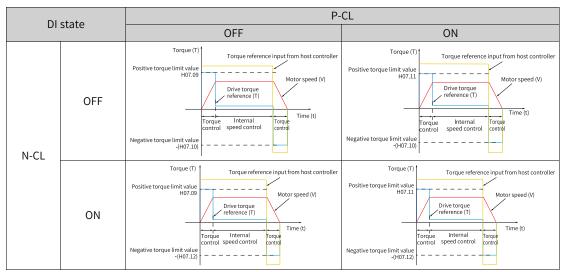



Figure 13-74 Torque limit source (H07.07 = 1)

Table 13–25 Description of H07.07 = 1

Assign FunIN.16 (P-CL: Positive external torque limit) and FunIN.17 (N-CL: Negative external torque limit) to two DI of the drive and set the active logic of these DIs.

☆ Related parameters:

Code	Parameter Name	Function Name	Description
FunIN.16	P-CL	Positive external torque limit	The torque limit source is switched based on H07.07 (Torque limit source). H07.07 = 1: Active: Positive external torque limit activated Inactive: Positive internal torque limit activated
FunIN.17	N-CL	Negative external torque limit	The torque limit source is switched based on H07.07 (Torque limit source). H07.07 = 1: Active: Negative external torque limit activated Inactive: Negative internal torque limit activated

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.09	2007-0Ah	Positive internal torque limit	0.0% to 400.0%	350.0	%	Real-time	" H07_en.09" on page 449
H07.10	2007-0Bh	Negative internal torque limit	0.0% to 400.0%	350.0	%	Real-time	" H07_en.10" on page 449
H07.11	2007-0Ch	Positive external torque limit	0.0% to 400.0%	350.0	%	Real-time	" H07_en.11" on page 449
H07.12	2007-0Dh	Negative external torque limit	0.0% to 400.0%	350.0	%	Real-time	" H07_en.12" on page 449

Setting torque limit DO signal

The drive outputs the C-LT (FunOUT.7: torque limit) signal to the host controller when the torque reference reaches the limit. In this case, assign FunOUT.7 to a DO of the drive and set the active logic of this DO.

☆ Related parameters:

Code	Parameter Name	Function Name	Description
FunOUT.7	C-LT	Torque limit signal	Active: The torque reference value reaches the torque limit and is limited by the torque limit. Inactive: The torque reference does not reach the torque limit.

13.3.5 Speed limit in Torque Control Mode

In the torque control mode, the motor accelerates continuously if the torque reference is higher than the load torque on the machine side, which may lead to overspeed and damage the machine. A speed limit therefore must be set to protect the machine.

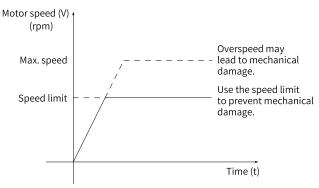


Figure 13-75 Speed limit in the torque control mode

Setting the speed limit source

In the torque control mode, you can set the speed limit source in H07.17. After the speed limit is set, the actual motor speed will be limited. After reaching the speed limit, the motor keeps operating at the speed limit constantly. Set the speed limit based on the operating requirements of the load.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.17	2007-12h	Speed limit source	0: Internal speed limit (in torque control) 1: V-LMT used as external speed limit 2: 1st or 2nd speed limit as defined by V-SEL	0	-	Real-time	" " on page

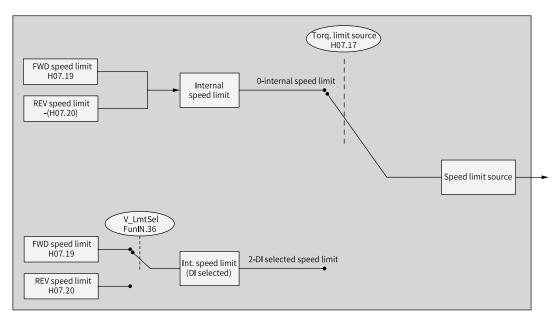
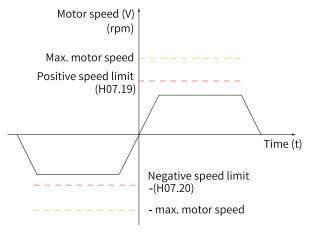
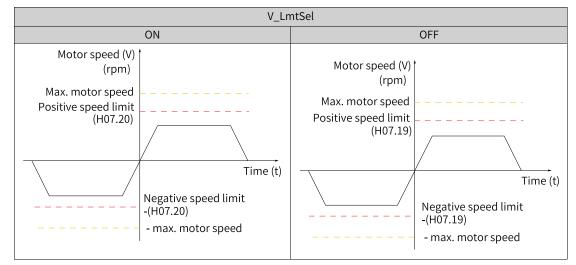


Figure 13-76 Speed limit source

 H07.17 = 0 (Internal speed limit) The speed limit is determined only by H07.19 (Positive speed limit) and H07.20 (Negative speed limit).




Figure 13-77 Speed limit curve (H07.17 = 0)

H07.17 = 2 (1st or 2nd speed limit selected by DI)
 H07.19 or H07.20 is used as the speed limit based on the logic of the DI.

Before setting H107.17 to 2, assign FunIN.36 (V-LmtSel: internal speed limit source) to a DI first, and then set the active logic of this DI.

☆ Related parameters:

Code	Parameter Name	Function Name	Description
FunIN.36	V_LmtSel	Internal speed limit source	Inactive: H07.19 used as positive/negative internal speed limit Active: H07.20 used as positive/negative internal speed limit

Table 13–26 Descriptions of speed limit

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.19	2007-14h	Forward speed limit/1st speed limit in torque control	0rpm to 6000rpm	3000	RPM	Real-time	" H07_en.19" on page 450
H07.20	2007-15h	Reverse speed limit/2nd speed limit in torque control	0rpm to 6000rpm	3000	RPM	Real-time	" H07_en.20" on page 450

Speed limit DO signal

In the torque control mode, the servo drive outputs the V- LT (FunOUT.8: speed limit) signal to the host controller when the absolute value of the motor speed keeps exceeding the speed limit in the period defined by H07.40. If either of the preceding two conditions is not satisfied, the speed limit signal will be deactivated.

Acknowledgment of the V-LT (Speed limit) signal is executed only during operation in the torque control mode.

To use the V-LT signal, assign FunOUT.8 to a DO of the drive and set DO active logic of this DO.

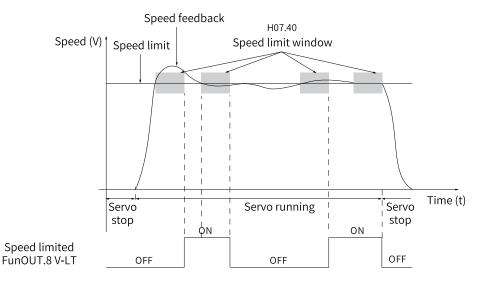


Figure 13-78 Example of speed limit DO waveform

☆ Related parameters:

Code	Parameter Name	Function Name	Description
FunOUT.8	V-LT	Speed limit	Inactive: The motor speed does not reach the speed limit. Active: The motor speed reaches the speed limit and a speed loop is built based on this limit.

13.3.6 Torque Reach Output

The torque reach output is used to determine whether the actual torque reference reaches the set range. The drive outputs TorReach (FunOUT.18: torque reach) signal to the host controller when the actual torque reference reaches the torque reference threshold.



Figure 13-79 Example of TorReach signal waveform

- Actual torque reference (viewed in H0b.02): A
- Base value for torque reach (H07.21): B.
- Threshold of valid torque arrival (H07.22): C.
- Threshold of invalid torque reach (H07.23): D.

C and D are the offset based on B.

The torque reach DO signal can be activated only when the actual torque reference meets the following condition: $|A| \ge B + C$. Otherwise, the torque reach DO signal remains inactive.

For the torque reach DO signal to become inactive, the actual torque reference must meet the following condition: |A| < B + D. Otherwise, the torque reach signal remains active.

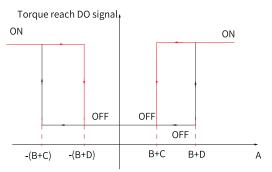


Figure 13-80 Description of torque reach output

Kelaleu Daramelers.	$\overset{\frown}{\Sigma}$	Related	parameters:
---------------------	----------------------------	---------	-------------

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H07.21	2007-16h	Torque reach base value	0.0% to 300.0%	0.0	%	Real-time	" H07_en.21" on page 451
H07.22	2007-17h	Torque reach valid value	0.0% to 300.0%	20.0	%	Real-time	" H07_en.22" on page 451
H07.23	2007-18h	Torque reach invalid value	0.0% to 300.0%	10.0	%	Real-time	" H07_en.23" on page 451

To use the TorReach (Torque reach) signal, assign FunOUT.18 (ToqReach, torque reach) to a DO of the drive and set the active logic of this DO.

 \Rightarrow Related parameters:

Code	Parameter Name	Function Name	Description
FunOUT.18	ToqReach	Torque reach	Active: The absolute value of the torque reference reaches the setpoint. Inactive: The absolute value of the torque reference is lower than the setpoint.

13.4 Mixed Control Mode

In the compound control mode, the control mode can be switched when the S-ON signal is switched on and the servo drive is in the "run" state. The following four compound control modes are available:

- Torque mode ↔ Speed mode
- Speed mode ↔ Position mode
- Torque mode ↔ Position mode
- Speed control mode ↔ Position control mode ↔ Torque control mode

You can enable the compound control mode by setting H02.00 through the keypad or the software tool.

☆	Related	parameters:
---	---------	-------------

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H02.00	2002-01h	Mode selection	0: Speed control mode 1: Position control mode 2: Torque control mode 3: Torque<->Speed control mode 4: Speed<->Position control mode 5: Torque<->Position control mode 6: Torque<->Speed<->Position compound mode 7: Process segment 8: CANopen mode	8	-	At stop	" " on page

Set the parameters for different control modes based on the mechanical structure and technical indicators. See description of H02.00 for details.

When H02.00 is set to 3, 4, or 5, assign a DI with FunIN.10 (M1_SEL, mode switchover 1) and set the active logic of this DI. When H02.00 is set to 6, assign two DIs with FunIN.10 (Mode switchover 1) and FunIN.11 (Mode DI 2) and set the active logic of these two DIs.

\cancel{x} Related parameters:

Code	Parameter Name	Function Name	Function
FunIN.10	M1_SEL	Mode switchover 1	Defines the present control mode during compound control when the servo drive is in the "run" state, as shown in <i>"Table 13–27" on page</i> <i>352</i> .
FunIN.11	FunIN.11 M2_SEL Mode switchover 2		Defines the present control mode during compound control when the servo drive is in the "run" state, as shown in <i>"Table 13–28" on page</i> <i>352</i> .

Table 13–27 Drive control mode

H02.00	M1_SEL terminal logic	Control mode
2	Inactive	Torque control mode
5	Active	Speed control mode
4	Inactive	Speed control mode
4	Active	Position control mode
5	Inactive	Torque control mode
5	Active	Position control mode

Table 13–28 Drive control mode

H02.00	M2_SEL terminal logic	M1_SEL terminal logic	Control mode	
	-	Active	Position control mode	
6	Active	Inactive	Speed control mode	
	Inactive	Inactive	Torque control mode	

13.5 Absolute System

13.5.1 Overview

The absolute encoder, which features a single-turn resolution of 262144 (2¹⁸), is used to detect the motor position within one turn and count the number of motor revolutions, with 16-bit multi-turn data recorded. The absolute system integrated with the absolute encoder works in absolute position linear mode or absolute position rotating mode. These modes apply to position control, speed control, and torque control modes. The absolute encoder with a battery can back up data when the servo drive is powered off. This enables the servo drive to calculate the absolute mechanical position upon power-on again. Therefore, the homing operation is not required.

To match the absolute encoder with the SV630P series servo drives, H00.00 (Motor code) to 14101 (Inovance absolute encoder). Then set H02.01 (Absolute system selection) based on actual conditions. E731.0 (Encoder battery failure) will occur upon initial power-on of the battery. Set H0d.20 (Absolute encoder reset function) to 1 to reset E731.0 before performing the homing operation.

Note

When you change the value of H02.02 (Direction of rotation) or H0d.20 (Absolute encoder reset selection), the absolute position recorded by the encoder changes suddenly, causing the mechanical absolute position reference to change. In this case, perform the homing operation. After homing is done, the deviation between the mechanical absolute position and that recorded in the encoder will be calculated automatically and saved in the EEPROM of the drive.

13.5.2 Related Parameters

Absolute encoder system settings

Set H00.00 (Motor code) to 14101 (Inovance motor with 18-bit absolute encoder), and select the absolute position mode in H02.01.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H00.00	2000-01h	Motor SN	0 to 65535	14101	-	At stop	" " on page
H00.08	2000-09h	Bus encoder type	0 to 65535	0	-	At stop	" " on page
H02.01	2002-02h	Absolute position detection system	0: Incremental position mode 1: Absolute position linear mode 2: Absolute position rotation mode	0	-	At stop	" H02_en.01" on page 393

 \Rightarrow Related parameters:

Note

In the absolute position mode, the system detects the motor code automatically to check whether the motor used is configured with an absolute encoder. If not, E122.0 (multi-turn absolute encoder setting error) occurs.

Absolute position linear mode

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0b.07	200b-08h	Absolute position counter	-2147483648 to 2147483647	0	Refer ence unit	Unchangea ble	" H0b_en.07" on page 490
H0b.58	200b-3Bh	Mechanical absolute position (low 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.58" on page 497
H0b.60	200b-3Dh	Mechanical absolute position (high 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.60" on page 497
H0b.77	200b-4Eh	Absolute position fed back by the absolute encoder (low 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.77" on page 499
H0b.79	200b-50h	Absolute position fed back by the absolute encoder (high 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.79" on page 499

This mode is mainly applicable to the scenario where the load traveling range is fixed and the encoder multi-turn data does not overflow, as shown by the following example of a ball screw transmission machine.

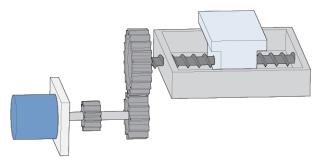


Figure 13-81 Ball screw transmission mechanism

In the formula PM = PE - PO:

PM: mechanical absolute position (H0b.58 and H0b.60)

PE [range: -238 to (238-1)]: absolute position fed back by the encoder

PO: position offset in the absolute position linear mode (H05.46 and H05.48)

If the electronic gear ratio is B/A, then the following formula applies: H0b.07 (Absolute position counter) = PM/(B/A) H0b.07 indicates present mechanical absolute position (in reference unit).

Position offset in the absolute position linear mode (H05.46 and H05.48) is 0 by default. After homing is done, The servo drive calculates the deviation between the absolute position of the machine and that fed back by the encoder, assigns the value to H05.46 and H05.48, and saves the deviation in EEPROM.

The encoder multi-turn data range in the absolute position linear mode is -32768 to +32767. If the number of forward revolutions exceeds 32767 or the number of reverse revolutions is lower than -32768, E735.0 (encoder multi-turn count overflow) occurs. You can hide E735.0 by setting H0A.36 (encoder multi-turn overflow fault) to 1 (hide).

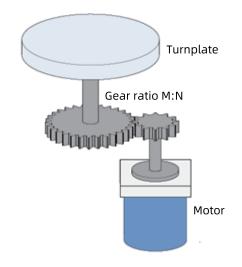
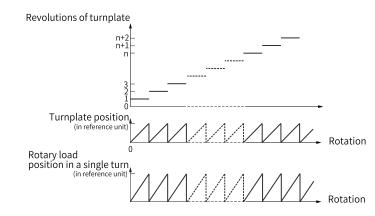
Absolute position rotation mode

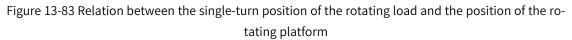
$\stackrel{\text{\tiny theta}}{\to}$ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.50	2005-33h	Mechanical gear ratio in absolute position rotation mode (numerator)	1 to 65535	1	-	At stop	" H05_en.50" on page 433
H05.51	2005-34h	Mechanical gear ratio in absolute position rotation mode (denominator)	1 to 65535	1	-	At stop	" H05_en.51" on page 433
H05.52	2005-35h	Pulses per revolution of the load in absolute position rotation mode (low 32 bits)	0 to 2147483647	0	Encoder unit	At stop	" H05_en.52" on page 434
H05.54	2005-37h	Pulses per revolution of the load in absolute position rotation mode (high 32 bits)	0 to 127	0	Encoder unit	At stop	" H05_en.54" on page 434
H0b.58	200b-3Bh	Mechanical absolute position (low 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.58" on page 497
H0b.60	200b-3Dh	Mechanical absolute position (high 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.60" on page 497
H0b.77	200b-4Eh	Absolute position fed back by the absolute encoder (low 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.77" on page 499
H0b.79	200b-50h	Absolute position fed back by the absolute encoder (high 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.79" on page 499

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0b.81	200b-52h	Load position within one turn in absolute position rotation mode (low 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.81" on page 500
H0b.83	200b-54h	Load position within one turn in absolute position rotation mode (high 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.83" on page 500
H0b.85	200b-56h	Load position within one turn in absolute position rotation mode	-2147483647 to 2147483647	0	Reference unit	Unchangea ble	" H0b_en.85" on page 500

This mode applies in cases where the load travel range is unlimited and the number of unidirectional revolutions is lower than 32767 upon power failure, as shown in the following figure.


Figure 13-82 Rotating load

The servo drive calculates the absolute position upper limit of the machine based on H05.52 and H05.54 first. If H05.52 and H05.54 are 0, the servo drive turns to H05.50 and H05.51. When the encoder resolution (R_E) is 223, and the encoder pulses per load revolution is represented by RM, the following formula applies: If H05.52 or H05.54 \neq 0: R_M = H05.54 x 232+ H05.52 if H05.52 and H05.54 = 0: R_M = R_E

If the electronic gear ratio is B/ A, then the following formula applies: H0b.07 (absolute position counter) = RM/ (B \div A).

The following figure shows the relation between the single-turn position of the rotating load and the position of the rotary platen.

The following figure shows the relation between the position fed back by the encoder and the singleturn position of the rotating load.

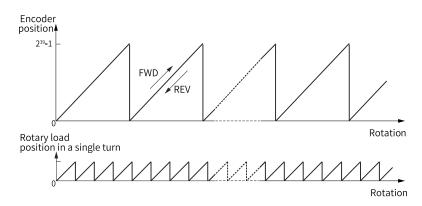


Figure 13-84 Relation between encoder feedback position and the single-turn position of the rotating load

The multi-turn data range is unlimited in the absolute position rotation mode. Therefore, E735.0 (encoder multi-turn counting overflow) is inactive.

Encoder feedback data

The encoder feedback data is divided into the number of revolutions and the single-turn position. For the incremental position mode, the number of revolutions is not recorded.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0b.70	200b-47h	Number of revolutions recorded in the absolute encoder	0Rev-65535Rev	0	Rev	Unchangea ble	" H0b_en.70" on page 498
H0b.71	200b-48h	Single-turn position fed back by the absolute encoder	0 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.71" on page 498

Encoder multi-turn overflow fault

In the absolute position linear mode, you can hide the encoder multi-turn overflow fault by setting H0A.36.

 \Rightarrow Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0A.36	200A-25h	Encoder multi-turn overflow fault	0: Not hide 1: Hide	0	-	At stop	" H0A_en.36" on page 484

Absolute encoder reset

You can reset the encoder error or the multi-turn data fed back by the encoder by setting H0d.20.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0d.20	200d-15h	Multi-turn absolute	0: No operation	0	-	At stop	" H0d_en.20"
		encoder reset	1: Reset				on page 509
			2: Reset the fault and multi-turn data				

Note

The absolute position recorded by the encoder changes abruptly after multi-turn data reset. In this case, perform mechanical homing.

13.5.3 Precautions for Use of the Battery Box

E731.0 (Encoder battery failure) will occur at initial power-on of the battery. Set H0d.20 (Absolute encoder reset function) to 1 to reset E731.0 before further operations.

When the battery voltage detected is lower than 3.0 V, E730.0 (Encoder battery warning) occurs. In this case, replace the battery according to the following steps.

- 1. Power on the servo drive and make it stay in the non-operational state.
- 2. Replace the battery.
- 3. After the servo drive resets E730.0 automatically. If no other warning occurs, continue to operate the servo drive.

Note

- If you replace the battery after powering off the servo drive, E731.0 (Encoder battery failure) will occur at next power-on, leading to an abrupt change in the multi-turn data. In this case, set H0d.20 to 1 to reset the encoder fault. Then perform the homing operation again.
- Ensure the maximum motor speed does not exceed 6000 rpm upon power-down of the servo drive. This is to enable the encoder to record the position accurately.
- Keep the battery in environments within the required ambient temperature range and ensure the battery is in reliable contact and carries sufficient power capacity. Otherwise, encoder data loss may occur.

13.6 Auxiliary Functions

The drive offers the following auxiliary functions to ensure a proper operation of the servo system.

13.6.1 Software position limit

Hardware position limit is implemented by inputting external sensor signals to CN1 of the servo drive.

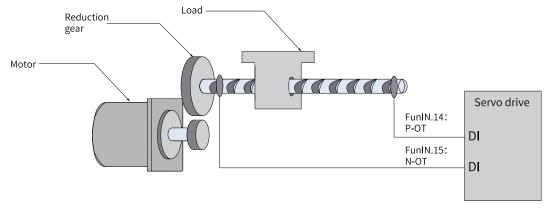


Figure 13-85 Installation of limit switches

Software position limit is implemented through a comparison between the internal position feedback and the set limit value. If the set limit value is exceeded, the servo drive reports a warning and stops immediately. Software position limit is available both in the absolute position mode and the incremental position mode. To use the software position limit in the incremental position mode, set H0A.40 (Software position limit) to 2 (Enabled after homing) first, and then perform homing upon power-on before applying software position limit.

	Hardware Position Limit	Software position limit			
1	Restricted to linear motion and single- turn rotational motion.	1	Applicable to both the linear motion and the rotational motion.		
2	Requires an external mechanical limit switch.	2	Removes the need for hardware wiring, preventing malfunction due to poor cable contact.		
3	Suffered from the risk of mechanical slip.		Prevents malfunction due to mechanical		
4	Unable to sense or detect an overtravel fault after power-off.	3	slip through internal position comparison.		

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0A.40	200A-29h	Software limit selection	0: No operation 1: Activated immediately 2: Activated after homing is done	0	-	At stop	" HOA_en.40" on page 485
H0A.41	200A-2Ah	Forward position of software limit	-2147483648 to 2147483647	214748364 7	-	At stop	" H0A_en.41" on page 485
H0A.43	200A-2Ch	Reverse position of software limit	-2147483648 to 2147483647	-214748364 8	-	At stop	" H0A_en.43" on page 485

- When H0A.40 is set to 0, software position limit is disabled.
- When H0A.40 is set to 1, software position limit is enabled immediately upon power-on. When the absolute position counter (H0b.07) is larger than H0A.41, the servo drive reports E950.0 (Forward limit switch warning) and executes stop at positive limit. When the absolute position counter (H0b.07) is smaller than H0A.43, the servo drive reports E952.0 (Reverse limit switch warning) and executes stop at negative limit.
- If H0A.40 is set to 2, soft limit is enabled after homing. When the value of the absolute position counter (H0b.07) is larger than the value of H0A.41 after homing, E950.0 (Forward overtravel warning) occurs and the servo drive stops at forward overtravel. When the value of the absolute position counter (H0b.07) is smaller than the value of H0A-42 after homing, E952.0 (Reverse overtravel warning) occurs and the servo drive stops at reverse overtravel.

13.6.2 Software reset

The software reset function comes into rescue when a restart of the servo drive in the non-operating state is not allowed because a No.1 non-resettable fault does not occur.

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0d.00	200d-01h	Software Reset	0: No operation 1: Enable	0	-	At stop	" H0d_en.00" on page 506

☆ Related parameters:

13.6.3 Motor protection

Motor overload protection

The motor generates heat continuously due to thermal effect of the current after power-on. The heat is then dissipated to the surroundings. When the heat generated exceeds the heat dissipated, the motor temperature will rise to a point that could damage the motor. To prevent such risks, the drive offers the motor overload protection function to prevent the motor from being damaged due to over-temperature.

The motor is compliant with NEC and CEC requirements and equipped with protective functions against overload and overtemperature.

Set the motor overload protection gain (H0A.04) to adjust the report time of fault E620.0. Use the default value of H0A.04 in general conditions, however, in case of one of the following situations, modify H0A.04 based on the actual heating condition.

- The motor works in environments with high temperature.
- The motor is in the cyclic motion featuring short motion cycle and frequent acceleration/ deceleration.

You can also hide motor overload detection (H0A.26 = 1) when you are sure that the motor will not be damaged due to overtemperature.

Caution

Take caution when hiding motor overload detection as such operation may damage the motor.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0A.04	200A-05h	Motor overload protection gain	50% to 300%	100	%	At stop	" H0A_en.04" on page 479
H0A.26	200A-1Bh	Motor overload detection	0: Show motor overload warning (E909.0) and fault (E620.0) 1: Hide motor overload warning (E909.0) and fault (E620.0) 2: No meaning 3: Enabled for new motors	3	-	At stop	" H0A_en.26" on page 482

Locked rotor over-temperature protection

When the motor is stalled, the motor speed is nearly 0 RPM while the current is large. In this case, the motor is overheated significantly. The motor is capable of operating upon stall in an allowable period of time, exceeding of which can damage the motor due to overtemperature. To prevent such a risk, the servo drive offers motor stall overtemperature protection to protect the motor from being damaged by overtemperature upon stall.

You can set the time for reporting E630.0 (Motor stall over-temperature fault) by setting the time threshold for motor overtemperature protection (H0A.32). The motor overtemperature protection function is enabled by default (H0A.33 = 1).

Take caution when disabling motor stall over-temperature protection as such operation may damage the motor. Use a dedicated motor for the servo drive. Failure to comply will result in the risk of short circuit due to insulation deterioration.

☆ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0A.32	200A-21h	Time threshold for locked motor overheat protection	10ms to 65535ms	200	ms	Real-time	" H0A_en.32" on page 483
H0A.33	200A-22h	Locked motor overheat protection	0: Disabled 1: Enable 2: Enabled for new over-temperature	1	-	Real-time	" H0A_en.33" on page 483

Motor overspeed protection

An excessively high speed may damage the motor or machine. Motor overspeed protection is used to protect the motor in case of overspeed, preventing the motor or machine from being damaged due to overtemperature.

Overspeed		Max. motor speed x 1.2	H0A.08 = 0 or H0A.08 > Max. motor speed x 1.2
threshold	= {	H0A.08	H0A.08≠0 and H0A.08 < Max. motor speed x 1.2

Caution

- The servo drive also offers motor runaway protection to prevent motor stall caused by lose of control.
- In applications where the motor drives a vertical axis or is driven by load, set H0A.12 to 0 to hide runaway fault detection. Use this function with caution.

$\stackrel{\text{\tiny theta}}{\to}$ Related parameters:

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H0A.08	200A-09h	Overspeed threshold	0 rpm to 10000 rpm	0	RPM	Real-time	" H0A_en.08" on page 479
H0A.12	200A-0Dh	Runaway protection enable	0: Disabled 1: Enabled	1	-	Real-time	" H0A_en.12" on page 480

Besides runaway protection, the drive also allows you to set the speed limit in the speed/torque control mode to protect the motor and the machine.

13.6.4 DI Filter Time Setting

The servo drive provides seven DIs, in which DI1 to DI5 are normal low-speed DIs, and DI8 and DI9 are high-speed DIs.

The following table describes the signal logic of low-speed DI terminals.

Value	DI Logic Upon Active DI Function	Remarks
0	Low level	High <u>> 3 ms</u> Low Active
1	High level	High Active Low -> 3 ms

Table 13–30 Signal logic of low-speed DI terminals

The following table describes the signal logic of high-speed DI terminals.

Value	DI Logic Upon Active DI Function	Remarks
0	Low level	High
1	High level	High Active Low > 0.25 ms

14 Communication

14.1 Modbus通信

14.1.1 Overview

The Modbus protocol is a common language applied to electronic controllers. Based on this protocol, controllers can communicate with each other and with other devices. This protocol has become a general industry standard. This communication protocol enables control devices produced by different manufacturers to be connected into an industrial network for centralized monitoring.

14.1.2 Hardware Configuration

Terminal Layout

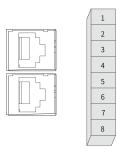


Figure 14-1 Communication Terminal pin layout of the servo drive

Pin No.	Description	Description
1	CANH	CAN communication port
2	CANL	CAN communication port
3	CGND	CAN communication ground
4	RS485+	RS485 communication port
5	RS485-	RS485 communication port
6	RS232-TXD	RS232 transmitting end, connected to the receiving end of the host controller
7	RS232-RXD	RS232 receiving end, connected to the transmitting end of the host controller
8	GND	Ground
Enclosure	PE	Shield

Terminal descriptions

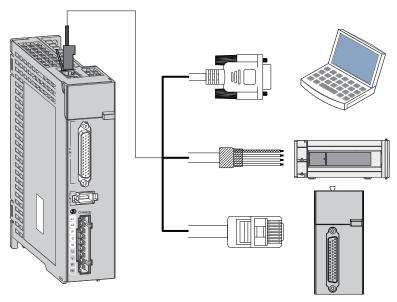


Figure 14-2 Wiring of communication cables

CN3 and CN4 are identical communication terminals connected in parallel internally.

CN3 and CN4 in the drive are used for communication with the PC, PLC, and other drives. For pin assignment of CN3/CN4, see *"Figure 14–1 Communication Terminal pin layout of the servo drive" on page 364.*

RS485 communication with PLC

The following figure shows the cable used for 485 communication between the servo drive and PLC.

Figure 14-3 Outline drawing of cable used for CAN communication between the servo drive and PLC

Use a three-conductor shielded cable to connect the RS485 bus, with three conductors connected to 485+, 485-, and GND (GND represents non-isolated RS485 circuit) respectively. Connect RS485+ and RS485- with two conductors twisted together and connect the remaining conductor to the RS485 reference ground (GND). Connect the shield to the device ground (PE). Connect a 120Ω termination resistor on each end of the bus to prevent RS485 signal reflection.

Table 14–2 Pin connection relation of the cable used for CAN communication between the servo drive and PLC

RJ4	15 on the Drive Side	(A)	PLC Side (B)			
Communication Type	Pin No.	Description	Communication Type	Pin No.	Description	
	4	485+		4	485+	
RS485	5	485-	RS485	5	485-	
	8	GND		8	GND	
-	Enclosure	PE (shield layer)	-	Enclosure	PE (shield layer)	

Wiring of multi-drive RS485 communication

The following figure shows the cable used for multi-drive RS485 communication.

Figure 14-4 Outline drawing of the cable used for multi-drive RS485 communication

Table 14–3 Pin connection relation of the cable used for multi-drive RS485 communication (pins in 485 group used only)

RJ45 on the Drive Side (A)			RJ45 on the Drive Side (B)		
Communication Type	Pin No.	Pin No. Description		Pin No.	Description
	4	485+		4	485+
RS485	85 5 485-		RS485	5	485-
	8	GND		8	GND
-	Enclosure	PE (shield layer)	-	Enclosure	PE (shield layer)

In case of a large number of nodes, use the daisy chain mode for RS485 communication. Connect the reference grounds of RS485 signals of all the nodes (up to 128 nodes) together.

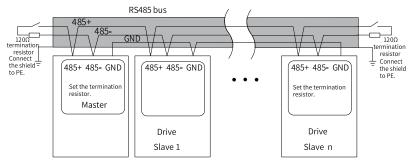


Figure 14-5 RS485 bus topology

Do not connect (1) (GND) terminal to the CGND terminal of the drive. Failure to comply may damage the machine.

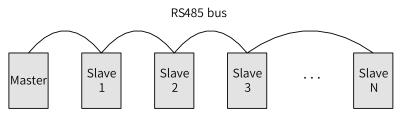


Figure 14-6 Daisy chain mode

The following table lists the maximum number of nodes and transmission distance supported by the standard RS485 circuit at different transmission rate.

No.	Transmission Rate (kbps)	Transmission Distance (m)	Number of Nodes	Cross Sectional Area
1	115.2	100	128	AWG26
2	19.2	1000	128	AWG26

Table 14-4 Transmission distance and number of nodes

RS232 communication with PC

You can connect the servo drive and the PC using the PC communication cable during RS232 communication. It is recommended to use RS232 communication interface. The outline drawing of the PC communication cable is shown in the following figure.

Figure 14-7 Outline drawing of the PC communication cable

Table 14–5 Pin connection re	lation between the servo	drive and PC communicat	ion cable
	ation between the serve		ion cubic

RJ45 on the Drive Side (A)		DB9 on the PC Side (B)		
Signal Name	Pin No.	Signal Name Pin No.		
RS232-TXD	6	PC-RXD	2	
RS232-RXD	7	PC-TXD 3		
GND	8	GND	5	
PE (shield layer)	Enclosure	PE (shield layer)	Enclosure	

Pin assignment of DB9 terminal on the PC side is shown in the following table.

Table 14–6 Pin definition of DB9 terminal on the PC side	/"""	in the proceeding figure)
	סו	In the preceding lighter
	· -	

Pin No.	Description	Description	Terminal Pin Layout
2	PC-RXD	PC receiving end	
3	PC-TXD	PC transmitting end	
5	GND	Ground	
Enclosure	PE	Shield	

If the host controller supports USB interface only, use the serial-to-USB cable.

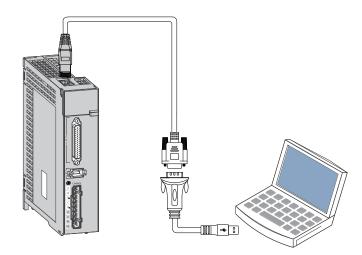


Figure 14-8 Outline drawing of the PC communication cable

Recommendations: Manufacture: Z-TEK Model: ZE551A, equipped with a 0.8 m USB extension cable Chip model: FT232

14.1.3 Data Frame Structure

Parameters of the servo drive are divided into 16-bit and 32-bit parameters based on the data length. You can read and write parameters through the Modbus RTU protocol.

0x10

	s vary man the data tengan.
Operation	Command code
Read 16-bit/32-bit parameters	0x03
Write 16-bit parameters	0x06

The command codes for reading/writing parameters vary with the data length.

Command code for reading parameter: 0x03

Write 32-bit parameters

In Modbus RTU protocol, command code 0x03 is used to read both 16-bit and 32-bit parameters.

Request frame format:

Value	Description
START	Equal to or larger than 3.5-character idle time, indicating the start of a frame
	Servo axis address: 1 to 247
ADDR	Note: 1 to 247 are decimal values which need to be converted into hexadecimal equivalents.
CMD	Command code: 0x03
	Register start address (eight high bits): parameter group number of the start register
DATA[0]	Take H06.11 as an example, "06" is the group number, which means DATA[0] = 0x06.
	Note: In this example, "06" is a hexadecimal value that needs no conversion.

Value	Description	
	Register start address (eight low bits): offset within the parameter group of the start register	
DATA[1]	Take H06.11 as an example, "11" is the offset within the parameter group. That is, DATA [1] = 0x0B.	
	Note: In this example, "11" is a decimal value that needs to be converted into the hexadecimal equivalent 0x0B.	
DATA[2]	Read the eight high bits N (H) of the number of parameters (hexadecimal)	
DATA[3]	Read the eight low bits N (L) of the number of parameters (hexadecimal)	
CRCL	CRC valid byte (low 8 bits).	
CRCH	CRC valid byte (high 8 bits).	
END	Equal to or larger than 3.5-character idle time, indicating the end of a frame	

Response frame format:

Value	Description	
START	Equal to or larger than 3.5-character idle time, indicating the start of a frame	
ADDR	Servo axis address, hexadecimal	
CMD	Command code: 0x03	
DATALENGTH	Number of parameter bytes, equal to reading the number of parameters N x 2	
DATA[0]	Parameter data in the first register (eight high bits)	
DATA[1]	Parameter data in the first register (eight low bits)	
DATA[···]		
DATA[N*2-2]	Parameter data in the Nth register (eight high bits)	
DATA[N*2-1]	Parameter data in the Nth register (eight low bits)	
CRCL	CRC valid byte (low 8 bits).	
CRCH	CRC valid byte (high 8 bits).	
END	Equal to or larger than 3.5-character idle time, indicating the end of a frame	

In Modbus RTU protocol, command code 0x06 is used to write 16-bit parameters. Command code for writing 32-bit parameters: 0x10

Communication example

• To read data with a length of two words by taking H02.02 as the start register in the drive whose servo axis address is 01:

Master request frame

01	03	02	02		00	02	CRCL	CRCH
Slave respo	nse frame:							
01	03	04	00	01	00	00	CRCL	CRCH

The response frame indicates the slave returns data with a length of two words (four bytes), the content of which is 0x0001 and 0x0000.

If the slave response frame is as follows:

01 83 02 CRCL CRCH

This response frame indicates a communication error occurs and the error code is 0x02. (0x83 indicates an error.)

• To read H05.07 (32-bit) in the drive whose servo axis address is 01:

Master request frame

01	03	05	07	7	00	02	CRCL	CRCH
Slave respo	nse frame:							
01	03	04	00	01	00	00	CRCL	CRCH

The preceding response frame indicates the value of H05.07 is 0x00000001.

Command code for writing 16-bit parameters: 0x06

Caution

Do not write 32-bit parameters with the command code 0x06. Failure to comply can result in unexpected error.

Request frame format:

Value	Description
START	Equal to or larger than 3.5-character idle time, indicating the start of a frame
	Servo axis address 1 to 247
ADDR	Note: 1 to 247 are decimal values which need to be converted into hexadecimal
	equivalents.
CMD	Command code: 0x06
	Register start address (eight high bits): parameter group number of the start register
DATA[0]	Take H06.11 as an example, "06" is the group number, which means DATA[0] = 0x06.
	Note: In this example, "06" is a hexadecimal value that needs no conversion.
	Register start address (eight low bits): offset within the parameter group of the start
	register
DATA[1]	Take H06.11 as an example, "11" is the offset within the parameter group, which means DATA[1] = 0x0B.
	Note: In this example, "11" is a decimal value that needs to be converted into the hexadecimal equivalent 0x0B.
DATA[2]	Write the 8 high bits of register data (hexadecimal)
DATA[3]	Write the 8 low bits of register data (hexadecimal)
CRCL	CRC valid byte (low 8 bits).
CRCH	CRC valid byte (high 8 bits).
END	Equal to or larger than 3.5-character idle time, indicating the end of a frame

Response frame format:

Value	Description
START	Equal to or larger than 3.5-character idle time, indicating the start of a frame
ADDR	Servo axis address, hexadecimal
CMD	Command code: 0x06
	Register start address (eight high bits): parameter group number of the start register
DATA[0]	Take H06.11 as an example, "06" is the group number, which means DATA[0] = 0x06.
	Note: In this example, "06" is a hexadecimal value that needs no conversion.

Value	Description
	Register start address (eight low bits): offset within the parameter group of the start register
DATA[1]	Take H06.11 as an example, "11" is the offset within the parameter group, which means DATA[1] = 0x0B.
	Note: In this example, "11" is a decimal value that needs to be converted into the hexadecimal equivalent 0x0B.
DATA[2]	Write the 8 high bits of register data (hexadecimal)
DATA[3]	Write the 8 low bits of register data (hexadecimal)
CRCL	CRC valid byte (low 8 bits).
CRCH	CRC valid byte (high 8 bits).
END	Equal to or larger than 3.5-character idle time, indicating the end of a frame

Communication example

To write data 0x0001 to H02.02 in the drive whose servo axis address is 01:

Master request frame

01	06	02	02	00	01	CRCL	CRCH

Slave response frame:

01 06 02 02	00	01	CRCL	CRCH
-------------	----	----	------	------

This response frame indicates 0x0001 has been written to H02.02 in the drive whose servo axis address is 01.

If the slave response frame is as follows:

01	86	02	CRCL	CRCH

This response frame indicates a communication error occurs and the error code is 0x02. (0x86 indicates an error.)

Command code for writing 32-bit parameters: 0x10

Do not write 16-bit parameters with the command code 0x10. Failure to comply can result in unexpected error.

Request frame format:

Value	Description	
START	equal to or larger than 3.5-character idle time, indicating the start of a frame	
	Servo axis address 1 to 247	
ADDR	Note: 1 to 247 are decimal values which need to be converted into hexadecimal equivalents.	
CMD	Command code: 0x10	

Value	Description
	Register start address (eight high bits): parameter group number of the start register
DATA[0]	Take H11.12 as an example, "11" is the group number, which means DATA[0] = 0x11.
	Note: In this example, "11" is a hexadecimal value that needs no conversion.
	Register start address (eight low bits): offset within the parameter group of the start register
DATA[1]	Take H11.12 as an example, "12" is the offset within the parameter group, which means DATA[1] = 0x0C.
	Note: In this example, "12" is a decimal value that needs to be converted into the hexadecimal equivalent 0x0C.
	Write the eight high bits M (H) of the number of parameters (hexadecimal)
DATA[2]	Take H05.07 as an example, DATA[2] is 00, DATA[3] is 02, and M is H0002.
	For 32-bit parameters, each parameter is calculated as two words.
DATA[3]	Write the eight low bits M (L) of the number of parameters (hexadecimal)
DATA[4]	Write the number of bytes (M x 2) corresponding to the register data
DATA[4]	Take H05.07 as an example, DATA[4] is H04.
DATA[5]	Write the eight high bits of the start register data (hexadecimal)
DATA[6]	Write the eight low bits of the start register data (hexadecimal)
DATA[7]	Write the eight high bits of the start register address +1 (hexadecimal)
DATA[8]	Write the eight low bits of the start register address +1 (hexadecimal)
CRCL	CRC valid byte (low 8 bits).
CRCH	CRC valid byte (high 8 bits).
END	Equal to or larger than 3.5-character idle time, indicating the end of a frame

Response frame format:

Value	Description
START	Equal to or larger than 3.5-character idle time, indicating the start of a frame
ADDR	Servo axis address, hexadecimal
CMD	Command code: 0x10
DATA[0]	Register start address (eight high bits): offset within the parameter group of the start register
	Take H11.12 as an example, DATA[0] = 0x11.
DATA[1]	Register start address (eight low bits): offset within the parameter group of the start register
	Take H11.12 as an example, DATA[1] = 0x0C.
DATA[2]	Write the eight high bits M (H) of the number of parameters (hexadecimal)
DATA[3]	Write the eight low bits M (L) of the number of parameters (hexadecimal)
CRCL	CRC valid byte (low 8 bits).
CRCH	CRC valid byte (high 8 bits).
END	Equal to or larger than 3.5-character idle time, indicating the end of a frame

Error response frame

Error frame response format:

Value	
START	Equal to or larger than 3.5-character idle time, indicating the start of a frame
ADDR	Servo axis address, hexadecimal
CMD	Command code: 0x80
DATA[0][3]	DATA error code.
CRCL	CRC valid byte (low 8 bits).
CRCH	CRC valid byte (high 8 bits).
END	Equal to or larger than 3.5-character idle time, indicating the end of a frame

Error code:

Error code	Description
0x0001	Invalid command code
0x0002	Illegal data address
0x0003	Illegal data
0x0004	Slave device fault

32-bit parameter addressing

When 32-bit parameters are read/written through Modbus commands, the communication address is determined by the address of the parameter with lower offset number. Two offset numbers are operated in one operation.

Note

In the following examples, the servo axis address is 01 by default.

• The Modbus command for reading H11.12 (Displacement 1) is as follows:

01 03 11 0C 00 02 CRCL CRCH

If the "1st displacement" is 0x40000000 (decimal equivalent: 1073741824), then the following response frames apply:

• When H0C.26 is set to 1 (Low 16 bits before high 16 bits), the response frame is as follows.

01	03	04	00	00	40	00	CRCL	CRCH
 					· · · ·			

• When H0C.26 is set to 0 (High 16 bits before low 16 bits), the response frame is as follows.

01 03 04 40 00 00	00 CRCL CRCH

- For example, the Modbus command for writing 0x12345678 to H11.12 (Displacement 1) is as follows.
 - If H0C.26 = 1 (Low 16 bits before high 16 bits):

	ſ	01	10	11	0C	00	02	04	56	78	12	34	CRCL	CRCH
--	---	----	----	----	----	----	----	----	----	----	----	----	------	------

If H0C-26 = 0 (High 16 bits before low 16 bits):

01 10 11 0C 00 02 04 12 34 56 78 CRCL	CRCH

• For example, to write 0x00100000 (decimal: 1048576) to the 32-bit parameter H05-07: When H0C.26 is set to 0 (High 16 bits before low 16 bits), the response frame is as follows.

01	10	05	07	00	02	04	00	00	00	10	CRCL	CRCH

CRC check

The host controller and the drive must use the same CRC algorithm during communication. Otherwise, a CRC error can occur. The SV630P series servo drive adopts 16-bit CRC with low bytes before high bytes. The polynomial used for CRC is $X^{16} + X^{15} + X^2 + 1$ (0xA001).

Uint16 COMM_CrcValueCalc(const Uint8 *data, Uint16 length)

```
{
  Uint16 crcValue = 0xffff;
  int16 i;
  while (length--)
  {
    crcValue ^= *data++;
    for (i = 0; i < 8; i++)
    ł
      if (crcValue & 0x0001)
      {
        crcValue = (crcValue >> 1) ^ 0xA001;
      }
      else
      {
        crcValue = crcValue >> 1;
      }
    }
  }
  return (crcValue);
}
```

14.1.4 Communication Parameters

Parameter	Default Value	Description	Remarks
H0C.00	1	Drive axis address	-
H0C.02	5	Serial baud rate	5: 57600bps
H0C.03	3	Modbus communication data format	0: No check, 2 stop bits
H0C.26	1	Modbus communication data sequence	0: High bits before low bits
		sequence	1: Low bits before high bits

Description of Parameters 15

15.1 **H00 Servo Motor Parameters**

H00.00 **Motor SN**

Hex: 2000-01h Effective Upon the next power-on mode: Min.: 0 Unit: _ Max.: 65535 Data Type: UInt16 Default: 14101 Change: At stop Value Range: 0 to 65535 Description 14000: Inovance 20-bit incremental encoder motor 14101: Inovance 18-bit absolute encoder motor **Customized No.**

H00.02

Hexadecimal: 2000-03h 0.00 Min.: 42949672.95 Max.: 0.00 Default: Value Range:

0.00 to 42949672.95

Description

Differentiates the customized MCU software version, which is not applicable to standard models.

Effective Time: -

Unit:

Data Type:

Change:

H00.04 **Encoder version**

Hexadecimal: 2000-05h Min.: 0.0 Max.: 6553.5 Default: 0.0 Value Range:

Effective Time: -Unit: Data Type: UInt16 Change: Unchangeable

UInt32

Unchangeable

0.0 to 6553.5 Description

Saved in the encoder and used to differentiate the encoder software version.

H00.05 Serial-type motor code

Hexadecimal: 2000-06h Min.: 0 65535 Max.: Default: 0 Value Range: 0 to 65535

Effective Time: -Unit: Data Type: UInt16 Change: Unchangeable

Description

Displays the code of the serial-type motor, which is determined by the motor model and unchangeable.

H00.06 **FPGA customized SN**

Hexadecimal:	2000-07h	Effective Time:	-
Min.:	0.00	Unit:	-

	Max.: Default: Value Range: 0.00 to 10485. Description Differentiates		Data Type: Change: ersion, which is no	UInt32 Unchangeable ot applicable to standard models.
H00.08		2000-09h 0 65535 0	Effective Time: Unit: Data Type: Change:	- - UInt16 Immediately
H00.09	Rated voltage Hexadecimal: Min.: Max.: Default: Value Range: 0: 220 V 1: 380 V Description 0: 220 V 1: 380 V	2000-0Ah 0 65535 0	Effective Time: Unit: Data Type: Change:	- V UInt16 At stop
H00.10	Rated power Hexadecimal: Min.: Max.: Default: Value Range: 0.01 kW–655.3 Description	2000-0Bh 0.01 655.35 0.01 5 kW	Effective Time: Unit: Data Type: Change:	- kW UInt16 At stop
H00.11	Rated current Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description	2000-0Ch 0.01 655.35 0.01	Effective Time: Unit: Data Type: Change:	- A UInt16 At stop

H00.12	Rated torque			
	Hexadecimal:	2000-0Dh	Effective Time:	-
	Min.:	0.10	Unit:	N∙m
	Max.:	655.35	Data Type:	UInt16
	Default:	0.10	Change:	At stop
	Value Range:		0.0	•
	0.10N · m−655.3	35N · m		
	Description			
	-			
H00.13	Max. torque			
	Hexadecimal:	2000-0Eh	Effective Time:	-
	Min.:	0.10	Unit:	N∙m
	Max.:	655.35	Data Type:	UInt16
	Default:	0.10	Change:	At stop
	Value Range:			
	0.10N·m-655.3	35N · m		
	Description			
H00.14	Rated speed			
	Hexadecimal:	2000-0Fh	Effective Time:	
	Min.:	100	Unit:	rpm
	Max.:	9000	Data Type:	UInt16
	Default:	100	Change:	At stop
	Value Range:			
	100rpm-9000r	pm		
	Description			
	-			
H00.15	Maximum spe	ed		
	Hexadecimal:		Effective Time:	-
	Min.:	100	Unit:	rpm
	Max.:	9000	Data Type:	UInt16
	Default:	100	Change:	At stop
	Value Range:		0	
	100rpm-9000r	pm		
	Description			
H00.16	Moment of ine			
	Hexadecimal:		Effective Time:	-
	Min.:	0.01	Unit:	kgcm ²
	Max.:	655.35	Data Type:	UInt16
	Default:	0.01	Change:	At stop
	Value Range:			
	0.01 kgcm ² -655	5.35 kgcm ²		
	Description	-		
1100 17	New 1 175			
H00.17	Hexadecimal:	1SM pole pairs	Effective Time:	_
	IICAUCCIIIIal.	Z000-1211	LILCUIVE HIHE.	

	Min.: Max.: Default: Value Range:	2 360 2	Unit: Data Type: Change:	- UInt16 At stop
	2 to 360 Description			
H00.18	Stator resistar			
	Hexadecimal:		Effective Time:	-
	Min.:	0.001	Unit:	Ω
	Max.:	65.535	Data Type:	UInt16
	Default:	0.001	Change:	At stop
	Value Range: 0.001 Ω to 65.5	35.0		
	Description	33.77		
	-			
H00.19	Stator inducta	-		
	Hexadecimal:		Effective Time:	
	Min.:	0.01	Unit:	mH
	Max.:	655.35	Data Type:	UInt16
	Default:	0.01	Change:	At stop
	Value Range: 0.01mH-655.35			
	Description			
	-			
H00.20	Stator inducta	ince Ld		
	Hexadecimal:		Effective Time:	-
	Min.:	0.01	Unit:	mH
	Max.:	655.35	Data Type:	UInt16
	Default:	0.01	Change:	At stop
	Value Range:			
	0.01mH-655.35	рМН		
	Description -			
H00.21	Linear back EN	MF coefficient		
	Hexadecimal:	2000-16h	Effective Time:	-
	Min.:	0.01	Unit:	mV/rpm
	Max.:	655.35	Data Type:	UInt16
	Default:	0.01	Change:	At stop
	Value Range:			
	0.01 mV/rpm to Description	o 655.35 mV/rpm		
	-			
H00.22	Torque coeffic	ient Kt		
	Hexadecimal:		Effective Time:	-
	Min.:	0.01	Unit:	N∙m/Arms
	Max.:	655.35	Data Type:	UInt16

	Default: Value Range: 0.01 N·m/Arms Description	0.01 to 655.35 N·m/Arms	Change:	At stop
H00.23	Electrical cons Hexadecimal: Min.: Max.: Default: Value Range: 0.01 ms to 655. Description	2000-18h 0.01 655.35 0.01	Effective Time: Unit: Data Type: Change:	- ms UInt16 At stop
H00.24	Mechanical co Hexadecimal: Min.: Max.: Default: Value Range: 0.01 ms to 655. Description	2000-19h 0.01 655.35 0.01	Effective Time: Unit: Data Type: Change:	- ms UInt16 At stop
H00.27	Sine/Cosine nu Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	umber of serial encoder motor 2000-1Ch 0 65535 1	Effective Time: Unit: Data Type: Change:	- - UInt16 Immediately
H00.28	Hexadecimal: Min.: Max.: Default: Value Range: 0P/Rev–107374 Description	0 1073741824 0	Effective Time: Unit: Data Type: Change: g.	- PPR UInt32 At stop
H00.30	Encoder select Hexadecimal: Min.: Max.: Default: Value Range:		Effective Time: Unit: Data Type: Change:	- - UInt16 At stop

- 0: Regular incremental encoder (UVW-ABZ)
- 1: Wire-saving encoder (ABZ[UVW])
- 2: Regular incremental encoder (ABZ, without UVW)
- 16: TAMAGAWA encoder
- 18: Nikon encoder
- 19: Inovance encoder
- 48: Optical scale

Description

00: Regular incremental encoder (UVW-ABZ)

1: Wire-saving encoder (ABZ[UVW])

2: Regular incremental encoder (ABZ, without UVW)

- 16: TAMAGAWA encoder
- 18: Nikon encoder
- 19: Inovance encoder

48: Optical scale

H00.31 Encoder PPR

 Hexadecimal:
 2000-20h

 Min.:
 1

 Max.:
 1073741824

 Default:
 8388608

 Value Range:
 1

Effective Time:	-
Unit:	PPR
Data Type:	UInt32
Change:	At stop

1P/Rev-1073741824P/Rev

Description

Defines the number of pulses fed back by the encoder per motor revolution.

H00.35 Motor code saved in the serial encoder

Hexadecimal: 2000-24h Effective Time: -Min.: Unit: 0 65535 UInt16 Max.: Data Type: Default: 0 Change: At stop Value Range: 0 to 65535 Description

.

H00.37 Encoder function setting bit

 Hexadecimal:
 2000-26h

 Min.:
 0

 Max.:
 255

 Default:
 0

 Value Range:

 0 to 255

 Description

Effective Time: -Unit: -Data Type: UInt16 Change: Unchangeable

H00.43	Maximum Current		
	Hexadecimal:	2000-2Ch	
	Min.:	0.00	
	Max.:	655.35	

Effective Time: Upon the next power-on Unit: A Data Type: UInt16

	Default: Value Range: 0.00 A to 655.3 Description	16.95 5 A	Change:	At stop
15.2	H01 Servo	Drive Parameters		
H01.00	MCU software Hexadecimal: Min.: Max.: Default: Value Range: 0.0 to 6553.5 Description Displays MCU s		Effective Time: Unit: Data Type: Change: al place).	- - UInt16 Unchangeable
H01.01	FPGA software Hexadecimal: Min.: Max.: Default: Value Range: 0.0 to 6553.5 Description Displays the FF		Effective Time: Unit: Data Type: Change: mal place.	- - UInt16 Unchangeable
H01.02	Servo Drive M Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description		Effective Time: Unit: Data Type: Change:	Upon the next power-on - UInt16 At stop
H01.04	Voltage class Hexadecimal: Min.: Max.: Default: Value Range: 0 V to 65535 V Description	2001-05h 0 65535 220	Effective Time: Unit: Data Type: Change:	- V UInt16 Immediately
H01.05	Rated power Hexadecimal:	2001-06h	Effective Time:	-

	Min.:	0.01	Unit:	kW
	Max.:	655.35	Data Type:	UInt16
	Default:	75.00	Change:	Immediately
	Value Range:		C	
	0.01 kW-655.3	5 kW		
	Description			
	-			
H01.06	Max. output p			
	Hexadecimal:		Effective Time:	
	Min.:	0.01	Unit:	kW
	Max.:	655.35	Data Type:	UInt16
	Default:	75.00	Change:	Immediately
	Value Range:			
	0.01 kW-655.3	o kW		
	Description			
	Displays the m	aximum output power of the driv	e, with 2 decima	ll places.
H01.07	Rated output	current		
	Hexadecimal:	2001-08h	Effective Time:	-
	Min.:	0.01	Unit:	А
	Max.:	655.35	Data Type:	UInt16
	Default:	5.50	Change:	Immediately
	Value Range:		Ū.	-
	0.01 A to 655.3	5 A		
	Description			
	-	ted output current of the drive, w	ith 2 decimal pla	aces.
H01.08	Max. output c	urrent		
H01.08	Max. output c Hexadecimal:		Effective Time:	-
H01.08	Hexadecimal:	2001-09h	Effective Time: Unit:	- A
H01.08	•	2001-09h 0.01	Unit:	А
H01.08	Hexadecimal: Min.: Max.:	2001-09h 0.01 655.35	Unit: Data Type:	A UInt16
H01.08	Hexadecimal: Min.: Max.: Default:	2001-09h 0.01	Unit:	А
H01.08	Hexadecimal: Min.: Max.: Default: Value Range:	2001-09h 0.01 655.35 16.90	Unit: Data Type:	A UInt16
H01.08	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3	2001-09h 0.01 655.35 16.90	Unit: Data Type:	A UInt16
H01.08	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description	2001-09h 0.01 655.35 16.90	Unit: Data Type: Change:	A UInt16 Immediately
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri	Unit: Data Type: Change:	A UInt16 Immediately
H01.08 H01.10	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m Carrier freque	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri	Unit: Data Type: Change: ve, with 2 decim	A UInt16 Immediately al places.
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m Carrier freque Hexadecimal:	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri ncy 2001-0Bh	Unit: Data Type: Change: ve, with 2 decim Effective Time:	A UInt16 Immediately al places.
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m Carrier freque Hexadecimal: Min.:	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri Incy 2001-0Bh 4000	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit:	A UInt16 Immediately al places.
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m Carrier freque Hexadecimal: Min.: Max.:	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri ncy 2001-0Bh 4000 20000	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit: Data Type:	A UInt16 Immediately al places. - - UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3. Description Displays the m Carrier freque Hexadecimal: Min.: Max.: Default:	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri Incy 2001-0Bh 4000	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit:	A UInt16 Immediately al places.
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m Carrier freque Hexadecimal: Min.: Max.: Default: Value Range:	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri ncy 2001-0Bh 4000 20000	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit: Data Type:	A UInt16 Immediately al places. - - UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m Carrier freque Hexadecimal: Min.: Max.: Default: Value Range: 4000 to 20000	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri ncy 2001-0Bh 4000 20000	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit: Data Type:	A UInt16 Immediately al places. - - UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3. Description Displays the m Carrier freque Hexadecimal: Min.: Max.: Default: Value Range: 4000 to 20000 Description	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri Prcy 2001-0Bh 4000 20000 8000	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit: Data Type: Change:	A UInt16 Immediately al places. - - UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3. Description Displays the m Carrier freque Hexadecimal: Min.: Max.: Default: Value Range: 4000 to 20000 Description	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri ncy 2001-0Bh 4000 20000	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit: Data Type: Change:	A UInt16 Immediately al places. - - UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m Carrier freque Hexadecimal: Min.: Max.: Default: Value Range: 4000 to 20000 Description Displays the ca	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri Prcy 2001-0Bh 4000 20000 8000	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit: Data Type: Change:	A UInt16 Immediately al places. - - UInt16
H01.10	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m Carrier freque Hexadecimal: Min.: Max.: Default: Value Range: 4000 to 20000 Description Displays the ca	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri Prcy 2001-0Bh 4000 20000 8000 wrrier frequency, with no decimal modulation frequency	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit: Data Type: Change:	A UInt16 Immediately al places. - - UInt16 Immediately
H01.10	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3. Description Displays the m Carrier freque Hexadecimal: Min.: Max.: Default: Value Range: 4000 to 20000 Description Displays the car	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri Prcy 2001-0Bh 4000 20000 8000 wrrier frequency, with no decimal modulation frequency	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit: Data Type: Change: place.	A UInt16 Immediately al places. - - UInt16 Immediately
H01.10	Hexadecimal: Min.: Max.: Default: Value Range: 0.01 A to 655.3 Description Displays the m Carrier freque Hexadecimal: Min.: Max.: Default: Value Range: 4000 to 20000 Description Displays the car Current loop r Hexadecimal:	2001-09h 0.01 655.35 16.90 5 A aximum output current of the dri ncy 2001-0Bh 4000 20000 8000 rrrier frequency, with no decimal modulation frequency 2001-0Ch	Unit: Data Type: Change: ve, with 2 decim Effective Time: Unit: Data Type: Change: place. Effective Time:	A UInt16 Immediately al places. - - UInt16 Immediately

	Default: Value Range: 0: Carrier freque 1: 2 × carrier fr Description	-	Change:	At stop
H01.12	Hexadecimal: Min.: Max.: Default: Value Range: 1: Current loop 2: Current loop 4: Current loop 8: Current loop 16: Current loop	heduling frequency-division coe 2001-0Dh 1 32 1 modulation frequency/1 modulation frequency/2 modulation frequency/4 modulation frequency/8 o modulation frequency/16 o modulation frequency/32	efficient Effective Time: Unit: Data Type: Change:	- - UInt16 Immediately
H01.13	Hexadecimal: Min.: Max.: Default: Value Range: 2: Current loop 4: Current loop 16: Current loop 32: Current loop 64: Current loop	scheduling frequency-division c 2001-0Eh 2 128 4 modulation frequency/2 modulation frequency/4 modulation frequency/8 p modulation frequency/16 p modulation frequency/32 p modulation frequency/32 p modulation frequency/64 pp modulation frequency/128	oefficient Effective Time: Unit: Data Type: Change:	- - UInt16 Immediately
H01.14	Dead zone tim Hexadecimal: Min.: Max.: Default: Value Range: 0.01us-20.00us Description Displays the de	2001-0Fh 0.01 20.00 2.00	Effective Time: Unit: Data Type: Change: laces.	- us UInt16 Immediately
H01.15	DC bus overvo Hexadecimal:	ltage protection threshold 2001-10h	Effective Time:	_

	Min.:	0	Unit:	V
	Max.:	2000	Data Type:	UInt16
	Default:	420	Change:	Immediately
	Value Range:			
	0 V to 2000 V			
	Description	o over elto de protoction threshold		
	Displays DC Du	s overvoltage protection threshol	u, with o decline	ai place.
H01.16	DC bus voltag	e discharge threshold		
	Hexadecimal:	2001-11h	Effective Time:	-
	Min.:	0	Unit:	V
	Max.:	2000	Data Type:	UInt16
	Default:	380	Change:	Immediately
	Value Range:			
	0 V to 2000 V			
	Description			
	Display DC bus	voltage discharge threshold, with	n no decimal pla	ice.
H01.17	DC bus underv	voltage threshold		
	Hexadecimal:	2001-12h	Effective Time:	
	Min.:	0	Unit:	V
	Max.:	2000	Data Type:	UInt16
	Default:	200	Change:	Immediately
	Value Range:			
	0 V to 2000 V			
	Description	s undervoltage threshold, with no	docimal place	
	Displays DC Du	s undervollage lineshold, with ht	decimal place.	
H01.18	Servo drive ov	vercurrent protection threshold	I	
H01.18	Servo drive ov Hexadecimal:	-	Effective Time:	-
H01.18		vercurrent protection threshold	Effective Time: Unit:	- %
H01.18	Hexadecimal:	vercurrent protection threshold 2001-13h 10 100	Effective Time: Unit: Data Type:	% UInt16
H01.18	Hexadecimal: Min.: Max.: Default:	vercurrent protection threshold 2001-13h 10	Effective Time: Unit:	%
H01.18	Hexadecimal: Min.: Max.: Default: Value Range:	vercurrent protection threshold 2001-13h 10 100	Effective Time: Unit: Data Type:	% UInt16
H01.18	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100%	vercurrent protection threshold 2001-13h 10 100	Effective Time: Unit: Data Type:	% UInt16
H01.18	Hexadecimal: Min.: Max.: Default: Value Range:	vercurrent protection threshold 2001-13h 10 100	Effective Time: Unit: Data Type:	% UInt16
H01.18	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100%	vercurrent protection threshold 2001-13h 10 100	Effective Time: Unit: Data Type:	% UInt16
H01.18 H01.19	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef	vercurrent protection threshold 2001-13h 10 100 100	Effective Time: Unit: Data Type: Change:	% UInt16 Immediately
	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal:	Percurrent protection threshold 2001-13h 10 100 100 fficient of 7860 2001-14h	Effective Time: Unit: Data Type: Change: Effective Time:	% UInt16 Immediately
	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.:	Percurrent protection threshold 2001-13h 10 100 100 fficient of 7860 2001-14h 1	Effective Time: Unit: Data Type: Change: Effective Time: Unit:	% UInt16 Immediately -
	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.: Max.:	Ficient of 7860 2001-14h 10 100 100	Effective Time: Unit: Data Type: Change: Effective Time: Unit: Data Type:	% UInt16 Immediately - - UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.: Max.: Default:	Percurrent protection threshold 2001-13h 10 100 100 fficient of 7860 2001-14h 1	Effective Time: Unit: Data Type: Change: Effective Time: Unit:	% UInt16 Immediately -
	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.: Max.: Default: Value Range:	Ficient of 7860 2001-14h 10 100 100	Effective Time: Unit: Data Type: Change: Effective Time: Unit: Data Type:	% UInt16 Immediately - - UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.: Max.: Default: Value Range: 1 to 65535	Ficient of 7860 2001-14h 10 100 100	Effective Time: Unit: Data Type: Change: Effective Time: Unit: Data Type:	% UInt16 Immediately - - UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.: Max.: Default: Value Range:	Ficient of 7860 2001-14h 10 100 100	Effective Time: Unit: Data Type: Change: Effective Time: Unit: Data Type:	% UInt16 Immediately - - UInt16
H01.19	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.: Max.: Default: Value Range: 1 to 65535 Description -	Percurrent protection threshold 2001-13h 10 100 100 100 2001-14h 1 65535 3200	Effective Time: Unit: Data Type: Change: Effective Time: Unit: Data Type:	% UInt16 Immediately - - UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.: Max.: Default: Value Range: 1 to 65535 Description -	vercurrent protection threshold 2001-13h 10 100 100 100 2001-14h 1 65535 3200	Effective Time: Unit: Data Type: Change: Effective Time: Unit: Data Type: Change:	% UInt16 Immediately - - UInt16 Immediately
H01.19	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.: Max.: Default: Value Range: 1 to 65535 Description - Dead zone cor Hexadecimal:	Percurrent protection threshold 2001-13h 10 100 100 100 2001-13h 100 2001 2001-14h 1 65535 3200	Effective Time: Unit: Data Type: Change: Effective Time: Unit: Data Type: Change: Effective Time:	% UInt16 Immediately - UInt16 Immediately
H01.19	Hexadecimal: Min.: Max.: Default: Value Range: 10% to 100% Description - Sampling coef Hexadecimal: Min.: Max.: Default: Value Range: 1 to 65535 Description -	vercurrent protection threshold 2001-13h 10 100 100 100 2001-14h 1 65535 3200	Effective Time: Unit: Data Type: Change: Effective Time: Unit: Data Type: Change:	% UInt16 Immediately - - UInt16 Immediately

	Max.: Default: Value Range: 0.00us–20.00us Description -	20.00 2.00	Data Type: Change:	UInt16 Immediately
H01.21	Minimum swit Hexadecimal: Min.: Max.: Default: Value Range: 1.0us–20.0us Description	cch-on time of bootstrap circuit 2001-16h 1.0 20.0 4.0		Upon the next power-on us UInt16 At stop
H01.22	D-axis back EN Hexadecimal: Min.: Max.: Default: Value Range: 0.0% to 6553.50 Description	2001-17h 0.0 6553.5 60.0	Effective Time: Unit: Data Type: Change:	- % UInt16 Immediately
H01.23	Q-axis back EN Hexadecimal: Min.: Max.: Default: Value Range: 0.0% to 6553.50 Description	2001-18h 0.0 6553.5 100.0	Effective Time: Unit: Data Type: Change:	- % UInt16 Immediately
H01.24	D-axis current Hexadecimal: Min.: Max.: Default: Value Range: 1 to 65535 Description Displays D-axis		Effective Time: Unit: Data Type: Change: al place.	- - UInt16 Immediately
H01.25	D-axis current Hexadecimal: Min.: Max.: Default:	loop integral compensation fa 2001-1Ah 0 65535 200	ctor Effective Time: Unit: Data Type: Change:	- - UInt16 Immediately

Value Range: 0 to 65535 Description Display D-axis current loop integral compensation factor, with 2 decimal places. Sinc3 filter data extraction rate in current sampling

H01.26

Hexadecimal:	2001-1Bh	Effective Time	: -
Min.:	0	Unit:	-
Max.:	3	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0: Extraction ra	ate 32		
1: Extraction ra	ate 64		
2: Extraction ra	ate 128		
3: Extraction ra	ate 256		
Description			
Displays Sinc3	filter data extraction rate in curre	ent sampling, wi	ith no decimal place.

H01.27 Q-axis current loop gain

H01.28

H01.29

H01.30

Hexadecimal:	2001-1Ch	Effective Time:	-
Min.:	1	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	1000	Change:	
Value Range:		C	-
1 to 65535			
Description			
Displays Q-axis	s current loop gain, with no decim	nal place.	
Q-axis current	t loop integral compensation fa	ctor	
Hexadecimal:	2001-1Dh	Effective Time:	-
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	100	Change:	Immediately
Value Range:			
0 to 65535			
0 to 65535 Description Displays Q-axis	s current loop integral compensat	ion factor, with	2 decimal plac
Description Displays Q-axis	s current loop integral compensat r voltage sampling coefficient	ion factor, with	2 decimal plac
Description Displays Q-axis	r voltage sampling coefficient	ion factor, with Effective Time:	·
Description Displays Q-axis	r voltage sampling coefficient		
Description Displays Q-axis Control powe Hexadecimal: Min.:	r voltage sampling coefficient 2001-1Eh 50.0	Effective Time:	-
Description Displays Q-axis Control powe Hexadecimal: Min.: Max.:	r voltage sampling coefficient 2001-1Eh 50.0	Effective Time: Unit:	-
Description Displays Q-axis Control powe Hexadecimal: Min.:	r voltage sampling coefficient 2001-1Eh 50.0 150.0	Effective Time: Unit: Data Type:	- - UInt16
Description Displays Q-axis Control powe Hexadecimal: Min.: Max.: Default:	r voltage sampling coefficient 2001-1Eh 50.0 150.0	Effective Time: Unit: Data Type:	- - UInt16
Description Displays Q-axis Control powe Hexadecimal: Min.: Max.: Default: Value Range:	r voltage sampling coefficient 2001-1Eh 50.0 150.0	Effective Time: Unit: Data Type:	- - UInt16

Effective Time: % Unit:

	Max.: Default: Value Range: 50.0% to 150.0 Description Displays bus vo	150.0 100.0 % oltage gain adjustment, with 1 de	Data Type: Change: cimal place.	UInt16 Immediately
H01.31	FOC calculatio Hexadecimal:		Effective Time:	-
	Min.:	1.00	Unit:	US
	Max.:	100.00	Data Type:	UInt16
	Default:	2.60	Change:	Immediately
	Value Range:		0	,
	1.00us-100.00	us		
	Description			
	-			
H01.32	Relative gain	of UV sampling		
	Hexadecimal:	2001-21h	Effective Time:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data Type:	UInt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
	Displays the re	lative gain of UV sampling, with r	io decimal place	
H01.37	Model identifi	ication version		
	Hexadecimal:	2001-26h	Effective Time:	
	Min.:	0	Unit:	-
	Max.:	65535	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:			
	0 to 65535			
	Description -			
H01.44		ta extraction rate in 2nd group		
	Hexadecimal:		Effective Time:	-
	Min.:	0	Unit:	-
	Max.:	3	Data Type:	UInt16
	Default:	2	Change:	At stop
	Value Range: 0: Extraction ra	ate 32		
	1: Extraction ra			
	2: Extraction ra			
	3: Extraction ra			
	3: Extraction ra	ale 200		
	-			

H01.45	Phase U duty	e U duty cycle obtained upon voltage injection				
	Hexadecimal:	2001-2Eh	Effective Time:	-		
	Min.:	0	Unit:	-		
	Max.:	65535	Data Type:	UInt16		
	Default:	0	Change:	Immediately		
	Value Range:		0	j		
	0 to 65535					
	Description					
	-					
H01.47	MCII current r	eference processing time				
	Hexadecimal:		Effective Time:	-		
	Min.:	0.00	Unit:	us		
	Min Max.:	60.00	Data Type:	UInt16		
	Default:	38.00				
		38.00	Change:	Immediately		
	Value Range: 0.00us-60.00us					
	Description					
	-					
1101 40						
H01.48	AD sampling d	-				
	Hexadecimal:		Effective Time:			
	Min.:	0.00	Unit:	US		
	Max.:	20.00	Data Type:	UInt16		
	Default:	1.00	Change:	Immediately		
	Value Range:					
	0.00us-20.00us	5				
	Description					
	-					
1101 40	<u> </u>					
H01.49		data dissemination delay				
	Hexadecimal:	2001-32h	Effective Time:			
	Min.:	0.00	Unit:	US		
	Max.:	500.00	Data Type:	UInt16		
	Default:	61.00	Change:	Immediately		
	Value Range:					
	0.00us-500.00u	IS				
	Description					
	-					
H01.50		on of DSP software				
	Hexadecimal:	2001-33h	Effective Time:	-		
	Min.:	0.00	Unit:	-		
	Max.:	655.35	Data Type:	UInt16		
	Default:	0.00	Change:	Immediately		
	Value Range:					
	0.00 to 655.35					
	Description					
	-					

H01.52

D-axis proportional gain in performance priority mode Hexadecimal: 2001-35h Effective Time: -

-389-

	Min.: Max.: Default:	0 65535 2000	Unit: Data Type: Change:	- UInt16 Immediately
	Value Range: 0 to 65535 Description			
	Display D-axis	proportional gain in performance	e priority mode,	with no decimal place.
H01.53	D-axis integra	Il gain in performance priority r	node	
	Hexadecimal:		Effective Time:	-
	Min.:	0.00	Unit:	-
	Max.:	655.35	Data Type:	
	Default:	2.00	Change:	Immediately
	Value Range:			
	0.00 to 655.35			
	Description			
	Displays D-axis	s integral gain in performance pri-	ority mode, with	2 decimal places.
H01.54		tional gain in performance pric	ority mode	
	Hexadecimal:	2001-37h	Effective Time:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data Type:	
	Default:	2000	Change:	Immediately
	Value Range:			
	0 to 65535			
	Description	s proportional gain in performanc	se priority mode	with no decimal place
	Displays Q-axis	s proportional gain in periormanc		, with no decimal place.
H01.55	Q-axis integra	al gain in performance priority i	mode	
	Hexadecimal:	2001-38h	Effective Time:	-
	Min.:	0.00	Unit:	-
	Max.:	655.35	Data Type:	UInt16
	Default:	1.00	Change:	Immediately
	Value Range:			
	0.00 to 655.35			
	Description			
	Displays Q-axis	s integral gain in performance pri	ority mode, with	2 decimal places.
H01.56	2nd group of	proportional gain coefficient in	performance p	riority mode
	Hexadecimal:	2001-39h	Effective Time:	-
	Min.:	0.0	Unit:	%
	Max.:	1000.0	Data Type:	UInt16
	Default:	100.0	Change:	Immediately
	Value Range:			
	0.0% to 1000.0	%		
	Description			
	-			
H01.57	3rd group of p	proportional gain coefficient in	performance p	riority mode
	Hexadecimal:		Effective Time:	•
	Min.:	0.0	Unit:	%

	Max.: Default: Value Range: 0.0% to 1000.0 Description	1000.0 100.0 %	Data Type: Change:	UInt16 Immediately
H01.58	1st gain switc Hexadecimal: Min.: Max.: Default: Value Range: 0.0% to 300.0% Description	0.0 300.0 1.0	nce priority mode Effective Time: Unit: Data Type: Change:	
H01.59	2nd gain swit Hexadecimal: Min.: Max.: Default: Value Range: 0.0% to 300.09 Description	0.0 300.0 2.0	ance priority mod Effective Time: Unit: Data Type: Change:	
H01.60	3rd gain swite Hexadecimal: Min.: Max.: Default: Value Range: 0.0% to 300.0% Description	0.0 300.0 100.0	ance priority mode Effective Time: Unit: Data Type: Change:	
H01.61	4th gain swite Hexadecimal: Min.: Max.: Default: Value Range: 0.0% to 300.09 Description	0.0 300.0 200.0	nce priority mode Effective Time: Unit: Data Type: Change:	
H01.62	Phase U/V 786 Hexadecimal: Min.: Max.: Default:	50 detection protection thres 2001-3Fh 0 320 280		Upon the next power-on - UInt16 Unchangeable

Value Range: 0 to 320 Description

H01.63

63 Serial encoder data transmission compensation time

Effective Time: Upon the next power-on Unit: -Data Type: UInt16 Change: At stop

Description

Display the data transmission compensation time of the serial encoder, with three decimal places.

15.3 H02 Basic Control Parameters

H02.00 Control mode

Hexadecimal:	2002-01h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	6	Data Type:	UInt16
Default:	1	Change:	At stop
Value Denge			

Value Range:

0: Speed control mode

1: Position control mode 2: Torque control mode

3: Torque<->Speed control mode

4: Speed<->Position control mode

5: Torque<->Position control mode

6: Torque<->Speed<->Position compound mode

Description

Defines the control mode of the servo drive.

Setpoint	Control mode	Remarks			
0	Speed control mode	For parameter settings in speed control mode, see the function guide.			
1	Position control mode	For parameter	For parameter settings in position control mode, see the function guide.		
2	Torque control mode	For parameter	For parameter settings in torque control mode, see the function guide.		
		Set a DI termin determine terr	al for FunIN.10: M1_SEL (Moc ninal logic.	le switchover 1) and	
3	3: Torque control mode <-> Speed control mode		M1_SEL	Control mode	
3			Terminal logic	Control mode	
			Inactive	Torque control mode	
			Active	Speed control mode	

Setpoint	Control mode		Remarks				
		Set a DI terminal for FunIN.10: M1_SEL (Mode switchover 1) and determine terminal logic.			over 1) and		
4	Speed control mode<- >Position control mode		M1_SEL Terminal logic		Co	ontrol mode	
			Inactive		Spee	d control mode	
			Active		Positio	on control mode	
		Set a DI terminal for FunIN.10: M1_SEL (Mode switchover 1) and determine terminal logic.				over 1) and	
5	Torque control mode<->Position control mode		M1_SEL Terminal logic		Control mode		
			Inactive		Torqu	e control mode	
			Active		Positio	Position control mode	
		Set two DI terr	ninal for FunIN.10: N	M1_SEL (M	lode swite	hover 1) and Fu-	
		nIN.11: M2_SE	L (Mode switchover	2), respec	tively and	l determine termi-	
		nal logic.					
	Torque control		M2_SEL	M1_	SEL	Control mode	
6	mode<->Speed control mode<->Position control mode		Terminal logic	Termin	al logic	Control mode	
0			Inactive	Inac	tive	Torque control mode	
			Active	Inac	tive	Speed control mode	
			-	Act	ive	Position control mode	

H02.01 Absolute position detection system

,
2002-02h
0
2
0
position mode
sition linear mode
sition rotation mode
absolute position function.
tion
2002-03h

Forward direction					
Hexadecimal:	2002-03h	Effective Time:	Upon the next power-on		
Min.:	0	Unit:	-		
Max.:	1	Data Type:	UInt16		
Default:	0	Change:	At stop		

Unit: Data Type:

Change:

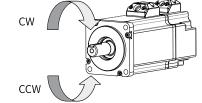
Effective Time: Upon the next power-on

UInt16

At stop

Value Range:

H02.02


0: Counterclockwise (CCW) as forward direction

1: Clockwise (CW) as forward direction

Description

Defines the forward direction of the motor when viewed from the motor shaft side.

Setpoint	Direction of rotation	Remarks
0	Counterclockwise (CCW) as forward direction	Defines the CCW direction as the forward direction when a forward run command is received, indicating the motor rotates in the CCW direction when viewed from the motor shaft side.
1	CW direction as forward direction	When a forward command is input, the motor rotates in CW direction viewed from the motor shaft side, that is, the motor rotates clockwise.

H02.03 Output pulse phase

Hexadecimal:	2002-04h
Min.:	0
Max.:	1
Default:	0
Value Range	

Value Range:

0: Phase A leads phase B

1: Phase A lags behind phase B

Description

Effective Time:Upon the next power-onUnit:-Data Type:UInt16Change:At stop

Defines the relationship between phase A and phase B on the condition that the motor direction of rotation remains unchanged when pulse output is enabled.

Setpoint	Output pulse phase	Remarks
0	Phase A leads phase B.	Phase A leads phase B by 90° in encoder frequency- division output pulses. Phase A Phase B
1	Phase A lags phase B.	Phase A lags phase B by 90° in encoder frequency-division output pulses. Phase A Phase B Phase B

H02.05 Stop mode at S-OFF

Hexadecimal:	2002-06h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	3	Data Type:	UInt16
Default:	0	Change:	At stop

Value Range:

0: Coast to stop, keeping de-energized state

1: Stop at zero speed, keeping de-energized state

2: Stop at zero speed, keeping dynamic braking state

3: Dynamic braking stop, keeping dynamic braking state

Description

Defines the deceleration mode of the motor for stopping rotating upon S-ON OFF and the motor status after stop.

H02.06 Stop mode at No.2 fault

	•			
Η	exadecimal:	2002-07h	Effective Time:	Real time
М	in.:	0	Unit:	-
М	ax.:	4	Data Type:	UInt16
D	efault:	2	Change:	At stop
v	alua Dangai		•	

Value Range:

0: Coast to stop, keeping de-energized state

- 1: Stop at zero speed, keeping de-energized state
- 2: Stop at zero speed, keeping dynamic braking state
- 3: Dynamic braking stop, keeping DB state
- 4: DB stops, keeping operation state

Description

Defines the deceleration mode of the servo motor for stopping rotating and the servo motor status when a No. 2 fault occurs.

H02.07 Stop mode at overtravel

Hexadecimal:	2002-08h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	2	Data Type:	UInt16
Default:	1	Change:	At stop
Value Danger		-	

Value Range:

0: Coast to stop, keeping de-energized state

1: Stop at zero speed, keeping position lock state

2: Stop at zero speed, keeping de-energized state

Description

Defines the deceleration mode of the servo motor for stopping rotating and the servo motor status when overtravel occurs.

Setpoint	Stop Mode	
0	Coast to stop, keeping de-energized status	
1	Stop at zero speed, keeping position lock status	
2	Stop at zero speed, keeping de-energized status	

time

H02.08 Stop mode at No.1 fault

Hexadecimal:	2002-09h	Effective Time:	Real tim
Min.:	0	Unit:	-
Max.:	2	Data Type:	UInt16
Default:	2	Change:	At stop

Value Range:

0: Coast to stop, keeping de-energized state1: DB stop, keeping de-energized state2: DB stop, keeping DB state

Defines the deceleration mode of the servo motor for stopping rotating and the servo motor status when a No. 1 fault occurs.

Setpoint	Stop Mode
0	Coast to stop, keeping de-energized status
1	Dynamic braking stop, keeping de-energized status
2	Dynamic braking stop, keeping dynamic braking status

servo drive

H02.09 Delay from brake output ON to command received

Hexadecimal:	2002-0Ah	Effective Time:	Real time	
Min.:	0	Unit:	ms	
Max.:	500	Data Type:	UInt16	
Default:	250	Change:	Immediately	
Value Range:				
0 ms to 500 ms				
Description				
Defines the dela	ay from the moment the brake ou	itput signal is O	N to the moment the	
starts to receive commands after power-on.				

H02.10 Delay from brake output OFF to motor de-energized in the standstill state

Hexadecimal:	2002-0Bh	Effective Time:	Real time
Min.:	1	Unit:	ms
Max.:	1000	Data Type:	UInt16
Default:	150	Change:	Immediately
Value Range:			

Value Range: 1 ms to 1000 ms

Description

Defines the delay from the moment brake output is OFF to the moment when the motor at standstill enters the de-energized status.

H02.11 Motor speed threshold at brake output OFF in rotation state

	Hexadecimal:	2002-0Ch	Effective Time:	Real time
	Min.:	0	Unit:	rpm
	Max.:	3000	Data Type:	UInt16
	Default:	30	Change:	Immediately
	Value Range:			
	0rpm-3000rpm	1		
	Description			
	Defines the mo	tor speed threshold when brake (BK) output is Of	F in the rotating state.
H02.12	Delay from S-0	ON OFF to brake output OFF in I	rotation state	
		·····	•••••••	
	Hexadecimal:	•	Effective Time:	Real time
	-	•		Real time ms
	Hexadecimal:	2002-0Dh	Effective Time:	
	Hexadecimal: Min.:	2002-0Dh 1	Effective Time: Unit:	ms
	Hexadecimal: Min.: Max.:	2002-0Dh 1 1000	Effective Time: Unit: Data Type:	ms UInt16
	Hexadecimal: Min.: Max.: Default:	2002-0Dh 1 1000 500	Effective Time: Unit: Data Type:	ms UInt16
	Hexadecimal: Min.: Max.: Default: Value Range:	2002-0Dh 1 1000 500	Effective Time: Unit: Data Type:	ms UInt16
	Hexadecimal: Min.: Max.: Default: Value Range: 1 ms to 1000 m Description	2002-0Dh 1 1000 500	Effective Time: Unit: Data Type: Change:	ms UInt16 Immediately

H02.14	Stop mode an	d state switching speed condit	ion	
	Hexadecimal:	• •	Effective Time:	Real time
	Min.:	10	Unit:	rpm
	Max.:	100	Data Type:	UInt16
	Default:	10	Change:	At stop
	Value Range:	10	chunge.	
	10rpm-100rpm			
	Description	1		
	-	n mode of the motor for stannin	a rotating upon r	nain circuit nower failure
	Dennes the sto	p mode of the motor for stopping	g rotating upon i	nam circuit power faiture.
H02.15	Warning displ	ay on the keypad		
	Hexadecimal:		Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:	•	enunge.	, it stop
	-	ing information immediately		
	-	ing information immediately		
	-	varning information		
	Description			
	Defines whethe	er to switch the keypad to the fau	It display mode	when a No. 3 fault occurs.
1102 17	C h		- 66	
H02.17		peed upon main circuit power-		
	Hexadecimal:		Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	1	Change:	At stop
	Value Range:			
	0: Disabled			
	1: Enabled			
	Description			
	-			
H02.18	S-ON filter tin	a constant		
1102.10		2002-13h	Effective Time:	Peal time
	Min.:	0	Unit:	ms
	Max.:	64	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:	0	change.	At stop
	0 ms to 64 ms			
	Description -			
H02.19	S-ON brake op	oen delay		
	Hexadecimal:	2002-14h	Effective Time:	Real time
	Min.:	0	Unit:	ms
	Max.:	1000	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:		-	
	0 ms to 1000 m	IS		
	Description			
	-			

H02.20	Dynamic brak	e relay coil ON delay		
	Hexadecimal:	2002-15h	Effective Time:	Real time
	Min.:	10	Unit:	ms
	Max.:	30000	Data Type:	UInt16
	Default:	30	Change:	Immediately
	Value Range:		0	,
	10 ms to 30000) ms		
	Description			
	-			
H02.21	Min. permissi	ble resistance of regenerative r	resistor	
	Hexadecimal:	2002-16h	Effective Time:	-
	Min.:	0	Unit:	Ω
	Max.:	65535	Data Type:	UInt16
	Default:	40	Change:	Unchangeable
	Value Range:			
	0 Ω to 65535 Ω			
	Description			
	-			
H02.22	Power of built	t-in regenerative resistor		
	Hexadecimal:	2002-17h	Effective Time:	-
	Min.:	0	Unit:	W
	Max.:	65535	Data Type:	UInt16
	Default:	40	Change:	Unchangeable
	Value Range:			
	0 W-65535 W			
	Description			
	-	he built-in regenerative resistor i	s only related to	the servo drive model, which is
	unmodifiable.	-	·	
H02.23	Resistance of	built-in regenerative resistor		
	Hexadecimal:	2002-18h	Effective Time:	-
	Min.:	0	Unit:	Ω
	Max.:	65535	Data Type:	UInt16
	Default:	50	Change:	Unchangeable
	Value Range:		-	-
	0 Ω to 65535 Ω			

The resistance of the built-in regenerative resistor is only related to the servo drive model, which is unmodifiable.

		Specifications of Built-in Regenerative Resistor	
Servo drive model (SV660, SV630)	Resistance (Ω)	Power (Pr) (W)	Min. Allowable Resistance (Ω) (H02.21)
SV6*0PS1R6I	-	-	50
SV6*0PS2R8I	-	-	45
SV6*0PS5R5I	50	50	40
SV6*0PS7R6I	25	80	20
SV6*0PS012I	25	80	15
SV6*0PT3R5I	100	80	80
SV6*0PT5R4I	100	80	60
SV6*0PT8R4I	50	80	45
SV6*0PT012I	50	00	40
SV6*0PT017I			35
SV6*0PT021I	35	100	25
SV6*0PT026I			25

Table 15–1 Specifications of the regenerative resistor

H02.24 Resistor heat dissipation coefficient

Hexadecimal:	2002-19h	Effective Time:	Real time
Min.:	10	Unit:	-
Max.:	100	Data Type:	UInt16
Default:	30	Change:	At stop
Value Range:			

10 to 100

Description

Defines the heat dissipation coefficient of the regenerative resistor, which is applicable to both external and built-in regenerative resistors.

Defines the heat dissipation coefficient of the regenerative resistor, which is applicable to both external and built-in regenerative resistors.

Set this parameter properly according to actual heat dissipation conditions of the resistor. Recommendations:

Generally, the value of H02.24 cannot exceed 30% for natural cooling. The value of H02.24 cannot exceed 50% for forced air cooling.

H02.25 Regenerative resistor type

0	<i>,</i>				
Hexadecimal:	2002-1Ah	Effective Time:	Real time		
Min.:	0	Unit:	-		
Max.:	3	Data Type:	UInt16		
Default:	0	Change:	At stop		
Value Range:					
0: Built-in					
1: External, natural ventilated					

2. External, natural ventilated

2: External, forced air cooling 3: Not needed

Defines the resistor type and the mode of absorbing and releasing the braking energy.

Setpoint	Defines the regenerative resistor type and the mode of absorbing and releasing the braking energy.	Remarks
0	Using the built-in regenerative resistor	When the calculated value of the maximum braking energy is larger than the maximum braking energy absorbed by capacitors, and the calculated value of braking power is no larger than the built-in regenerative resistor power.
1	External, naturally ventilated	When the calculated value of the maximum braking energy is larger than the maximum braking energy absorbed by capacitors, and the calculated value of braking power is larger than the built-in regenerative resistor power.
2	External, forcible cooling	When the calculated value of the maximum braking energy is larger than the maximum braking energy absorbed by capacitors, and the calculated value of braking power is larger than the built-in regenerative resistor power.
3	No resistor, using only capacitor	When the calculated value of maximum braking energy is no larger than the maximum braking energy absorbed by capacitors.

H02.26 Power capacity of external regenerative resistor

2002-1Bh	Effective Time:	Real time
1	Unit:	W
65535	Data Type:	UInt16
40	Change:	At stop
wer of external regenerative resist	tor.	
	40	1 Unit: 65535 Data Type:

H02.27 Resistance of external regenerative resistor

iteolocalitee of t	externation egenerative resistor		
Hexadecimal:	2002-1Ch	Effective Time:	Real time
Min.:	1	Unit:	Ω
Max.:	1000	Data Type:	UInt16
Default:	50	Change:	At stop
Value Range:			

1 Ω to 1000 Ω

Description

Defines the resistance of the external regenerative resistor.

H02.28 220 V min. bus voltage

Hexadecimal:	2002-1Dh
Min.:	190

Effective Time: Upon the next power-on Unit: V

	Max.: Default: Value Range 190 V to 260 V Description			Data Type: Change:	UInt16 At stop
H02.30	User passwo Hexadecimal: Min.: Max.: Default: Value Range 0 to 65535 Description	2002-1Fh 0 65535 0		Effective Time: Unit: Data Type: Change:	Real time - UInt16 At stop
H02.31	Hexadecimal: Min.: Max.: Default: Value Range 0: No operation 1: Restore def 2: Clear fault Description	0 2 0 : on fault settings records	zation ues or clear fault reco	Effective Time: Unit: Data Type: Change: rds.	Real time - UInt16 At stop
	-	Setpoint	Stop Mode No operation		Remarks
	-	0	Restore default setting		eters to default values except groups H00 and H01.

H02.32 Default keypad display

2

Hexadecimal:	2002-21h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	99	Data Type:	UInt16
Default:	50	Change:	Immediately
Value Range:			
0–99			

Clear fault records

Description

According to the setting, the keypad can switch to monitoring parameter display mode (parameters in group H0b) automatically. H02.32 is used to set the offset in group H0b.

Setpoint	Parameters in group H0b	Remarks
0	H0b.00	Motor speed is not zero, the keypad displays the setting of H0b.00 (Actual motor speed).
1	H0b.01	The keypad displays the setting of H0b.01 (speed reference).

parameters in groups H00 and H01. Clear the latest 10 faults and warnings.

H02.34	CAN software Hexadecimal: Min.: Max.: Default: Value Range: 0.00 to 655.35 Description		Effective Time: Unit: Data Type: Change:	- - UInt16 Unchangeable
H02.35	Keypad displa Hexadecimal: Min.: Max.: Default: Value Range: 0 Hz to 29 Hz Description	y refresh frequency 2002-24h 0 29 0	Effective Time: Unit: Data Type: Change:	Real time Hz UInt16 Immediately
H02.41	Manufacturer Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	-	Effective Time: Unit: Data Type: Change:	Real time - UInt16 At stop

15.4 H03 Terminal Input Parameters

H03.00	DI function allocation 1 (activat	ed upon power-on)
	Hevadecimal: 2003-01h	Effective

	· · ·	•	
Hexadecimal:	2003-01h	Effective Time:	Upon the next power-on
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			

0: Corresponding to null

1: Corresponding to FunIN.1

2: Corresponding to FunIN.2

4: Corresponding to FunIN.3

8: Corresponding to FunIN.4

16: Corresponding to FunIN.5

32: Corresponding to FunIN.6 64: Corresponding to FunIN.7

128: Corresponding to FunIN.8

256: Corresponding to FunIN.9

512: Corresponding to FunIN.10

1024: Corresponding to FunIN.11

2048: Corresponding to FunIN.12

4096: Corresponding to FunIN.13

8192: Corresponding to FunIN.14

16384: Corresponding to FunIN.15

Description

Used to enable a certain DI function (FunIN.1 to FunIN.16) to be activated immediately at next power-on.

H03.01 DI function allocation 2 (activated upon power-on)

Di function att	ocation 2 (activated upon powe			
Hexadecimal:	2003-02h	Effective Time:	Upon the next power-on	
Min.:	0	Unit:	-	
Max.:	65535	Data Type:	UInt16	
Default:	0	Change:	Immediately	
Value Range:				
0: Correspondi	ng to null			
1: Corresponding	ng to FunIN.17			
2: Corresponding	ng to FunIN.18			
4: Corresponding	ng to FunIN.19			
8: Corresponding	ng to FunIN.20			
16: Correspond	ing to FunIN.21			
32: Correspond	ing to FunIN.22			
64: Corresponding to FunIN.23				
128: Correspon	ding to FunIN.24			
256: Correspon	ding to FunIN.25			
512: Correspon	ding to FunIN.26			
1024: Correspo	nding to FunIN.27			
2048: Correspo	nding to FunIN.28			
4096: Correspo	nding to FunIN.29			
0100 0				

8192: Corresponding to FunIN.30

16384: Corresponding to FunIN.31

Description

Used to enable a certain DI function (FunIN.17 to FunIN.32) to be activated immediately at next power-on.

H03.02 DI1 function selection

DIT function s	election		
Hexadecimal:	2003-03h	Effective Time:	At stop
Min.:	0	Unit:	-
Max.:	41	Data Type:	UInt16
Default:	14	Change:	Immediately
Value Range:			
0: No assignme			
1: S-ON			
2: Warning rese	0		
3: Gain switcho			
	between main and auxiliary comm	nands	
5: Multi-referen			
	nce switchover CMD1		
7: Multi-referen	nce switchover CMD2		
8: Multi-referen	nce switchover CMD3		
9: Multi-referen	nce switchover CMD4		
10: Mode switc 11: Mode switc			
12: Zero clamp	enable signal		
	erence inhibited		
14: Positive lim	lit switch		
15: Reverse lim	it switch		
16: Positive ext	ernal torque limit		
	ternal torque limit		
18: Forward jog			
19: Reverse jog			
20: Step enable			
	- l override signal 1		
	l override signal 2		
23: Hand whee	-		
	gear ratio selection		
-	erence direction		
26: Speed refer			
•	ence direction		
•	on reference enable		
29: Interrupt po	ositioning canceled		

30: None

31: Home switch 32: Homing enable 33: Interrupt positioning inhibited 34: Emergency stop 35: Clear position deviation 36: Internal speed limit source 37: Pulse reference inhibited 38: Writing reference causes interrupt 39: Writing reference does not cause interrupt 40: Clear positioning and reference completed signals 41: Current position as home Description Defines the function of DI1. DI1 logic selection Hexadecimal: 2003-04h Effective Time: At stop Unit: Min.: 0 Max.: 1 Data Type: UInt16 0 Immediately Default: Change: Value Range: 0: Active low 1: Active high Description

Used to set the level logic of DI1 when the function assigned to DI1 is active.

DI1–DI5 are standard DIs, and DI8 and DI9 are high speed DIs. The width of the input signal must be larger than 3 ms. Set the valid logic correctly according to the host controller and peripheral circuits. The width of the input signal is shown in the following table.

Table 15–2 Signal logic of low-speed DI terminals

Setpoint	DI Logic Upon Active DI Function	Remarks
0	Low level	High <u>> 3 ms</u> Low Active
1	High level	High Active Low > 3 ms

H03.04 DI2 function selection

H03.03

 Hexadecimal:
 2003-05h

 Min.:
 0

 Max.:
 41

 Default:
 15

 Value Range:

 See H03.02.

 Description

Effective Time:	At stop
Unit:	-
Data Type:	UInt16
Change:	Immediately

H03.05	DI2 logic seled	ction		
	Hexadecimal:	2003-06h	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:		0	,
	0: Active low			
	1: Active high			
	Description			
	-			
H03.06	DI3 function s	election		
	Hexadecimal:		Effective Time:	At stop
	Min.:	0	Unit:	- '
	Max.:	41	Data Type:	UInt16
	Default:	13	Change:	Immediately
	Value Range:		0.0	y
	See H03.02.			
	Description			
	-			
H03.07	DI3 logic seled	tion		
	Hexadecimal:		Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:		onunger	minediatety
	0: Active low			
	1: Active high			
	Description			
	-			
H03.08	DI4 function s			
	Hexadecimal:		Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	41	Data Type:	UInt16
	Default:	2	Change:	Immediately
	Value Range:			
	See H03.02.			
	Description -			
H03.09	DI4 logic seled			
	Hexadecimal:		Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range: 0: Active low			
	1: Active high			

H03.10	DI5 function s Hexadecimal: Min.: Max.: Default: Value Range: See H03.02. Description	Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H03.11	DI5 logic select Hexadecimal: Min.: Max.: Default: Value Range: 0: Active low 1: Active high Description	Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H03.16	DI8 function s Hexadecimal: Min.: Max.: Default: Value Range: See H03.02. Description	Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H03.17	DI8 logic selec Hexadecimal: Min.: Max.: Default: Value Range: 0: Active low 1: Active high	Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately

It sets the DI8 logic when the DI function allocated to DI8 is enabled.

DI8 and DI9 are high-speed DI terminals. The width of the input signal must be larger than 0.25 ms. The width of the input signal must be larger than 3 ms. Set the valid logic correctly according to the host controller and peripheral circuits. The width of the input signal is shown in the following table.

Table 15–3 Signal logic of high-speed DI terminals

Setpo	int DI L	ogic Upon Active. DI Function	Remarks
0		Low level	High > 0.25 ms Low Active
1		High level	High Active Low> 0.25 ms

H03.18 DI9 function selection

 Hexadecimal:
 2003-13h

 Min.:
 0

 Max.:
 41

 Default:
 0

 Value Range:

 See H03.02.

 Description

Effective Time:	At stop
Unit:	-
Data Type:	UInt16
Change:	Immediately

H03.19 DI9 logic selection

 Hexadecimal:
 2003-14h

 Min.:
 0

 Max.:
 1

 Default:
 0

 Value Range:

 0: Active low

 1: Active high

 Description

Effective Time: At stop Unit: -Data Type: UInt16 Change: Immediately

H03.34 DI function allocation 3 (activated upon power-on)

Hexadecimal:	2003-23h	Effective Time:	Upon the next power-on
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			

0: 0x0: Corresponding to null 1: 0x1: Corresponding to FunIN.33 2: 0x2: Corresponding to FunIN.34 4: 0x4: Corresponding to FunIN.35 8: 0x8: Corresponding to FunIN.36 16: 0x10: Corresponding to FunIN.37 32: 0x20: Corresponding to FunIN.38 64: 0x40: Corresponding to FunIN.39 128: 0x80: Corresponding to FunIN.40 256: 0x100: Corresponding to FunIN.41 512: 0x200: Corresponding to FunIN.42 1024: 0x400: Corresponding to FunIN.43 2048: 0x800: Corresponding to FunIN.44 4096: 0x1000: Corresponding to FunIN.45 8192: 0x2000: Corresponding to FunIN.46 16384: 0x4000: Corresponding to FunIN.47 Description

H03.35 DI function allocation 4 (activated upon power-on)

Hexadecimal:	2003-24h	Effective Time:	Upon the next power-on		
Min.:	0	Unit:	-		
Max.:	65535	Data Type:	UInt16		
Default:	0	Change:	Immediately		
Value Range:					
0: 0x0: Corresp	onding to null				
1: 0x1: Corresponding to FunIN.49					
2: 0x2: Corresp	2: 0x2: Corresponding to FunIN.50				

1: 2: 4: 0x4: Corresponding to FunIN.51 8: 0x8: Corresponding to FunIN.52 16: 0x10: Corresponding to FunIN.53 32: 0x20: Corresponding to FunIN.54 64: 0x40: Corresponding to FunIN.55 128: 0x80: Corresponding to FunIN.56 256: 0x100: Corresponding to FunIN.57 512: 0x200: Corresponding to FunIN.58 1024: 0x400: Corresponding to FunIN.59 2048: 0x800: Corresponding to FunIN.60 4096: 0x1000: Corresponding to FunIN.61 8192: 0x2000: Corresponding to FunIN.62 16384: 0x4000: Corresponding to FunIN.63 Description

H03.60 DI1 filter

Hexadecimal:	2003-3Dh	Effective Time:	Real time
Min.:	0.00	Unit:	ms
Max.:	500.00	Data Type:	UInt16

3.00 Default: Value Range: 0.00 ms to 500.00 ms Description Defines the filter time of DI1. The DI function is active only after the effective level is kept within the time defined by H03.60. DI2 filter Effective Time: Real time Hexadecimal: 2003-3Eh ms Min.: 0.00 Unit: Max.: 500.00 Data Type: UInt16 3.00 Default: Change: Immediately Value Range: 0.00 ms to 500.00 ms Description Defines the filter time of DI2. The DI function is active only after the effective level is kept within the time defined by H03.61.

H03.62 DI3 filter

H03.61

Hexadecimal: 2003-3Fh Min.: 0.00 Max.: 500.00 Default: 3.00 Value Range:

Effective Time: Real time ms Unit: Data Type: UInt16 Change: Immediately

Effective Time: Real time

ms

UInt16

Immediately

0.00 ms to 500.00 ms Description

Defines the filter time of DI3. The DI function is active only after the effective level is kept within the time defined by H03.62.

Unit:

Data Type:

Change:

H03.63 **DI4 filter**

Hexadecimal: 2003-40h 0.00 Min.: 500.00 Max.: 3.00 Default:

Value Range:

0.00 ms to 500.00 ms

Description

Defines the filter time of DI4. The DI function is active only after the effective level is kept within the time defined by H03.63.

H03.64 **DI5 filter**

Hexadecimal: 2003-41h Min.: 0.00 500.00 Max.: 3.00 Default:

Value Range:

0.00 ms to 500.00 ms

Description

Defines the filter time of DI5. The DI function is active only after the effective level is kept within the time defined by H03.64.

Effective Time: Real time Unit: ms UInt16 Data Type: Change: Immediately

Change:

Immediately

H03.65 DI8 filter 1

Hexadecimal: 2003-42h Min.: 0.00 500.00 Max.: Default: 0.00 Value Range:

0.00 ms to 500.00 ms

Description

Defines the filter time of DI8. The DI function is active only after the effective level is kept within the time defined by H03.65.

Unit:

Data Type:

Change:

H03.66 DI9 filter 1

Hexadecimal: 2003-43h Min.: 0.00 Мах.: 500.00 0.00 Default: Value Range:

Effective Time: Real time ms Unit: UInt16 Data Type: Change:

Effective Time: Real time

ms

UInt16

Immediately

Immediately

0.00 ms to 500.00 ms Description

Defines the filter time of DI9. The DI function is active only after the effective level is kept within the time defined by H03.66.

15.5 **H04 Terminal Output Parameters**

H04.00 **DO1** function selection

	2024.01		A.L L		
Hexadecimal:	2004-01h	Effective Time:	At stop		
Min.:	0	Unit:	-		
Max.:	27	Data Type:	UInt16		
Default:	1	Change:	Immediately		
Value Range:					
0: N/A					
1: Servo ready					
2: Motor rotatir	ng				
3: Zero speed s	ignal				
4: Speed consis	stent				
5: Positioning c	completed				
6: Positioning a	pproaches				
7: Torque limit					
Speed limit					
9: Braking					
10: Warning					

11: Fault

- 12: Output 3-digit alarm code
- 13: Output 3-digit alarm code
- 14: Output 3-digit alarm code
- 15: Interrupt positioning completed
- 16: Homing completed
- 17: Electrical homing completed
- 18: Torque reached
- 19: Speed reached
- 20: Angle identification output
- 21: DB brake output
- 22: Internal command completed
- 23: Writing next command allowed
- 24: Internal movement completed
- 26: Servo enabled to receive operating command
- 27: Fault or warning

Description

Defines the function of DO1.

H04.01 DO1 logic level

Hexadecimal:	2004-02h	Effective Time:	At stop
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	Immediately

Value Range:

0: Output low (L) level when active (optocoupler ON)

1: Output high (H) level when active (optocoupler OFF)

Description

Defines the level logic of DO1 when the function assigned to DO1 is active.

DO1 to DO5 are normal DOs, requiring the minimum output signal width to be 1 ms. The host controller must be able to receive valid DO logic changes.

Setpoint	DO1 Logic Upon Active DO Function	Transistor Status	Remarks
0	Low level	ON	High 1ms Low Active
1	High level	OFF	High Low Active 1ms

View the setting of H04.22 (DO source) before receiving DO logic change to check whether DO output level is determined by the servo drive state or the communication.

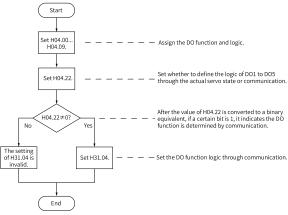
H04.02 DO2 function selection

Hexadecimal:	2004-03h
Min.:	0
Max.:	27

Effective Time: At stop Unit: -Data Type: UInt16

	Default: Value Range: See H04.00. Description -	5	Change:	Immediately
H04.03	-			At stop - UInt16 Immediately
H04.04	DO3 function Hexadecimal: Min.: Max.: Default: Value Range: See H04.00. Description		Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H04.05	-			At stop - UInt16 Immediately
H04.06	DO4 function Hexadecimal: Min.: Max.: Default: Value Range: See H04.00. Description		Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H04.07	DO4 logic leve Hexadecimal: Min.:		Effective Time: Unit:	At stop -

	Max.:	1	Data Type:	UInt16		
	Default:	0	Change:	Immediately		
	Value Range:					
	0: Output low (L) level when active (optocoupler ON)					
	1: Output high	(H) level when active (optocouple	er OFF)			
	Description					
	-					
	DOE function					
H04.08	DO5 function Hexadecimal:		Effective Times	At stop		
	Min.:	2004-09h 0	Effective Time: Unit:	At stop		
	Min Max.:	27	Data Type:	UInt16		
	Default:	16	Change:	Immediately		
	Value Range:	10	change.	minediately		
	See H04.00.					
	Description					
	-					
H04.09	DO5 logic leve	l				
	Hexadecimal:	2004-0Ah	Effective Time:	At stop		
	Min.:	0	Unit:	-		
	Max.:	1	Data Type:	UInt16		
	Default:	0	Change:	Immediately		
	Value Range:					
	0: Output low (L) level when active (optocoupler	ON)			
	1: Output high	(H) level when active (optocouple	er OFF)			
	Description					
	-					
H04.22	DO source sel					
	Hexadecimal:	2004-17h	Effective Time:	Real time		
	Min.:	0	Unit:	-		
	Max.:	31	Data Type:	UInt16		
	Default:	0	Change:	At stop		
	Value Range:					
	0-31					


Defines whether the logic of a physical DO terminal is defined by the actual state of the drive or by communication.

The value of H04.22 is displayed in decimal on the keypad. When the value is converted to a binary equivalent: If bit(n) is 0, it indicates the logic of DO(n+1) is defined by the actual state of the drive. If bit(n) is 1, it indicates the logic of DO(n+1) is defined by communication (H31.04).

	Setpoint (binary)				DO	logic	
Setpoint	bit4	bit3	bit2	bit1	bit0	Defined by the	Defined by
(decimal)	DO5	DO4	DO3	DO2	DO1	Drive State	Communication (H31.04)
0	0	0	0	0	0	DO1-DO5	/
1	0	0	0	0	1	DO2-DO5	DO1
31	1	1	1	1	1	/	DO1-DO5

Set H04.22 to a value listed in the preceding table.

H31.04 is not displayed on the keypad and can only be modified through communication. For H31.04, "bit(n) = 1" indicates the logic of DO(n+1) is active. "bit(n) = 0" indicates the logic of DO(n+1) is inactive.

15.6 H05 Position Control Parameters

H05.00 Main position reference source

Hexadecimal: 2005-01h

Min.:	0
Max.:	2
Default:	0

Value Range:

0: Pulse reference

1: Step reference

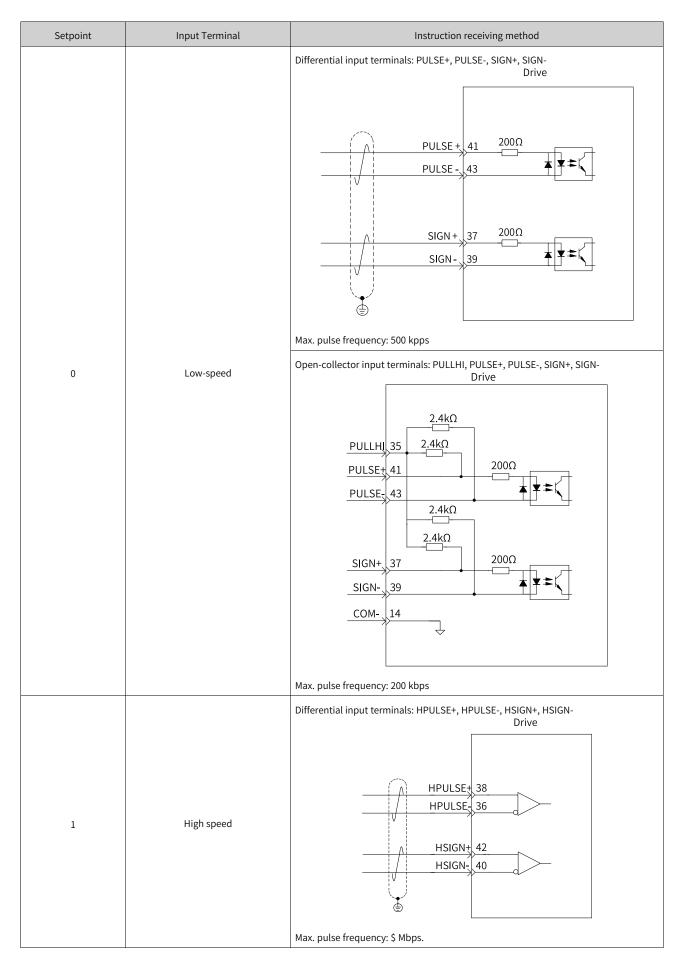
2: Multi-position reference

Effective Time:	Real time
Unit:	-
Data Type:	UInt16
Change:	At stop

Defines the position reference source in position control mode.

Pulse references are external position references. Step references and multi-position references are internal position references.

Setpoint	Reference source	Instruction receiving method
0	Pulse reference	The host controller or other pulse generator generates pulses, which is input into the servo drive by hardware terminals.
		The hardware terminal is selected in H05.01.
1	Step reference	The step displacement is set in H05.05 (step value). The step reference is sent by the DI set for function
		FunIN.20.
		The running mode of the multi-position function is set
2	Multi-position	in parameters in group H11.
Z	reference	The multi-position reference is sent by the DI set for
		function FunIN.28.


H05.01 Position pulse reference input terminal

Hexadecimal:	2005-02h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0: Low speed			

1: High speed

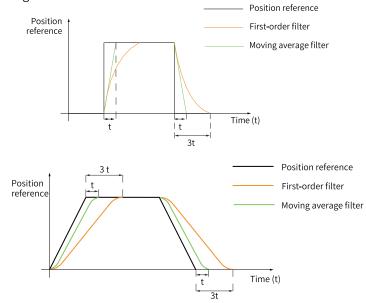
Description

Used to select the physical input terminal based on the input pulse frequency when the pulse reference acts as the position reference source in the position control mode.

H05.02 Pulses per revolution

	Hexadecimal:	2005-03h	Effective Time:	Upon the next power-on
	Min.:	0	Unit:	PPR
	Max.:	1048576	Data Type:	UInt32
	Default:	0	Change:	At stop
	Value Range:			
	0P/Rev-10485	76P/Rev		
	Description			
	Defines the nu	mber of pulses required per revo	lution of the mo	tor.
H05.04	First-order lo	w-pass filter time constant		
	Hexadecimal:	2005-05h	Effective Time:	Real time
	Min.:	0.0	Unit:	ms
		0550 F	D · T	

Min.: 0.0 Max.: 6553.5 Default: 0.0 Unit: ms Data Type: UInt16 Change: At stop


Value Range:

0.0 ms to 6553.5 ms

Description

Defines the first-order low pass filter time constant of position references.

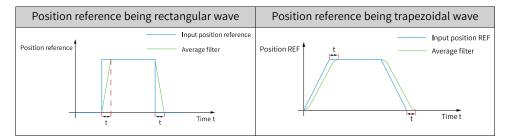
If position reference P is rectangular wave or trapezoidal wave, the position reference after firstorder low pass filtering is as follows:

This function does not affect the displacement value (position reference sum).

An excessively high setpoint delays the responsiveness, so set a proper filter time constant based on actual conditions.

H05.05	Step reference						
	Hexadecimal:	2005-06h	Effective Time:	Real time			
	Min.:	-9999	Unit:	Reference unit			
	Max.:	9999	Data Type:	Int16			
	Default:	50	Change:	At stop			
	Value Range:						
	-9999 to +9999	1					

Defines the position reference sum when the step reference acts as the main position reference source.


H05.06 Moving average filtering time constant

Hexadecimal:	2005-07h	Effective Time:	Real time
Min.:	0.0	Unit:	ms
Max.:	128.0	Data Type:	UInt16
Default:	0.0	Change:	At stop
Value Range:			
0.0 ms to 128.0) ms		

Description

Defines the moving average filter time constant of position references.

If position reference P is rectangular wave or trapezoidal wave, the position reference after average value filter is as follows:

This function does not affect the displacement value (position reference sum). An excessively high setpoint delays the responsiveness, so set a proper filter time constant based on actual conditions.

H05.07 Electronic gear ratio 1 (numerator)

Hex:	2005-08h	Effective	Real time
		mode:	
Min.:	1	Unit:	-
Max.:	1073741824	Data Type:	UInt32
Default:	262144	Change:	Real-time
Value Range:			
1 to 107374182	4		
Description			
Defines the nur	nerator of electronic gear ratio 1.		
Electronic gea	r ratio 1 (denominator)		
Hexadecimal:	2005-0Ah	Effective Time:	Real time
Min.:	1	Unit:	-
Max.:	1073741824	Data Type:	UInt32
Default:	10000	Change:	Immediately

Default: 10000 Value Range: 1 to 1073741824

Description

H05.09

Defines the denominator of electronic gear ratio 1.

H05.11 Electronic gear ratio 2 (numerator)

Hex:	0	2005-0Ch		Effective	Real time
				mode:	

	Min.: Max.: Default: Value Range: 1 to 107374182 Description Defines the num	1 1073741824 262144 24 merator of electronic gear ratio 2	Unit: Data Type: Change:	- UInt32 Real-time
H05.13	Electronic gea	nr ratio 2 (denominator)		
	Hexadecimal:	2005-0Eh	Effective Time:	Real time
	Min.:	1	Unit:	-
	Max.:	1073741824	Data Type:	UInt32
	Default:	10000	Change:	Immediately
	Value Range:			
	1 to 107374182	24		
	Description			
	Defines the der	nominator of electronic gear ratio	o 2.	
H05.15	Pulse referend	ce form		
	Hexadecimal:	2005-10h	Effective Time:	Upon the next power-on
	Min.:	0	Unit:	
	Max.:	3	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:			
	0: Direction + P	Pulse, positive logic		
	1: Direction + P	Pulse, negative logic		
		ase B quadrature pulse, quadrup	led frequency	
	3: CW + CCW			
	Description			
	•	out pulse form when the main pos	sition reference s	source is pulse input.
	'			

H02.02	H05.15	Pulse form	Signal	Diagram of forward pulses	Diagram of reverse pulses
	0	Pulse + Direction Positive Logic	PULSE SIGN	PULSE t_1, t_2, t_3 SIGN $++$ High	PULSE $\underbrace{t_{11} t_2 t_3}_{\text{SIGN}}$
	1	Pulse + Direction Negative Logic	PULSE SIGN	PULSE t_1 t_2 t_3 SIGN t_2 Low	PULSE $t_1 + t_2 + t_3$ SIGN $t_1 + t_2 + t_3$ High
0	2	Phase A + Phase B Quadrature pulse Quadrupled frequency	PULSE (phase A) SIGN (phase B)	Phase A leads phase B by 90°. Phase A t_4 t_4 t_4 t_4 Phase B t_4 t_4 t_4	Phase B leads phase A by 90°. Phase A t_{1} t_{4} Phase B t_{4} t_{4} Phase B t_{4} t_{4}
	3	CW+CCW	PULSE (CW) SIGN (CCW)	$\begin{array}{c} CW & \qquad \qquad$	
	0	Pulse + Direction Positive Logic	PULSE SIGN	PULSE $\underbrace{ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \\ & & \\$	PULSE $++++$ t_1 t_2 t_3 SIGN $+++$ High
	1	Pulse + Direction Negative Logic	PULSE SIGN	PULSE $t_1 + t_2 + t_3$ SIGN $-++$ High	PULSE $t_1 \ t_2 \ t_3$ SIGN $t_2 \ Low$
1	2	Phase A + Phase B Quadrature pulse Quadrupled frequency	PULSE (phase A) SIGN (phase B)	Phase B leads phase A by 90°. Phase A t_{t_4} t_{t_4} t_{t_4} Phase B t_{t_4} t_{t_4}	Phase A leads phase B by 90°. Phase A t_4 t_4 t_4 t_4 t_4 t_4 t_4 Phase B t_4 t_4 t_4
	3	CW+CCW	PULSE (CW) SIGN (CCW)	$\begin{array}{c} CW \qquad \qquad$	$\begin{array}{c} cw \\ \hline t_5 \\ ccw \\ \hline \end{array}$

Table	15–4	Descri	ntions	of the	pulse form	
Table	10-4	Desch	puons	or the	puise ionn	

Table 15–5 Specifications of pulse references

Input Terminal		Maximum	Minimum Time Width (unit: us)					
		Frequency	t1	t2	t3	t4	t5	t6
High-speed p terminal	oulse input	4 Mpps	0.125	0.125	0.125	0.25	0.125	0.125
Low-speed	Differen- tial input	200 kpps	2.5	2.5	2.5	5	2.5	2.5
pulse input terminal	Open collector input	200 kpps	2.5	2.5	2.5	5	2.5	2.5

H05.16 Clear action

 Hexadecimal:
 2005-11h

 Min.:
 0

 Max.:
 2

 Default:
 0

 Value Range:
 V

Effective Time: Real time Unit: -Data Type: UInt16 Change: At stop

- 0: Clear position deviation upon S-OFF and fault
- 1: Clear position deviation pulses upon S-OFF and fault
- 2: Clear position deviation by CIrPosErr signal input from DI

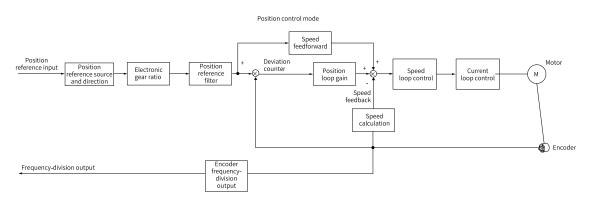
Defines the condition for clearing the position deviation.

Position deviation = (Position reference - Position feedback) (encoder unit)

Setpoint	Clear Condition	Clear Time
H05.16 = 0	Clear the position deviation when the S-ON signal is switched off or when a fault occurs.	Servo running Servo stop Clear
H05.16 = 1	Clear the position deviation when the S-ON signal is switched off or when the servo drive stops upon a fault event.	Servo running Servo running Servo stop Clear
H05.16 = 2	Clear the position deviation cleared when the S-ON signal is switched off or when a fault occurs. Clear the position deviation when ClrPosErr signal is inputted through a DI when the servo drive is in the RUN state.	DI active DI inactive Clear (Rising edge-triggered) DI active DI inactive DI inactive Clear (Falling edge-triggered)

If absolute value of position deviation is larger than H0A.10 (Threshold of position deviation excess), EB00.0 (Position deviation being large) will occur.

H05.17 Number of encoder frequency-division pulses


Hexadecimal:	2005-12h	Effective Time:	Upon the next power-on		
Min.:	35	Unit:	PPR		
Max.:	32767	Data Type:	UInt16		
Default:	2500	Change:	At stop		
Value Range:					
35P/Rev-32767P/Rev					
Description					
Defines the number of pulses output by PAO or PBO per revolution.					
Pulse output resolution per revolution = (H05.17) x 4					

H05.19 Speed feedforward control

•			
Hexadecimal:	2005-14h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	1	Change:	At stop
Value Range:			
0: No speed fee	edforward		
1: Internal spee	ed feedforward		

Defines the source of the speed loop feedforward signal.

In the position control mode, speed feedforward can be used to improve the position reference response speed.

H05.20 Condition for positioning completed signal output

Value Danger			
Default:	0	Change:	Immediately
Max.:	3	Data Type:	UInt16
Min.:	0	Unit:	-
Hexadecimal:	2005-15h	Effective Time:	Real time

Value Range:

0: Absolute position deviation lower than the setpoint of H05.21

1: Absolute position deviation lower than the setpoint of H05.21 and the filtered position reference is 0

2: Absolute position deviation lower than the setpoint of H05.21 and the unfiltered position reference is 0

3: Absolute position deviation kept lower than the setpoint of H05.21 within the time defined by H05.60 and the unfiltered position reference is 0

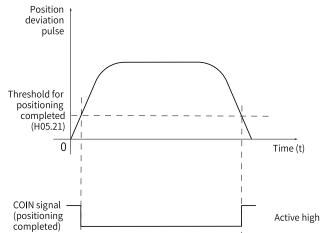
Description

Defines the condition for outputting positioning completed/proximity signal. In the position control mode, if the absolute value of the position deviation during operation is within the setpoint of H05.21, the drive outputs the positioning completed/proximity signal. You can set the condition for outputting the positioning completed/proximity signal in H05.20.

Setpoint	Output conditions
0	Absolute value of position deviation is smaller than the value of H05.21
1	Absolute value of position deviation is smaller than the value of H05.21 and the position reference after filtering is 0
2	Absolute value of position deviation is smaller than the value of H05.21 and the position reference before filtering is 0
3	Absolute value of position deviation kept lower than H05.21 within the time defined by H05.60 and unfiltered position reference being 0

H05.21 Threshold of positioning completed

Hex:	2005-16h	Effective	Real time
		mode:	
Min.:	1	Unit:	Encoder unit
Max.:	65535	Data Type:	UInt16
Default:	183	Change:	Real-time


Value Range:

1 to 65535

Description

Defines the threshold of the absolute value of position deviation when the drive outputs the positioning completed signal.

Positioning completed signal: DO function 5 (FunOUT.5: COIN).

The positioning completed signal is valid only when the servo drive is in running state and in position control.

H05.22 **Proximity threshold**

Hexadecimal: 2005-17h Min.: 1 Max.: 65535 65535 Default: Value Range:

Effective Time:	Real time
Unit:	Encoder unit
Data Type:	UInt16
Change:	Immediately

1 to 65535 Description

Defines the threshold of the absolute value of position deviation when the drive outputs the proximity signal.

H05.23 Interrupt positioning selection

	0		
Hexadecimal:	2005-18h	Effective Time:	Upon the next power-on
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0: Disable			
1: Enabled Description			

Setpoint	Interrupt Positioning
0	Prohibit
1	Working

H05.24 **Displacement of interrupt positioning**

Hexadecimal: 2005-19h

Effective Time: Real time

Min.: 0 Unit: Reference unit 1073741824 Data Type: Max.: UInt32 10000 Immediately Default: Change: Value Range: 0 to 1073741824 Description Defines the position reference value during interrupt positioning.

H05.26 Constant operating speed in interrupt positioning

Hexadecimal: 2005-1Bh Min.: 0 Max.: 6000 200 Default:

Effective Time: Real time rpm Unit: Data Type: UInt16 Immediately Change:

Value Range:

0rpm-6000rpm

Description

Defines the maximum speed during interrupt positioning.

Table 15–7 Motor speed during interrupt positioning

H05.26	Motor Speed before Triggering Interrupt Positioning	Interrupt Positioning	Constant operating speed in interrupt positioning
	< 10	Inactive	-
0	≥ 10	Active	Motor Speed before Triggering Interrupt Positioning
1 to 6000	-	Active	H05.26

H05.27 Acceleration/Deceleration time of interrupt positioning

Hexadecimal:	2005-1Ch
Min.:	0
Max.:	1000
Default:	10
-	

Effective Time: Real time ms Unit: Data Type: UInt16 Immediately Change:

Value Range:

0 ms to 1000 ms

Description

Defines the time for the motor to change from 0 rpm to 1000 rpm at a constant speed during interrupt positioning.

The actual motor acceleration time "t" during interrupt positioning is as follows: t = $\frac{[\text{H05.26-Motor speed before interrupt positioning]}}{(\text{H05.27})} \times (\text{H05.27})$

1000

H05.29 Interrupt positioning cancel signal

Hexadecimal:	2005-1Eh
Min.:	0
Max.:	1
Default:	1
Value Range:	
0: Disabled	
1: Enabled	

Effective Time:	Real time
Unit:	-
Data Type:	UInt16
Change:	Immediately

Defines whether to unlock the interrupt positioning signal.

Setpoint	Interrupt positioning cancel signal	Remarks
0	Disabled	After interrupt positioning is completed, the servo drive responds to the other position references directly.
1	Enabled	 After interrupt positioning is completed, the servo drive does not respond to the other position references directly. The servo drive can respond to other position references only after the DI function 29 (FunIN.29: XintFree, interrupt positioning unlock) is enabled.

H05.30 Homing selection

Hexadecimal:	2005-1Fh	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	8	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			

0: Disabled

1: Homing enabled through the HomingStart signal input from DI

2: Electrical homing enabled through the HomingStart signal input from DI

3: Homing started immediately upon power-on

4: Homing executed immediately

5: Electrical homing started

6: Current position as home

8: D-triggered position as home

Defines the homing mode and the trigger signal source.

Sotopint Triggor Signal		Remarks		
Setpoint	Trigger Signal	Homing mode	Trigger Signal	
0	Disabled	Homing is disabled	1.	
1	Homing enabled through the HomingStart signal inputted from DI	Homing	DI signal FunIN.32 (HomingStart: homing enabled)	
2	Electrical homing enabled through the HomingStart signal inputted from DI	Electrical homing	DI signal FunIN.32 (HomingStart: homing enabled)	
3	Homing enabled immediately upon power-on	Homing	S-ON signal active for the first time after next power-on in position control	
4	Homing executed immediately	Homing	S-ON signal active in position control After homing is done, set H05.30 to 0.	
5	Electrical homing started	Electrical homing	S-ON signal active in position control After homing is done, set H05.30 to 0.	
6	Current position as home	Homing	Not required After homing is done, set H05.30 to 0.	
8	Current position as the home enabled through signal input from DI	Homing	DI signal FunIN.38 (current position as the home)	

H05.31 Homing mode

Hexadecimal:	2005-20h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	16	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			

- 0: Forward, home switch as deceleration point and home
- 1: Reverse, home switch as deceleration point and home
- 2: Forward, Z signal as deceleration point and home
- 3: Reverse, motor Z signal as deceleration point and home
- 4: Forward, home switch as deceleration point and Z signal as home
- 5: Reverse, home switch as deceleration point and Z signal as home
- 6: Forward, positive limit switch as deceleration point and home
- 7: Reverse, negative limit switch as deceleration point and home
- 8: Forward, positive limit switch as deceleration point and Z signal as home
- 9: Reverse, negative limit switch as deceleration point and Z signal as home
- 10: Forward, mechanical limit position as deceleration point and home
- 11: Reverse, mechanical limit position as deceleration point and home
- 12: Forward, mechanical limit position as deceleration point and Z signal as home
- 13: Reverse, mechanical limit position as deceleration point and Z signal as home
- 14: Forward single-turn homing
- 15: Reverse single-turn homing
- 16: Nearby single-turn homing

Defines the default motor direction of rotation, deceleration point, and home during homing.

H05.32 Speed in high-speed searching for the home switch signal

Hexadecimal: 2005-21h Effective Time: Real time rpm Min.: 0 Unit: Max.: 3000 Data Type: UInt16 100 Default: Change: Immediately Value Range: 0rpm-3000rpm Description

Defines the motor speed for searching for the deceleration point signal during homing.

H05.33 Speed in low-speed searching for the home switch signal

		-	
Hexadecimal:	2005-22h	Effective Time:	Real time
Min.:	0	Unit:	rpm
Max.:	1000	Data Type:	UInt16
Default:	10	Change:	Immediately
Value Range:			
0rpm-1000rpm	1		
Description			
Defines the mo	tor speed for searching for the ho	me signal durin	g homing.

H05.34 Acceleration/Deceleration time during homing

Hexadecimal:	2005-23h	Effective Time:	Real time
Min.:	0	Unit:	ms
Max.:	1000	Data Type:	UInt16
Default:	1000	Change:	Immediately
Value Range:			

0 ms to 1000 ms

Description

Defines the time for the motor to accelerate from 0 rpm to 1000 rpm at a constant speed during homing.

H05.35	Home search	time limit		
	Hexadecimal:	2005-24h	Effective Time:	Real time
	Min.:	0	Unit:	ms
	Max.:	65535	Data Type:	UInt16
	Default:	10000	Change:	Immediately
	Value Range:		0	,
	0 ms to 65535 r	ns		
	Description			
	Defines the ma	ximum homing time.		
H05.36	Mechanical ho	ome offset		
	Hexadecimal:	2005-25h	Effective Time:	Real time
	Min.:	-1073741824	Unit:	Reference unit
	Max.:	1073741824	Data Type:	Int32
	Default:	0	Change:	Immediately
	Value Range:			
	-1073741824 to	1073741824		
	Description			
	Defines the abs	solute position of the motor after	homing.	
H05.38	Servo pulse oi	utput source		
	Hexadecimal:	2005-27h	Effective Time:	Upon the next power-on
	Min.:	0	Unit:	-
	Max.:	2	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:			

0: Encoder frequency division output

1: Pulse reference synchronous output

2: Frequency division or synchronous output inhibited

Defines the output source of the pulse output terminal.

Setpoint	Output Source	Remarks
0	Encoder frequency-	The encoder feedback signal is outputted only after being divided by the value of H05.17 during rotation of the motor.
0	division output	Encoder frequency-division output mode is recommended when the host controller is used for closed-loop feedback.
1	Pulse reference synchronous output	The input pulse references are outputted synchronously only when H05.00 is set to 0. When the pulses of multi-axis servo is tracked synchronously, synchronous output of pulse references is recommended.
2	Frequency-division output inhibited	No output is generated from pulse output terminals.

The pulse output terminals are as follows:

Signal Name	Output Mode	Output Port	Max. pulse frequency
A-phase signal	Differential output	PAO+, PAO-	2Mpps
B-phase signal	Differential output	PBO+, PBO-	2Mpps
	Differential output	PZO+, PZO-	2Mpps
	Open-collector output	PZ-OUT, GND	100kpps

Signal width of phase A/B pulse is determined by motor speed. Signal width of phase Z pulse is half of that of phase A/B pulse.

The output polarity of phase Z signal is determined by the setting of H05.41 (Output polarity of pulse Z).

H05.39 Electronic gear ratio switchover condition

Hexadecimal:	2005-28h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			

0: Switchover after position reference is kept 0 for 2.5 ms

1: Switched in real time

Description

Defines the condition for switching the electronic gear ratio.

Setpoint	switchover conditions	Remarks
0	Switching after the position pulse reference kept 0 for 2.5 ms	DI function 24 must be set for a DI terminal. (FunIN.24: GEAR_SEL, electronic gear ratio selection)
1	Real-time switchover	

H05.40 Mechanical home offset and action upon overtravel

Hex:	2005-29h	Effective Time	: Real time
Min.:	0	Unit:	-
Max.:	3	Data Type:	UInt16
Default:	0	Change:	At stop

Value Range:

0: H05.36 as the coordinate after homing, reverse homing applied after homing triggered again on overtravel

1: H05.36 as the relative offset after homing, reverse homing applied after homing triggered again on overtravel

2: H05.36 as the coordinate after homing, reverse homing auto-applied on overtravel

3: H05.36 as the relative offset after homing, reverse homing auto-applied on overtravel **Description**

Defines the offset relationship between the mechanical home and mechanical zero point, and the action upon overtravel during homing.

Set-	Mechanical home offset	Remarks		
point	and action upon overtravel	Mechanical home	Overtravel handling	
0	H05.36 as the coordinate after homing, reverse homing applied after homing triggered again on overtravel	The mechanical home differs from the mechanical zero point. After homing, the motor stops at the home position and the home coordinate is forced to the value of H05.36.	When homing is triggered again, the drive performs homing in reverse direction.	
1	H05.36 as the relative offset after homing, reverse homing triggered on hitting the limit	The mechanical home overlaps with the mechanical zero point. After locating the home position, the motor will not stop until reaching the value of H05.36.	When homing is triggered again, the drive performs homing in reverse direction.	
2	H05.36 as the coordinate after homing, reverse homing auto-applied on overtravel	The mechanical home differs from the mechanical zero point. After homing, the motor stops at the home position and the home coordinate is forced to the value of H05.36.	The drive continues to perform homing in reverse direction.	
3	H05.36 as the relative offset after homing, reverse homing auto- applied on overtravel	The mechanical home overlaps with the mechanical zero point. After locating the home position, the motor will not stop until reaching the value of H05.36.	The drive continues to perform homing in reverse direction.	

Note: The following logic takes effect when H11.00 is not 5.

After homing (including homing and electrical homing), the absolute motor position (H0b.07) is consistent with H05.36.

Homing completed signal (FunOUT.16: HomeAttain) or electrical homing completed signal (FunOUT.17: ElecHomeAttain) will be output only after H0b.07 = H05.36. Regardless of S-ON signal state.

H05.41 Z pulse output polarity

Hexadecimal: 2005-2Ah Min.: 0 Effective Time: Upon the next power-on Unit: -

Max.:	1	Data Type:	UInt16
Default:	1	Change:	At stop
Value Rang	e:		
0: Negative (Z pulse active low)			
1: Positive (Z pulse active high)			
Descriptior	ı		
Defines the	output level when the Z p	ulse of pulse output term	inal is active.

H02.03 (Output pulse phase)	H05.41 (Z pulse output polarity)	Pulse Output Diagram of Forward RUN	Pulse Output Diagram of Reverse RUN
	0	Phase A Phase B Phase Z Phase Z Phase A leads phase B by 90°.	Phase A Phase B Phase Z Phase B Leads phase A by 90°.
0	1	Phase A Phase B Phase Z Phase A leads phase B by 90°.	Phase A Phase B Phase Z Phase B leads phase A by 90°.
1	0	Phase A Phase A Phase B Phase B Phase Z Phase A Phase B Phase A by 90°.	Phase A Phase B Phase Z Phase Z J Phase A leads phase B by 90°.
	1	Phase A Phase A Phase B Phase Z Phase B leads phase A by 90°.	Phase A Phase A

Table 15–8 Pulse diagrams of encoder frequency-division output (H05.38 = 0)

It is recommended to use the active edge outputted by Z signal when a high precision frequencydivision output of Z signal is required.

Setpoint	Z pulse output polarity
0	Negative (low level upon active Z pulse)
1	Positive (high level upon active Z pulse)

H05.41 = 0: Falling-edge triggered; H05.41 = 1: Rising-edge triggered

H05.43 Position pulse edge

Hexadecimal:	2005-2Ch
Min.:	0
Max.:	1
Default:	1
Value Range:	

Effective Time: Upon the next power-on Unit: -Data Type: UInt16 Change: Immediately

0: Falling edge-triggered 1: Rising edge-triggered Description H05.44 Encoder multi-turn data offset Hexadecimal: 2005-2Dh Effective Time: Real time Min.: 0 Unit: Max.: 65535 Data Type: UInt16 0 Default: Change: Immediately Value Range: 0 to 65535 Description H05.46 Position offset in absolute position linear mode (low 32 bits) Hexadecimal: 2005-2Fh Effective Time: Upon the next power-on Min.: -2147483648 Unit: Encoder unit 2147483647 Max.: Data Type: Int32 Default: 0 Change: At stop Value Range: -2147483648 to 2147483647 Description H05.48 Position offset in absolute position linear mode (high 32 bits) Hexadecimal: 2005-31h Effective Time: Upon the next power-on -2147483648 Min.: Unit: Encoder unit 2147483647 Max.: Data Type: Int32 At stop Default: 0 Change: Value Range: -2147483648 to 2147483647 Description H05.50 Mechanical gear ratio in absolute position rotation mode (numerator) Hexadecimal: 2005-33h Effective Time: Real time Min.: Unit: 1 Max.: 65535 Data Type: UInt16 Default: 1 Change: At stop Value Range: 1 to 65535 Description Defines the transmission ratio between the mechanical rotary load and the motor in the absolute position rotation mode. H05.51 Mechanical gear ratio in absolute position rotation mode (denominator) Effective Time: Real time Hexadecimal: 2005-34h Min.: 1 Unit: 65535 UInt16 Max.: Data Type: Default: 1 Change: At stop

Value Range:

1 to 65535

Description

Defines the transmission ratio between the mechanical rotary load and the motor in the absolute position rotation mode.

Unit:

Data Type:

Change:

Effective Time: Real time

Effective Time: Real time

Encoder unit

Encoder unit

UInt32

At stop

UInt32

At stop

H05.52 Pulses per revolution of the load in absolute position rotation mode (low 32 bits)

Hexadecimal: 2005-35h Min.: 0 2147483647 Max.: Default: 0 Value Range:

0 to 2147483647

Description

Defines the number of pulses per revolution of the rotary load in the absolute position rotation mode.

Unit:

Data Type:

Change:

H05.54 Pulses per revolution of the load in absolute position rotation mode (high 32 bits)

Hexadecimal: 2005-37h Min.: Max.: Default:

Value Range: 0 to 127

Description

Defines the number of pulses per revolution of the rotary load in the absolute position rotation mode.

H05.56 Speed threshold in homing upon hit-and-stop

0

0

127

Hexadecimal: 2005-39h 0 Min.: Max.: 1000 Default: 2 Value Range: 0rpm-1000rpm Description

Effective Time: Real time rpm Unit: Data Type: UInt16 Change: Immediately

H05.57 Mechanical limit times threshold

Hexadecimal:	2005-3Ah	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	20	Change:	Immediately
Value Range:			
0 to 65535			
Description			

H05.58 Torque threshold in homing upon hit-and-stop 2005 201 ا م م ن م م ا ، H

Hexadecimai:	2005-3BN	Effective Time:	Real time
Min.:	0.0	Unit:	%

	Max.:	300.0	Data Type:	UInt16
	Default:	100.0	Change:	Immediately
	Value Range:			
	0.0% to 300.09	%		
	Description			
	Defines the ma	aximum positive/negative torque	limit in homing	upon hit-and-stop.
H05.59	Positioning w	vindow time		
	Hexadecimal:	2005-3Ch	Effective Time:	Real time
	Min.:	0	Unit:	ms
	Max.:	30000	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:			
	0 ms to 30000	ms		
	Description			
	If the positioni	ing deviation is less than the time	threshold of pos	sitioning completed, the
	positioning co	mpleted signal is active only if the	e set time thresh	old is exceeded.
H05.60	Hold time of I	positioning completed		
	Hexadecimal:		Effective Time:	Real time
	Min.:	0	Unit:	ms
	Max.:	30000	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:		8	
	0 ms to 30000	ms		
	Description			
	•	ld time of an active positioning c	ompleted signal.	
H05.61	Encodor frog	uency-division pulse output (32	hit)	
1105.01	Hexadecimal:			Upon the next power-on
	Min.:	0	Unit:	PPR
	Max.:	262143	Data Type:	UInt32
	Default:	0	Change:	At stop
	Value Range:	0	chunge.	, a stop
	0P/Rev-26214	3P/Rev		
	Description	31/100		
	-	acity of H05 17 is insufficient defi	nes the number	of pulses output by PAO or PBO per
	revolution.	acity of 1103.17 is insumclent, den	nes the number	or pulses output by I AO OF I DO per
		esolution per revolution = (H05.6	1) x 4	
H05.63	Peal time und	late of position reference sourc	•	
1105.05	Hexadecimal:	-	Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:		enange.	· · F
	0 to 1			
	Description			
	-			

H05.66	Homing time	unit		
	Hex:	2005-43h	Effective	Real time
			mode:	
	Min.:	0	Unit:	-
	Max.:	2	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:			
	0: 1 ms			
	1: 10 ms			
	2: 100 ms			
	Description			
	Defines the ho	oming time unit. The actual timeo	ut time is H05.35	5 x H05.66 ms.
H05.67	Offset betwe	en zero point and single-turn al	osolute position	I
	Hexadecimal:	2005-44h	Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	2147483648	Data Type:	UInt32
	Default:	0	Change:	At stop
	Value Range:			
	0 to 21474836	48		
	Description -			
H05.69	Auxiliary hon	-		
	Hexadecimal:			Upon the next power-on
	Min.:	0	Unit:	-
	Max.:	4	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range: 0: Disabled			
	1: Enable sing	le-turn homing		
	2: Record devi	ation position		
	3: Start a new	search for the Z signal (homing)		
		osition deviation		
	Description			
	-	oming mode setting		
	0: Disabled			
	1: Enable sing	le-turn homing		
	-	iation position		
		search for the Z signal (homing)		
		osition deviation		
1			_	

15.7 H06 Speed Control Parameters

H06.00 Source of main speed reference A

Hexadecimal:	2006-01h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	0	Data Type:	UInt16

Default: 0

Value Range:

0: Digital setting (H06.03)

Description

Defines the source of main speed reference A.

Setpoint	Reference source	Instruction receiving method
0	Digital setting	The source of speed reference A is set by H06.03.

Change:

At stop

H06.01 Source of auxiliary speed reference B

Hexadecimal:	2006-02h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	5	Data Type:	UInt16
Default:	5	Change:	At stop
Value Range:			

۷

0: Digital setting (H06.03)

5: Multi-speed reference

Description

Defines the source of auxiliary speed reference B.

Setpoint	Reference source	Instruction receiving method
0	Digital setting	The source of speed reference A is set by H06.03.
1	-	-
2	-	-
3	-	-
4	-	-
5	Multi-speed reference	The source of auxiliary speed reference B is defined by internal multi-speed references. For details on multi-speed, see parameters in group H12.

H06.02 Speed reference source

Hexadecimal: 2006-03h Min.: Δ

Value Danger			
Default:	0		
Max.:	4		
MIII	0		

Value Range:

0: Source of main speed reference A

1: Source of auxiliary speed reference B

2: A+B

3: Switched between A and B

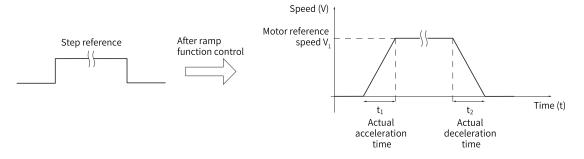
4: Communication

Effective Time:	Real time
Unit:	-
Data Type:	UInt16
Change:	At stop

Defines the source of speed references.

Setpoint	Control mode	Remarks		
0	Source of main speed reference A	The reference source is defined by H06.00.		
1	Source of auxiliary speed reference B	The reference source is defined by H06.01.		
2	A+B	The reference source is the product of A+B (H06.00 +H06.01).		
		The reference source is switched between A and B as defined by FunIN.4 (Cmd_SEL).		tween A and B as
3	Switched between A and B	(Cmd SEL)	Reference Source	
	Switched Setween A and B		Inactive Active	Source of main speed reference A
				Source of auxiliary speed reference B
4	Communication	The speed reference is defined by operating on H31.09 through communication (unit: 0.001 RPM).		

H06.03	Speed referen	ice set through keypad		
	Hexadecimal:	2006-04h	Effective Time:	Real time
	Min.:	-6000	Unit:	rpm
	Max.:	6000	Data Type:	Int16
	Default:	200	Change:	Immediately
	Value Range:			
	–6000 rpm to 6	6000 rpm		
	Description			
	Defines the spe	eed reference value set through t	he keypad.	
H06.04	Jog speed set	point		
	Hexadecimal:	2006-05h	Effective Time:	Real time
	Min.:	0	Unit:	rpm
	Max.:	6000	Data Type:	UInt16
	Default:	100	Change:	Immediately
	Value Range:			
	0rpm–6000rpn	ו		
	Description			
	Defines the DI	jog speed reference.		
H06.05	Acceleration r	amp time constant of speed re	ference	
	Hexadecimal:	2006-06h	Effective Time:	Real time
	Min.:	0	Unit:	ms
	Max.:	65535	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:			
	0 ms to 65535	ms		
	Description			
	Sets accelerati	on ramp time of speed reference	. The acceleratio	n/deceleration time constant of
	multi-speed re	ferences are defined only by para	ameters in group	H12.
			-	


H06.05 defines the time for the speed reference to change from 0 rpm to 1000 rpm. H06.06 defines the time for the speed reference to change from 1000 rpm to 0 rpm. The formulas for calculating the actual acceleration/deceleration time are as follows: Actual acceleration time t1= Speed reference \div 1000 x Acceleration ramp time of speed reference Actual deceleration time t2= Speed reference \div 1000 x Deceleration ramp time of speed reference

H06.06 Deceleration ramp time constant of speed reference

Hexadecimal:	2006-07h	Effective Time:	Real time
Min.:	0	Unit:	ms
Max.:	65535	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			
0 ms to 65535	ms		

Description

Set the acceleration/deceleration ramp time constant of speed reference. The acceleration/ deceleration ramp time constant is determined by parameters in group H12.

H06.05 defines the time for the speed reference to change from 0 rpm to 1000 rpm.

H06.06 defines the time for the speed reference to change from 1000 rpm to 0 rpm.

The formulas for calculating the actual acceleration/deceleration time are as follows:

Actual acceleration time
$$t_1 = \frac{\text{Speed reference}}{1000} \times \text{Speed reference acceleration ramp time}$$

Actual deceleration time $t_2 = \frac{\text{Speed reference}}{1000} \times \text{Speed reference deceleration ramp time}$

1000

H06.07	Maximum spe			
	Hexadecimal:	2006-08h	Effective Time:	Real time
	Min.:	0	Unit:	rpm
	Max.:	6000	Data Type:	UInt16
	Default:	6000	Change:	Immediately
	Value Range:			
	0rpm–6000rpn	n		
	Description			
	Defines the ma	aximum speed limit.		
H06.08	Forward spee	d limit		
	Hexadecimal:	2006-09h	Effective Time:	Real time
	Min.:	0	Unit:	rpm
	Max.:	6000	Data Type:	UInt16
	Default:	6000	Change:	Immediately

Value Range:

0rpm–6000rpm **Description** Defines the forward speed threshold.

H06.09 Reverse speed limit

 Hexadecimal:
 2006-0Ah

 Min.:
 0

 Max.:
 6000

 Default:
 6000

 Value Range:
 6000

0rpm-6000rpm Description

Effective Time:	Real time
Unit:	rpm
Data Type:	UInt16
Change:	Immediately

Defines the reverse speed threshold.

In the speed control mode, the sources of speed reference limit include:

• H06.07 (Maximum speed limit): Defines the speed reference limit in both directions. The limit value applies when speed references exceed it.

• H06.08 (Forward speed limit): Defines the speed limit in the forward direction. The limit value applies when forward speed references exceed it.

• H06.09 (Reverse speed limit): Defines the speed limit in the reverse direction. The limit value applies when reverse speed references exceed it.

• Maximum speed of the motor (default threshold): Depends on the motor model.

The actual motor speed limit complies with the following range:

• |Forward speed limit| ≤ min {maximum motor speed, H06.07, H06.08}

• |Reverse speed limit| \leq min {maximum motor speed, H06.07, H06.09}

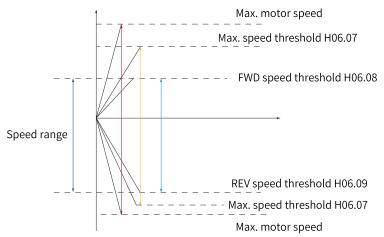


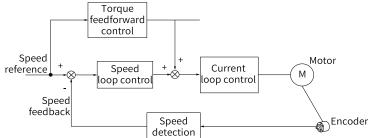
Figure 15-1 Example of speed reference limit

H06.11 Torque feedforward control

Hexadecimal:2006-0ChEffective Time:Real timeMin.:0Unit:-Max.:1Data Type:UInt16Default:1Change:ImmediatelyValue Range:0: No torque feedforward

1: Internal torque feedforward

Defines the source for torque feedforward control.


Defines whether to enable internal torque feedforward in the control modes other than torque control.

Torque feedforward can be used to improve the torque reference response speed and reduce the position deviation during acceleration/deceleration at constant speed.

Setpoint	Torque feedforward control	Remarks
0	/	-
		The speed reference is used as the torque feedforward signal source, which is further divided into the following two situations:
1	Internal torque feedforward	 In the position control mode, the speed reference refers to that output from the position controller. In the speed control mode, the speed reference refers to that set by the user.

Parameters of the torque feedforward function include H08.20 (Torque feedforward filter time constant) and H08.21 (Torque feedforward gain).

The block diagram for torque feedforward control in control modes other than torque control is as follows:

H06.13 Speed smoothing time

Hexadecimal:	2006-0Eh	Effective Time:	Real time
Min.:	0	Unit:	us
Max.:	20000	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0us-20000us			

Description

Defines the speed feedforward smoothing filter time.

H06.15 Zero clamp speed threshold

 Hexadecimal:
 2006-10h

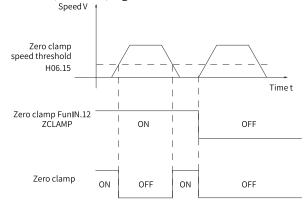
 Min.:
 0

 Max.:
 6000

 Default:
 10

 Value Range:
 0

 Orpm-6000rpm
 0


Real time
rpm
UInt16
Immediately

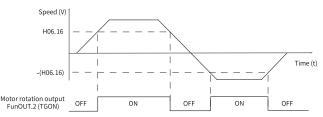
Defines the zero clamp speed threshold.

In the speed control mode, if FunIN.12 (ZCLAMP) is enabled, and the speed reference amplitude is smaller than or equal to the value of H06.15, the motor enters zero position clamp state. In this case, a position loop is built inside the drive and the speed reference is invalid.

The motor is clamped within ± 1 pulse of the position at which zero clamp is activated. Even if it rotates due to external force, it will return to the zero position and be clamped.

When the speed reference amplitude exceeds the value of H06.15, the motor exits from the zero clamp state and continues running according to the speed reference received. Zero clamp is deactivated when the ZCLAMP (FunIN.12) signal is inactive.

H06.16 Threshold of TGON (motor rotation) signal


Hexadecimal:	2006-11h	Effective Time:	Real time
Min.:	0	Unit:	rpm
Max.:	1000	Data Type:	UInt16
Default:	20	Change:	Immediately
Value Range:			
0rpm-1000rpm	1		

Description

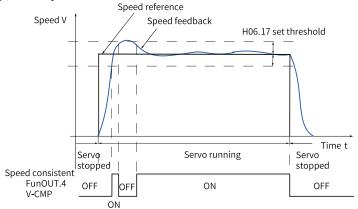
Sets the threshold of TGON (motor rotation) signal.

When the absolute value of the filtered actual motor speed reaches the value of H06.16 (Threshold of TGON (motor rotation) signal), the motor is acknowledged to be rotating. In this case, the drive outputs the motor rotation signal (FunOUT.2: TGON) to acknowledge that the motor is rotating. When the absolute value of the filtered actual motor speed is lower than the value of H06.16, the motor is not rotating.

Judgment on the motor rotation signal (FunOUT.2, TGON) is not affected by the operating state or control mode of the drive.

Note: In the preceding figure, ON indicates that the motor rotation DO signal is active. OFF indicates that the motor rotation DO signal is inactive.

The filter time constant of the motor speed can be set in H0A.27 (Speed DO filter time constant).


H06.17 Threshold of V-Cmp (speed matching) signal

Hexadecimal:	2006-12h	Effective Time:	Real time
Min.:	0	Unit:	rpm
Max.:	100	Data Type:	UInt16
Default:	10	Change:	Immediately
Value Range:			
0rpm–100rpm			
Description			

Defines the threshold of speed match signal.

In speed control, when the absolute value of the difference between the motor speed after filter and the speed reference satisfies the setting of H06.17, the actual motor speed is considered to reach the speed reference. At this moment, the servo drive outputs the speed matching signal (FunOUT.4: V-CMP). When the absolute value of the difference between the motor speed after filter and the speed reference exceeds the setting of H06-17, the speed matching signal is inactive.

If the drive is not in the operational state or the speed control mode, the speed matching signal (FunOUT.4: V-Cmp) is always inactive.

In the preceding figure, "ON" indicates the the V-Cmp (speed matching) signal is active. "OFF" indicates the V-Cmp signal is inactive.

The filter time constant of the motor speed can be set in H0A.27 (Speed DO filter time constant).

H06.18 Threshold of speed reach signal

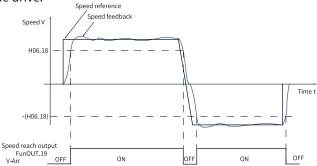
 Hexadecimal:
 2006-13h

 Min.:
 10

 Max.:
 6000

 Default:
 1000

 Value Range:


 10rpm-6000rp-t

Effective Time:	Real time
Unit:	rpm
Data Type:	UInt16
Change:	Immediately

Defines the threshold of speed reached signal.

When the absolute value of the motor speed after filter exceeds the setting of H06.18 (Threshold of speed arrival signal), the motor speed is considered to reach the desired value. At this moment, the servo drive outputs the speed arrival signal (FunOUT.19: V-Arr). When the absolute value of the motor speed after filter is smaller than or equal to the setting of H06-18, the speed arrival signal is inactive.

Acknowledgment of the speed reach (FunOUT.19: V-Arr) signal is not affected by the operating state or control mode of the drive.

Note: In the preceding figure, "ON" indicates the V-Arr (speed reached) signal is active. "OFF" indicates the V-Arr (speed reached) signal is inactive.

The filter time constant of the motor speed can be set in H0A.27 (Speed DO filter time constant).

H06.19 Threshold of zero speed output signal

 Hexadecimal:
 2006-14h

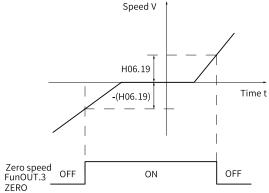
 Min.:
 1

 Max.:
 6000

 Default:
 10

 Value Range:

 1 rpm to 6000 rpm


Effective Time:	Real time
Unit:	rpm
Data Type:	UInt16
Change:	Immediately

Defines the threshold of zero speed output signal.

The servo drive outputs the V-Zero (FunOUT.3: zero speed) signal only when the absolute value of actual motor speed is lower than the threshold defined by H06.19. When the absolute value of the motor speed after filter is equal to or large than to the setting of H06-19, the zero speed signal is inactive.

Acknowledgment of the zero speed (FunOUT.3: V-Zero) signal is not affected by the operating state and control mode of the drive.

The interference in the speed feedback can be filtered by the speed feedback DO filter. You can set the corresponding filter time constant in H0A.27.

Note: In the preceding figure, "ON" indicates the V-Zero (zero speed) signal is active. "OFF" indicates the V-Zero (zero speed) signal is inactive.

The filter time constant of the motor speed can be set in H0A.27 (Speed DO filter time constant).

H06.28	Cogging torq	ue ripple compensation		
	Hex:	2006-1Dh	Effective	Real time
			mode:	
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	Real-time
	Value Range:			
	0 to 1			
	Description			
	Used to enable	e the cogging torque fluctuation o	compensation fu	nction.
H06.31	Sine frequend	су		
	Hexadecimal:	2006-20h	Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	16000	Data Type:	UInt16
	Default:	50	Change:	Immediately
	Value Range:			
	0 to 16000			
	Description			
	-			
H06.32	Sine amplitud	le		

Hexadecimal: 2006-21h

Effective Time: Real time

	Min.: Max.: Default: Value Range: 0 to 30000 Description	0 30000 30	Unit: Data Type: Change:	- UInt16 Immediately
H06.33	Sine amplitud	le		
	Hexadecimal:		Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	3	Data Type:	UInt16
	Default:	30	Change:	Immediately
	Value Range:			
	0: Disabled			
	1: Position refe	erence sine		
	2: Speed refere	ence sine		
	3: Torque refer	rence sine		
	Description			
	-			
H06.35	Sine offset			
1100.33	Hexadecimal:	2006-24h	Effective Time:	Real time
	Min.:	-9900	Unit:	-
	Max.:	9900	Data Type:	Int16
	Default:	0	Change:	Immediately
	Value Range:		0	,
	-9900 to 9900			
	Description			

15.8 H07 Torque Control Parameters

H07.00 Source of main torque reference A

Hexadecimal:	2007-01h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	0	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0: Keypad (H07.03)			

Description

_

Defines the source of the main torque reference A.

Setpoint	Reference source	Instruction receiving method
0	Keypad (H07.03)	Torque reference A is set by H07.03.

H07.01 Source of auxiliary torque reference B

Hexadecimal:	2007-02h
Min.:	0

Effective Time: Real time Unit: -

Max.:	2	Data Type:	UInt16
Default:	0	Change:	At stop

Default: 0

Value Range:

0: Keypad (H07.03)

Description

Defines the source of auxiliary torque references.

Setpoint	Reference source	Instruction receiving method
0	Keypad (H07.03)	Torque reference A is set by H07.03.

H07.02 **Torque reference source**

Hexadecimal:	2007-03h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	4	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			

0: Source of main torque reference A

- 1: Source of auxiliary torque reference B
- 2: Source of A+B
- 3: Switched between A and B

4: Communication

Description

Selects torque reference.

Setpoint	Control mode	Remarks		
0	Source of main torque reference A	The reference s	The reference source is defined by H07.00.	
1	Source of auxiliary torque reference B	The reference source is defined by H07.01.		
2	A+B	The reference source is the product of A+B (H07.00 +H07.01).		
			source is switched be IN.4 (Cmd_SEL).	tween A and B as
3	Switched between A and B		State of FunIN.4 (Cmd_SEL)	Reference Source
5	S Switched between A and B		Inactive	Source of main torque reference A
			Active	Source of auxiliary torque reference B
4	Communication	The torque reference is defined by operating on H31.11 through communication.		

H07.03 Torque reference set through keypad

Hexadecimal: 2007-04h Min.: -400.0 Max.: 400.0 0.0 Default: Value Range: -400.0% to 400.0%

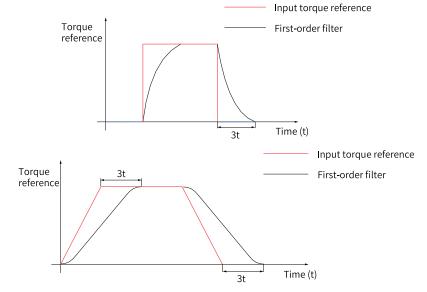
Effective Time:	Real time
Unit:	%
Data Type:	Int16
Change:	Immediately

Sets torque reference set through keypad.

H07.05 Torque reference filter time constant

Hexadecimal:	2007-06h	Effective Time:	Real time	
Min.:	0.00	Unit:	ms	
Max.:	30.00	Data Type:	UInt16	
Default:	0.50	Change:	Immediately	
Value Range:				
0.00 ms to 30.0	0 ms			
Description				
Defines the torque reference filter time constant 1.				

H07.06 2nd torque reference filter time constant


2007-07h	Effective Time:	Real time		
0.00	Unit:	ms		
30.00	Data Type:	UInt16		
0.27	Change:	Immediately		
Value Range:				
0.00 ms to 30.00 ms				
	30.00 0.27	0.00 Unit: 30.00 Data Type: 0.27 Change:		

Description

Defines the torque reference filter time constant 2.

Low-pass filtering of torque references helps smoothen torque references and reduce vibration.

Pay attention to the responsiveness during setting as an excessively high setpoint lowers down the responsiveness.

Note

- The servo drive offers two low-pass filters for torque references, in which the low-pass filter 1 is used by default.
- The gain switchover function can be used In the position or speed control mode. Once certain conditions are satisfied, you can switch to low-pass filter 2.

H07.07 Torque limit source

Hexadecimal: 2007-08h Min.: 0 Effective Time: Real time Unit: -

Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop

Value Range:

0: Forward/Reverse internal torque limit (default)

1: Forward/Reverse external torque limit (selected through P-CL and N-CL)

Description

Sets the torque limit source.

Setpoint	Torque limit source
0	Positive/Negative internal torque limit
1	Forward/Reverse external torque limit (selected through P-CL and N-CL)

Unit:

Data Type:

Change:

H07.09 Positive internal torque limit

 Hexadecimal:
 2007-0Ah

 Min.:
 0.0

 Max.:
 400.0

 Default:
 350.0

Value Range:

0.0% to 400.0%

Description

Sets the forward run internal torque limit.

H07.10 Negative internal torque limit

Effective Time: Real time Unit: % Data Type: UInt16 Change: Immediately

Effective Time: Real time

%

UInt16

Immediately

Sets the reverse run internal torque limit.

H07.11 Positive external torque limit

0.0% to 400.0% **Description**

Hexadecimal: 2007-0Ch Effective Time: Real time % Min.: 0.0 Unit: 400.0 Data Type: UInt16 Max.: 350.0 Default: Change: Immediately Value Range: 0.0% to 400.0% Description Sets the positive external torque limit.

H07.12 Negative external torque limit

Hexadecimal:	2007-0Dh	Effective Time:	Real time
Min.:	0.0	Unit:	%
Max.:	400.0	Data Type:	UInt16
Default:	350.0	Change:	Immediately
Value Range:			
0.0% to 400.0%	6		
Description			
Sets the negati	ive external torque limit.		

-449-

H07.15 Emergency-stop torque

Hexadecima	l: 2007-10h
Min.:	0.0
Max.:	300.0
Default:	100.0
Value Range	e:
0.0% to 300.	0%
Description	
_ •	

Effective Time: Real time Unit: % Data Type: UInt16 Change: At stop

H07.17 Speed limit source

Hexadecimal:	2007-12h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	2	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Demas			

Value Range:

0: Internal speed limit (in torque control)

1:0 (no action)

2: 1st or 2nd speed limit input selected by FunIN.36

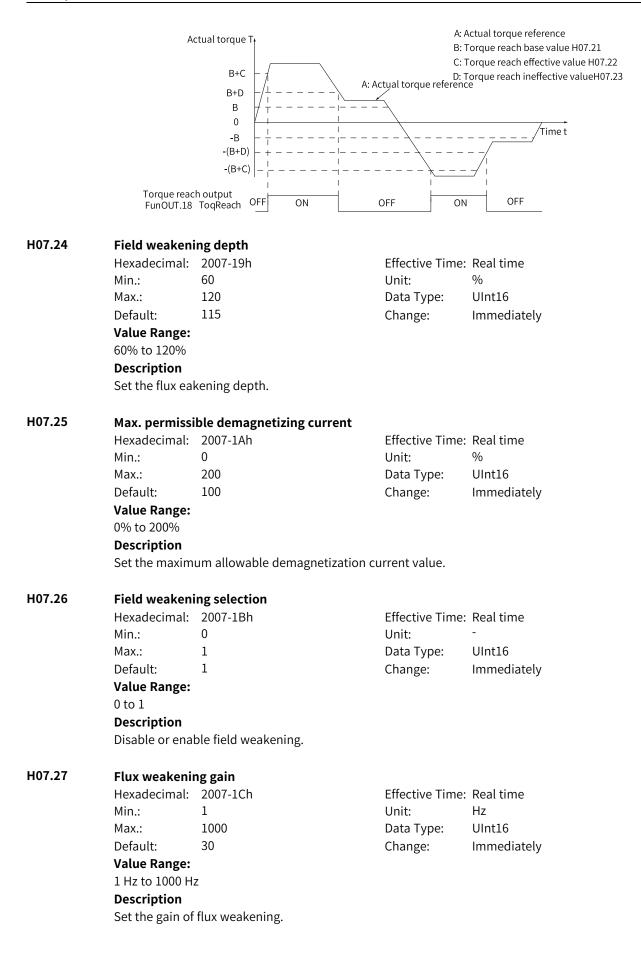
Description

Sets the speed limit source.

Setpoint	Reference source	Description
0	Internal speed limit	The speed limit is defined by both H07.19 and H07.20.
1	-	-
2	H07.19 or H07.20 used as speed limit as defined by DI	DI (FunIN.36) inactive: H07.19 used as positive/ negative speed limit DI (FunIN.36) active: H07.20 used as positive/negative speed limit

H07.19 Forward speed limit/1st speed limit in torque control

	Hexadecimal:	2007-14h	Effective Time:	Real time
	Min.:	0	Unit:	rpm
	Max.:	6000	Data Type:	UInt16
	Default:	3000	Change:	Immediately
	Value Range:			
	0rpm-6000rpm	1		
	Description			
	Defines the pos	sitive speed limit in torque contro	l.	
H07.20	Reverse speed limit/2nd speed limit in torque control			
	Hexadecimal:	2007-15h	Effective Time:	Real time
	M	0	11.21	rom

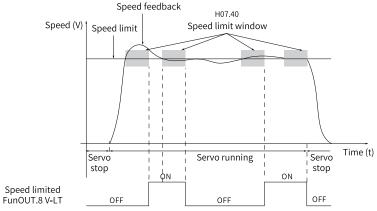

Value Range:			
Default:	3000	Change:	Immediately
Max.:	6000	Data Type:	UInt16
Min.:	0	Unit:	rpm
Hexadecimal:	2007-150	Effective time:	Real time

0rpm-6000rpm

Description

Defines the negative speed limit in torque control.

H07.21	Base value for	-				
	Hexadecimal:	2007-16h	Effective Time:	Real time		
	Min.:	0.0	Unit:	%		
	Max.:	300.0	Data Type:	UInt16		
	Default:	0.0	Change:	Immediately		
	Value Range:					
	0.0% to 300.0%)				
	Description					
	Defines the tor	que reference of the base value fo	or torque reach.			
H07.22	Torque reach	valid value				
	Hexadecimal:		Effective Time:	Real time		
	Min.:	0.0	Unit:	%		
	Max.:	300.0	Data Type:	UInt16		
	Default:	20.0	Change:	Immediately		
	Value Range:	2000	onunger	initialities		
	0.0% to 300.0%					
	Description					
	-	que reference for torque reach DC				
	Dennes the tor		Jactive.			
H07.23	Torque reach					
	Hexadecimal:		Effective Time:			
	Min.:	0.0	Unit:	%		
	Max.:	300.0	Data Type:	UInt16		
	Default:	10.0	Change:	Immediately		
	Value Range:					
	0.0% to 300.0%)				
	Description					
	Defines the tor	que reference for torque reach DO) inactive.			
	The torque rea	ch output is used to determine w	hether the actua	al torque reference reaches the set		
	range. The drive outputs TorReach (FunOUT.18: torque reach) signal to the host controller when					
	the actual torque reference reaches the torque reference threshold.					
	Actual torque reference (viewed in H0b.02): A					
		orque reach (H07.21): B.				
		lid torque arrival (H07.22): C.				
		valid torque reach (H07.23): D.				
		e offset based on B.				
	The torque rea	ch DO signal can be activated onl	y when the actu	al torque reference meets the		
				reach DO signal remains inactive.		
	For the torque	reach DO signal to become inaciv	e, the actual tor	que reference must meet the		
	following cond	ition: A < B + D. Otherwise, the to	orque reach sign	al remains active.		
	5	•••	. 0			


H07.40 Speed limit window in the torque control mode

Hexadecimal:	2007-29h	Effective Time:	Real time		
Min.:	0.5	Unit:	ms		
Max.:	30.0	Data Type:	UInt16		
Default:	1.0	Change:	Immediately		
Value Range:					
0.5 ms to 30.0 ms					
Description					
C					

Sets speed limit window in the torque control mode.

In the torque control mode, the servo drive outputs the V- LT (FunOUT.8: speed limit) signal to the host controller when the absolute value of the motor speed keeps exceeding the speed limit in the period defined by H07.40. If either of the preceding two conditions is not satisfied, the speed limit signal will be deactivated.

Acknowledgment of the V-LT (Speed limit) signal is executed only during operation in the torque control mode.

Note

In the preceding figure, ON indicates that the speed limit DO signal is valid. OFF indicates that the speed limit DO signal is invalid.

15.9 H08 Gain Parameters

H08.00 Speed loop gain

 Hexadecimal:
 2008-01h

 Min.:
 0.1

 Max.:
 2000.0

 Default:
 40.0

 Value Range:
 0.1 Hz to 2000.0 Hz

Effective Time: Real time Unit: Hz Data Type: UInt16 Change: Immediately

Description

Defines the responsiveness of the speed loop. The higher the setpoint, the faster the speed loop response is. Note that an excessively high setpoint may cause vibration.

In the position control mode, the position loop gain must be increased together with the speed loop gain.

H08.01	Speed loop in	tegral time constant			
	Hexadecimal:	2008-02h	Effective Time:	Real time	
	Min.:	0.15	Unit:	ms	
	Max.:	512.00	Data Type:	UInt16	
	Default:	19.89	Change:	Immediately	
	Value Range:				
	0.15 ms to 512	.00 ms			
	Description				
	Defines the integral time constant of the speed loop.				
	The lower the setpoint, the better the integral action, and the quicker will the deviation value be				
	close to 0. Note:				
	There is no int	egral action when H08.01 is set to	512.00.		
H08.02	Position loop	gain			
	Hexadecimal:	2008-03h	Effective Time:	Real time	
	Min.:	0.0	Unit:	Hz	
	Max.:	2000.0	Data Type:	UInt16	
	Default:	64.0	Change:	Immediately	
	Value Range:				
	0.0 Hz to 2000.	.0 Hz			
	Description				
	Defines the pro	oportional gain of the position lo	op.		
	Defines the res	sponsiveness of the position loop	. A high setpoint	shortens the positioning time. Note	
	that an excess	ively high setpoint may cause vib	ration.		
	The 1st group	of gain parameters include H08.0	0 (Speed loop ga	ain), H08.01 (Speed loop integral	
		, H08.02, and H07.05 (Filter time			
H08.03	2nd speed loc	op gain			
	Hexadecimal:		Effective Time:	Real time	
	Min.:	0.1	Unit:	Hz	
	Max.:	2000.0	Data Type:	UInt16	
	Default:	75.0	Change:	Immediately	
	Value Range:		0	,	
	0.1 Hz to 2000.0 Hz				

H08.04 2nd speed loop integral time constant

Description

Hexadecimal:	2008-05h	Effective Time:	Real time
Min.:	0.15	Unit:	ms
Max.:	512.00	Data Type:	UInt16
Default:	10.61	Change:	Immediately
Value Range:			
0.15 ms to 512.	00 ms		
Description			
-			

H08.05 2nd position loop gain

Hexadecimal: 2008-06h Min.: 0.0 Effective Time: Real time Unit: Hz Max.: 2000.0 Default: 120.0 Value Range:

0.0 Hz to 2000.0 Hz

Description

Defines the second gain set of the position loop and speed loop. The 2nd group of gain parameters include H08.03 (Speed loop gain), H08.04 (Speed loop integral time constant), H08.05, and H07.06 (Torque reference filter time constant 2).

Data Type:

Change:

UInt16

Immediately

H08.08 2nd gain mode setting

Hexadecimal:	2008-09h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	1	Change:	Immediately
Value Danger			

Value Range:

0: Fixed to the 1st group of gains, P/PI switched through external

DI1:Switched between the 1st and 2nd group of gains as defined by H08.09

Description

Defines the mode for switching to the 2nd gain set.

Setpoint	Mode
0	Fixed at 1st gain. P/PI of speed control is switched through DI function 3 (FunIN.3: GAIN_SEL, gain switchover).
	• GAIN_SEL invalid: PI control • GAIN_SEL valid: P control
1	Switchover between the 1st gain and the 2nd gain, determined by H08.09. The 1st gain includes H08.00 (Speed loop gain), H08-01 (Speed loop integral time constant), H08.02 (Position loop gain), and H07.05 (Filter time constant of torque reference). The 2nd gain includes H08.03 (2nd speed loop gain), H08-04 (2nd speed loop integral time constant), H08.05 (2nd position loop gain), and H07.06 (Filter time constant of 2nd torque reference).

H08.09 Gain switchover condition

Hexadecimal:	2008-0Ah	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	10	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			

0: Fixed to the 1st gain set (PS)

- 1: Switch with external DI (PS)
- 2: Torque reference too large (PS)
- 3: Speed reference too large (PS)
- 4: Speed reference change rate too large (PS)
- 5: Speed reference low/high speed threshold (PS)
- 6: Position deviation too large (P)

7: Position reference available (P)

8: Positioning unfinished (P)

9: Actual speed (P)

10: Position reference + Actual speed (P)

Used to set the condition for gain switchover.

Setpoint	Gain switchover condition	Remarks
0	Fixed to the 1st gain set	The 1st gain set applies.
1	Switched as defined by bit26 of 60FEh	-
2		If the torque reference absolute value exceeds (Level + Dead time) [%] in the last 1st gain set, the drive switches to the 2nd gain set. If the absolute value of the torque reference is lower than (level – Dead time) [%] and such status lasts within the delay defined by H08.10 (Gain switchover delay) in the 2nd gain, the drive returns to the 1st gain set.
3	Speed reference too large	If the speed reference absolute value exceeds (Level + Dead time) [rpm] in the last 1st gain set, the drive switches to the 2nd gain set. If the absolute value of the speed reference is lower than (level - Dead time) [rpm] and such status lasts within the delay defined by H08.10 (Gain switchover delay) in the 2nd gain, the drive returns to the 1st gain set.
4	Speed reference too large	Active in the control modes other than speed control If the absolute value of the change rate of the speed reference exceeds (Level + Dead time) [10 rpm/s] in the last 1st gain set, the drive switches to the 2nd gain set. If the absolute value of the speed reference change rate is lower than (level – hysteresis) [10 rpm/s] and such status lasts within the delay defined by H08.10 (Gain switchover delay) in the 2nd gain, the drive returns to the 1st gain set. In the speed control mode, the 1st gain set always applies.
5	Speed reference high/low-speed threshold	If the speed reference absolute value exceeds (Level - Dead time) [rpm] in the last 1st gain set, the drive starts to switch to the 2nd gain set, with gains changed gradually. When the speed reference absolute value reaches (Level + Dead time) [rpm], the 2nd gain set applies. If the speed reference absolute value is lower than (Level + Dead time) [rpm] in the last 2nd gain set, the drive starts to return to the 1st gain set, with gains changed gradually. When the speed reference absolute value reaches (Level - Dead time) [rpm], the 1st gain set applies.
6		Active only in position control and full closed-loop control. If the position deviation absolute value exceeds (Level + Dead time) [encoder unit] in the last 1st gain set, the drive switches to the 2nd gain set. When the absolute value of the position deviation is lower than (Level - Dead time) [encoder unit] and such status lasts within the delay defined by H08.10 (Gain switchover delay) in the 2nd gain, the drive returns to the 1st gain set. If the drive is not in position control or full closed-loop control, the 1st gain set always applies.
7	Position reference available	Active only in position control and full closed-loop control. If the position reference is not 0 in the last 1st gain set, the drive switches to the 2nd gain set. When the position reference is 0 and such status lasts within the delay defined by H08.10 (Gain switchover delay) in the 2nd gain, the drive returns to the 1st gain set. If the drive is not in position control or full closed-loop control, the 1st gain set always applies.

Setpoint	Gain switchover condition	Remarks
8	Positioning uncompleted	Active only in position control and full closed-loop control. If positioning has not been completed in the last 1st gain set, the drive switches to the 2nd gain set. If positioning is not completed and such status lasts within the delay defined by H08.10 (Gain switchover delay) in the 2nd gain set, the servo drive returns to the 1st gain set. If the drive is not in position control or full closed-loop control, the 1st gain set always applies.
9	Actual speed too high	Active only in position control and full closed-loop control. If the absolute value of actual speed exceeds (Level + Dead time) [rpm] in the last 1st gain set, the drive switches to the 2nd gain set. If the absolute value of actual speed is lower than (Level - Dead time) [rpm] and such status lasts within the delay defined by H08.10 (Gain switchover delay) in the 2nd gain set, the drive returns to the 1st gain set. If the drive is not in position control or full closed-loop control, the 1st gain set always applies.
10	Position reference + Actual speed	Active only in position control and full closed-loop control. If the position reference is not 0 in the last 1st gain set, the drive switches to the 2nd gain set. If the position reference is 0 and such status lasts within the delay defined by H08.10 (Gain switchover delay) in the 2nd gain set, the 2nd gain set applies. When the position reference is 0 and the delay defined by (H08.10) is reached, if the absolute value of actual speed is lower than (Level) [rpm], the speed loop integral time constant is fixed to the setpoint of H08.04 (2nd speed loop integral time constant), and others return to the 1st gain set; if the absolute value of actual speed does not reach (Level - Dead time) [rpm], the speed integral also returns to the setpoint of H08.01 (Speed loop integral time constant). If the drive is not in position control or full closed-loop control, the 1st gain set always applies.

H08.10 Gain switchover delay

Hexadecimal:	2008-0Bh	Effective Time:	Real time	
Min.:	0.0	Unit:	ms	
Max.:	1000.0	Data Type:	UInt16	
Default:	5.0	Change:	At stop	
Value Range:				
0.0 ms to 1000.0 ms				

Description

Defines the delay when the drive switches from the 2nd gain set to the 1st gain set.

H08.11 Gain switchover level

Effective Time: Real time Unit: -Data Type: UInt16 Change: Immediately

Description

Defines the gain switchover level.

Gain switchover is affected by both the level and the dead time, as defined by H08.09. The unit of gain switchover level varies with the switchover condition.

H08.12 Gain switchover dead time

Hexadecimal: 2008-0Dh

Effective Time: Real time

Min.:	0	Unit:	-
Max.:	20000	Data Type:	UInt16
Default:	30	Change:	At stop
Value Range	:		
0 to 20000			

Description

Defines the dead time for gain switchover.

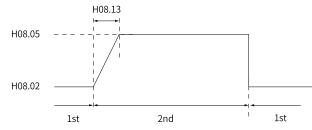
Gain switchover is affected by both the level and the dead time, as defined by H08.09. The unit of gain switchover hysteresis varies with the switchover condition.

Note:

The set value of H08.11 (Gain switchover level) must be no less than that of H08.12; otherwise, the H08.11 will be set to a value equal to H08.12 automatically.

H08.13 Position gain switchover time

Hexadecimal:	2008-0Eh	Effective Time:	Real time	
Min.:	0.0	Unit:	ms	
Max.:	1000.0	Data Type:	UInt16	
Default:	3.0	Change:	At stop	
Value Range:				
0.0 ms to 1000.0 ms				


Description

Default:

2.00

In position control, if H08.05 (2nd position loop gain) is much higher than H08.02 (Position loop gain), set the time for switching from H08.02 to H08.05.

This parameter can be used to reduce the impact caused by an increase in the position loop gain. Position gain switching time

If the set value of H08.05 is no more than that of H08.02, H08-13 will be invalid and the servo drive switches to the 2nd gain immediately.

H08.14	Auto-tuned in Hexadecimal: Min.: Max.: Default: Value Range: 0.00 to 200.00 Description	ertia value 2008-0Fh 0.00 200.00 0.00	Effective Time: Unit: Data Type: Change:	- - UInt16 Unchangeable
H08.15	- Load moment Hexadecimal: Min.: Max.:	t of inertia ratio 2008-10h 0.00 120.00	Effective Time: Unit: Data Type:	Real time - UInt16

Change:

Immediately

Value Range:

0.00 to 120.00

Description

Defines the mechanical load inertia ratio relative to the motor moment of inertia.

Moment of inertia of mechanical load

Load moment of inertia ratio = Moment of inertia of the motor

When H08.15 is set to 0, it indicates the motor carries no load; if it is set to 1.00, it indicates the mechanical load inertia is the same as the motor moment of inertia.

Unit:

Data Type:

Change:

H08.18 Speed feedforward filter time constant

 Hexadecimal:
 2008-13h

 Min.:
 0.00

 Max.:
 64.00

 Default:
 0.50

 Value Range:
 0.00 ms to 64.00 ms

Description

Defines the filter time constant of speed feedforward.

H08.19 Speed feedforward gain

 Hexadecimal:
 2008-14h

 Min.:
 0.0

 Max.:
 100.0

 Default:
 0.0

Effective Time: Real time Unit: % Data Type: UInt16 Change: Immediately

Effective Time: Real time

ms

UInt16

Immediately

Value Range:

0.0% to 100.0%

Description

In position control and full closed-loop control, speed feedforward is the product of speed feedforwad signal multiplied by H08.19 and is part of the speed reference.

Increasing the setpoint improves the responsiveness to position references and reduces the position deviation during operation at a constant speed.

Set H08.18 to a fixed value first, and then increase the value of H08.19 gradually from 0 to a certain value at which speed feedforward achieves the desired effect.

Adjust H08.18 and H08.19 repeatedly until a balanced performance is achieved. Note:

For how to enable the speed feedforward function and select the speed feedforward signal, see H05.19 (Speed feedforward control).

H08.20 Torque feedforward filter time constant

Hexadecimal:	2008-15h	Effective Time	? :		
Min.:	0.00	Unit:			
Max.:	64.00	Data Type:			
Default:	0.50	Change:			
Value Range:					
0.00 ms to 64.0	0.00 ms to 64.00 ms				
Description					
Defines the filter time constant of torgue feedforward.					

H08.21 Torque feedforward gain

Hexadecimal: 2008-16h

Effective Time: Real time

Real time ms UInt16 Immediately

Min.:	0.0	Unit:	%
Max.:	200.0	Data Type:	UInt16
Default:	0.0	Change:	Immediately
Value Range:			
0.0% to 200.0%	6		

In control modes other than torque control, torque feedforward is the product of torque feedforwad signal multiplied by H08.21 and is part of the torque reference.

Increasing the setpoint improves the responsiveness to variable speed references.

Increasing the setpoint improves the responsiveness to position references and reduces the position deviation during operation at a constant speed.

During parameter adjustment, set H08.20 (Torque feedforward filter time constant) to the default value first, and then increase H08.21 gradually to enhance the effect of torque feedforward. When speed overshoot occurs, keep H08.21 unchanged and increase the value of H08.20. Adjust H08.20 and H08.21 repeatedly until a balanced performance is achieved. Note:

For how to enable the torque feedforward function and select the torque feedforward signal, see H06.11 (Torque feedforward control).

H08.22 Speed feedback filtering option

Hexadecimal:2008-17hMin.:0Max.:4Default:0Value Range:00: Inhibited

Effective Time: Real time Unit: -Data Type: UInt16 Change: At stop

4: 16 times

Description

1: 2 times 2: 4 times 3: 8 times

Defines the moving average filtering times for speed feedback.

The higher the setpoint, the weaker the speed feedback fluctuation, but the longer the feedback delay will be.

Setpoint	Setting of speed feedback filter
0	Moving average filtering of speed feedback inhibited
1	2 times of moving average filtering on speed feedback
2	4 times of moving average filtering on speed feedback
3	8 times of moving average filtering on speed feedback
4	16 times of moving average filtering on speed feedback

H08.23 Cutoff frequency of speed feedback low-pass filter

 Hexadecimal:
 2008-18h

 Min.:
 100

 Max.:
 4000

 Default:
 4000

 Value Range:

 100 Hz to 4000 Hz

Effective Time:	Real time
Unit:	Hz
Data Type:	UInt16
Change:	Immediately
	Unit: Data Type:

Defines the cutoff frequency for first-order low-pass filtering on the speed feedback. Note:

The lower the setpoint, the weaker the speed feedback fluctuation, and the longer the feedback delay will be.

Setting this parameter to 4000 Hz negates the filtering effect.

H08.24 PDFF control coefficient

 Hexadecimal:
 2008-19h

 Min.:
 0.0

 Max.:
 1000.0

 Default:
 100.0

Effective Time: Real time Unit: % Data Type: UInt16 Change: Immediately

Value Range:

0.0% to 1000.0%

Description

Defines the control mode of the speed loop.

When this parameter is set to 100.0, the speed loop adopts PI control (default) with quick dynamic response.

When this parameter is set to 0.0, speed loop integral action is enhanced, which filters out lowfrequency interference but also slows down the dynamic response.

H08.24 can be used to keep a good responsiveness of the speed loop, with the anti-interference capacity in low-frequency bands improved and the speed feedback overshoot unaffected.

H08.27 Cutoff frequency of speed observer

 Hexadecimal:
 2008-1Ch

 Min.:
 10

 Max.:
 2000

 Default:
 170

 Value Range:
 170

Effective Time: Real time Unit: Hz Data Type: UInt16 Change: Immediately

10 Hz to 2000 Hz

Description

Defines the cutoff frequency of the speed observer. Note that an excessively high setpoint may incur resonance. Decrease the setpoint properly in case of large speed feedback noise.

H08.28 Speed inertia correction coefficient

 Hexadecimal:
 2008-1Dh

 Min.:
 10

 Max.:
 10000

 Default:
 100

 Value Range:
 100

Effective Time: Real time Unit: % Data Type: UInt16 Change: Immediately

10% to 10000%

Description

Defines the speed observer inertia correction coefficient. If H08.15 is set based on the actual inertia, there is no need to adjust this parameter.

H08.29 Speed observer filter time

Hexadecimal:	2008-1Eh	Effective Time:	Real time
Min.:	0.02	Unit:	ms
Max.:	20.00	Data Type:	UInt16
Default:	0.80	Change:	Immediately
Value Range:			

	0.02 ms to 20.0	00 ms		
	Description			
	-	eed observer filter time. It is reco	mmended to set	this parameter to a value equal to
	-	7.05 plus 0.2 ms.		
H08.31	Disturbanco o	bserver cutoff frequency		
H00.31	Hexadecimal:		Effective Time:	Deal time
	Min.:	1	Unit:	Hz
	Max.:	1700	Data Type:	UInt16
	Default:	600	Change:	Immediately
	Value Range:	000	change.	initiculately
	1 Hz to 1700 Hz	7		
	Description	-		
	-			
H08.32		bserver compensation coeffici		
	Hexadecimal:		Effective Time:	
	Min.:	0	Unit:	%
	Max.:	100	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:			
	0% to 100%			
	Description			
H08.33	Disturbance i	nertia correction coefficient		
	Hexadecimal:		Effective Time:	Real time
	Min.:	1	Unit:	%
	Max.:	10000	Data Type:	UInt16
	Default:	100	Change:	Immediately
	Value Range:		-	-
	1% to 10000%			
	Description			
	-			
H08.34	Medium- and	high-frequency jitter suppressi	on phase modu	lation 1
	Hexadecimal:	2008-23h	Effective Time:	Real time
	Min.:	0	Unit:	%
	Max.:	1600	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:			
	0% to 1600%			
	Description -			
H08.35		high-frequency jitter suppressi		
	Hexadecimal:		Effective Time:	
	Min.:	0	Unit:	Hz
	Max.:	1000	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:			

	0 Hz to 1000 Hz Description			
H08.36	Medium- and I Hexadecimal: Min.: Max.: Default: Value Range: 0% to 200% Description	high-frequency jitter suppressio 2008-25h 0 200 0	on compensation Effective Time: Unit: Data Type: Change:	
H08.37	Phase modula Hexadecimal: Min.: Max.: Default: Value Range: -90 to 90 Description	tion for medium-frequency jitt 2008-26h -90 90 0	er suppression Effective Time: Unit: Data Type: Change:	
H08.38	Frequency of a Hexadecimal: Min.: Max.: Default: Value Range: 0 Hz to 1000 Hz Description	0 1000 0	ession 2 Effective Time: Unit: Data Type: Change:	Real time Hz UInt16 Immediately
H08.39	Compensation Hexadecimal: Min.: Max.: Default: Value Range: 0% to 300% Description	a gain of medium-frequency jitt 2008-28h 0 300 0	er suppression Effective Time: Unit: Data Type: Change:	
H08.40	Speed observe Hexadecimal: Min.: Max.: Default: Value Range: 0 to 1	er selection 2008-29h 0 1 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 At stop

Used to set the enable bit for speed observer.

H08.42 Model control selection

Hexadecimal:	2008-2Bh	Effective Time	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0 to 1			
Description			

Used to enable model tracking control.

H08.43 Model gain

 Hexadecimal:
 2008-2Ch

 Min.:
 0.0

 Max.:
 2000.0

 Default:
 40.0

 Value Range:
 0.0 to 2000.0

Effective Time:	Real time
Unit:	-
Data Type:	UInt16
Change:	Immediately

Effective Time: Real time

UInt16

Immediately

Description

Defines the single inertia model gain. The higher the gain, the faster the position response. Note that an excessively high setpoint may incur excessive overshoot.

Unit:

Data Type:

Change:

H08.45 Feedforward position

Hexadecimal:2008-2EhMin.:0Max.:1Default:0Value Range:.0 to 1.Description.

H08.46 Model feedforward

 Hexadecimal:
 2008-2Fh

 Min.:
 0.0

 Max.:
 102.4

 Default:
 95.0

 Value Range:
 0.0 to 102.4

 Description

-

H08.51 Model filtering time 2

 Hexadecimal:
 2008-34h

 Min.:
 0.00

 Max.:
 20.00

 Default:
 0.00

 Value Range:
 0.00 ms to 20.00 ms

Effective Time:	Real time
Unit:	-
Data Type:	UInt16
Change:	Immediately

Effective Time: Real time Unit: ms Data Type: UInt16 Change: Immediately

Description H08.53 Medium- and low-frequency jitter suppression frequency 3 Hexadecimal: 2008-36h Effective Time: Real time 0.0 Unit: Min.: Ηz Max.: 600.0 Data Type: UInt16 Default: 0.0 Change: Immediately Value Range: 0.0 Hz to 600.0 Hz Description H08.54 Medium- and low-frequency jitter suppression compensation 3 Hexadecimal: 2008-37h Effective Time: Real time Min.: 0 Unit: % 200 Max.: Data Type: UInt16 0 Default: Change: Immediately Value Range: 0% to 200% Description H08.56 Medium- and low-frequency jitter suppression phase modulation 3 Hexadecimal: 2008-39h Effective Time: Real time Min.: 0 Unit: Max.: 1600 Data Type: UInt16 100 Default: Change: Immediately Value Range: 0 to 1600 Description H08.58 Er.660 (Vibration too strong) switch Hexadecimal: 2008-3Bh Effective Time: Real time Min.: 0 Unit: 2 Max.: Data Type: UInt16 0 Default: Change: Immediately Value Range: 0 to 2 Description H08.59 Medium- and low-frequency jitter suppression frequency 4 Hexadecimal: 2008-3Ch Effective Time: Real time Min.: 0.0 Unit: Ηz 600.0 Max.: Data Type: UInt16 0.0 Default: Change: Immediately Value Range: 0.0 Hz to 600.0 Hz Description

H08.60	Medium- and	low-frequency jitter suppressio	on compensatio	n 4
	Hexadecimal: Min.: Max.: Default: Value Range: 0% to 200% Description	2008-3Dh 0 200 0	Effective Time: Unit: Data Type: Change:	
H08.61	Medium- and Hexadecimal: Min.: Max.: Default: Value Range: 0 to 1600 Description	low-frequency jitter suppressio 2008-3Eh 0 1600 100	on phase modul Effective Time: Unit: Data Type: Change:	
H08.62	Hexadecimal: Min.: Max.: Default: Value Range: 0.15 ms to 512 Description	0.15 512.00 512.00	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately
H08.63	2nd position l Hexadecimal: Min.: Max.: Default: Value Range: 0.15 ms to 512 Description	0.15 512.00 512.00	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately
H08.64	Speed observ Hexadecimal: Min.: Max.: Default: Value Range: 0 to 1 Description	er feedback selection 2008-41h 0 1 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately

15.10 H09 Gain auto-tuning parameters

H09.00 Gain auto-tuning mode

	0		
Hexadecimal:	2009-01h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	7	Data Type:	UInt16
Default:	0	Change:	Immediately

Value Range:

0: Disabled, manual gain tuning required

1: Enabled, gain parameters generated automatically based on the stiffness level

2: Positioning mode, gain parameters generated automatically based on the stiffness level

3: Interpolation mode+Inertia auto-tuning

4: Standard mode+Inertia auto-tuning

6: Quick positioning mode+Inertia auto-tuning

Description

Defines different gain tuning modes. Related gain parameters can be set manually or automatically according to the stiffness level.

Setpoint	Auto	Remarks
0	Disabled Gain parameters set manually	-
1	Standard stiffness level mode, gain parameters tuned automatically based on the stiffness level.	The 2nd gain does not follow the stiffness table to change automatically.
2	Positioning mode, gain parameters tuned automatically based on stiffness table	It is one stiffness level higher than the 1st gain but does not exceed the highest stiffness level.
3	Interpolation mode + Inertia auto- tuning	In this mode, gain and inertia is auto-tuned and vibration is suppressed automatically according to the rigidity level. This mode is applicable to multi-axis interpolation.
4	Standerd mode + Inertia auto-tuning	The gain and inertia is auto-tuned and vibration is suppressed automatically according to the rigidity level.
6	Quick positioning mode + Inertia auto- tuning	In this mode, gain and inertia is auto-tuned and vibration is suppressed automatically according to the rigidity level. This mode is applicable to applications requiring quick positioning.

H09.01 Stiffness level

Hexadecimal: 2009-02h Min.: 0 Max.: 41 15 Default: Value Range: 0 to 41 Description

Effective Time: Real time Unit: Data Type: UInt16 Change: Immediately Defines the stiffness level of the servo system. The higher the stiffness level, the stronger the gains and the quicker the response will be. But an excessively high stiffness level will cause vibration. The setpoint 0 indicates the weakest stiffness and 41 indicates the strongest stiffness.

H09.02 Adaptive notch mode

Hexadecimal: 2009-03h

Min.:0Max.:4Default:0

Effective Time: Real time Unit: -Data Type: UInt16 Change: Immediately

Value Range:

0: Adaptive notch no longer updated;

- 1: One adaptive notch activated (3rd notch)
- 2: Two adaptive notches activated (3rd and 4th notches)
- 3: Resonance point tested only (displayed in H09.24)
- 4: Adaptive notch cleared, values of 3rd and 4th notches restored to default

Description

Defines the operation mode of the adaptive notch.

Setpoint	Defines the operation mode of the adaptive notch.
0	Parameters not updated
1	Only one notch (3rd notch) valid, parameters updated in real time
2	Both notches (3rd and 4th notches) valid, parameters updated in real time
3	Only detect resonance frequency (displayed in H09.24)
4	Clear 3rd and 4th notches, restore parameters to default setting

H09.03 Online inertia auto-tuning mode

Hexadecimal:	2009-04h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	3	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			

0: Disabled

- 1: Enabled, changing slowly
- 2: Enabled, changing normally
- 3: Enabled, changing quickly

Description

Defines whether to enable online inertia auto-tuning and the inertia ratio update speed during online inertia auto-tuning.

Setpoint	Online inertia auto- tuning mode	Remarks	
0	Online auto-tuning disabled	-	
1	Enabled, changing slowly	Applicable to the scenario where the inertia ratio almost does not change.	
2	Enabled, changing normally	Applicable to the scenario where the inertia ratio changes slowly.	
3	Enabled, changing quickly	Applicable to the scenario where the inertia ratio changes quickly.	

H09.04 Low-frequency resonance suppression mode

	· · · · · · · · · · · · · · · · · · ·		
Hexadecimal:	2009-05h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			
0: Set vibration	frequency manually		
1: Identify vibra	ation frequency		
Description			

H09.05 Offline inertia auto-tuning mode

Hexadecimal:	2009-06h	Effective Time	: Real time
Min.:	0	Unit:	-
Max.:	3	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			

0: Positive/Negative triangular wave mode

1: JOG mode

2: Bidirectional auto-tuning mode

3: Unidirectional auto-tuning mode

Description

Defines the offline inertia auto-tuning mode. The offline inertia auto-tuning function can be enabled through H0d.02.

Setpoint	Offline inertia auto- tuning mode	Remarks
0	Positive and negative triangular wave	Applicable to the scenario where the motor movement travel is short.
1	Jog	Applicable to the scenario where the motor movement travel is long.
2	0: Bidirectional auto-tuning.	No pre-set ratio of inertia is required, suitable for applications where the motor can rotate in both directions.
3 1: Unidirectional auto-tuning		No preset ratio of inertia is required, suitable for applications where the motor can only rotate in one direction.

H09.06 Max. speed of inertia auto-tuning

Hexadecimal:	2009-07h
Min.:	100
Max.:	1000
Default:	500
Value Range:	
-	

100rpm-1000rpm

Description

Effective Time: Real time Unit: rpm Data Type: UInt16 Change: At stop

Defines the maximum permissible speed reference in offline inertia auto-tuning mode. During inertia auto-tuning, the higher the speed, the more accurate the auto-tuned values. Use the default setpoint in general cases.

H09.07 Time constant for accelerating to max. speed during inertia auto-tuning

Hexadecimal:	2009-08h		Effective Time:	Real time
Min.:	20		Unit:	ms
Max.:	800		Data Type:	UInt16
Default:	125		Change:	At stop
Value Range:				

20 ms to 800 ms

Description

Defines the time for the motor to accelerate from 0 rpm to the maximum speed of inertia autotuning (H09.06) during offline inertia auto-tuning.

H09.08 Interval time after an individual inertia auto-tuning

Hexadecimal:	2009-09h	Effective Time:	Real time	
Min.:	50	Unit:	ms	
Max.:	10000	Data Type:	UInt16	
Default:	800	Change:	At stop	
Value Range:				
50 ms to 10000 ms				

Description

0.00 to 100.00

Defines the interval time between two consecutive speed references when H09.05 (Offline inertia auto-tuning mode) is set to 1 (Positive/Negative triangular wave mode).

H09.09 Motor revolutions per inertia auto-tuning

Hexadecimal: 2009-0Ah Min.: 0.00 100.00 Max.: 1.00 Default: Value Range:

Effective Time: Real time Unit: UInt16 Data Type: Change: Immediately

Description Defines the motor revolutions per inertia auto-tuning when H09.05 (Offline inertia auto-tuning

mode) is set to 1 (Positive/Negative triangular wave mode). Note:

When using the offline inertia auto-tuning function, check that the travel distance of the motor at the stop position is larger than the value of H09.09. If not, decrease the value of H09.06 (Maximum speed for inertia auto-tuning) or H09.07 (Time constant of accelerating to max. speed during inertia auto-tuning) properly until the motor travel distance fulfills the requirement.

H09.11 Vibration threshold

Hexadecimal: 2009-0Ch Min.: 0.0 Max.: 100.0 Default: 5.0

Unit: 0⁄~ Data Type: UInt16 Change: Immediately

Effective Time: Real time

Value Range: 0.0% to 100.0%

Description

Defines the warning threshold for current feedback vibration.

H09.12 Frequency of the 1st notch

Hexadecimal:	2009-0Dh
Min.:	50

Effective Time: Real time Unit: Ηz

		1000	D : -	
	Max.:	4000	Data Type:	UInt16
	Default:	4000	Change:	Immediately
	Value Range:			
	50 Hz to 4000	Hz		
	Description			
	Defines the ce	nter frequency of the notch, w	hich is the mechani	cal resonance frequency.
	In the torque o	control mode, setting the noto	ch frequency to 4000	Hz deactivates the notch function.
H09.13	Width level of	f the 1st notch		
	Hexadecimal:	2009-0Eh	Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	40	Data Type:	UInt16
	Default:	2	Change:	Immediately
	Value Range:	-	onunger	initialities
	0 to 40			
	Description			
	-	dth loval of the notch lice the	default cotraint in	general cases
		dth level of the notch. Use the	-	-
	width level is t	the ratio of the notch width to	the notch center fre	equency.
H09.14	Depth level o	f the 1st notch		
	Hexadecimal:	2009-0Fh	Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	99	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range: 0 to 99			
	Description			
		pth level of the notch.		
		el of the notch is the ratio betw	ween the input to th	e output at the notch center
	frequency.			
		cotraint the lower the notch	depth and the wee	ker the machanical reconance
	-			ker the mechanical resonance
	suppression w	ill be. Note that an excessivel	y high setpoint may	cause system instability.
H09.15	Frequency of	the 2nd notch		
	Hexadecimal:	2009-10h	Effective Time:	Real time
	Min.:	50	Unit:	Hz
	Max.:	4000	Data Type:	UInt16
	Default:	4000	Change:	Immediately
	Value Range:			-
	50 Hz to 4000	Hz		
	Description			
	-			
H09.16	Width level of	f the 2nd notch		
	Hexadecimal:	2009-11h	Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	20	Data Type:	UInt16
	Default:	2	Change:	Immediately
	Value Range:			

0 to 20

	Description			
H09.17	Depth level of Hexadecimal: Min.: Max.: Default: Value Range: 0 to 99 Description	the 2nd notch 2009-12h 0 99 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H09.18	Frequency of the Hexadecimal: Min.: Max.: Default: Value Range: 50 Hz to 4000 H Description	2009-13h 50 4000 4000	Effective Time: Unit: Data Type: Change:	Real time Hz UInt16 Immediately
H09.19	Width level of Hexadecimal: Min.: Max.: Default: Value Range: 0 to 20 Description		Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H09.20	Depth level of Hexadecimal: Min.: Max.: Default: Value Range: 0 to 99 Description	the 3rd notch 2009-15h 0 99 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H09.21	Frequency of the Hexadecimal: Min.: Max.: Default: Value Range: 50 Hz to 4000 H Description	2009-16h 50 4000 4000	Effective Time: Unit: Data Type: Change:	Real time Hz UInt16 Immediately

H09.22	Width level of Hexadecimal: Min.: Max.: Default: Value Range: 0 to 20 Description		Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H09.23	Depth level of Hexadecimal: Min.: Max.: Default: Value Range: 0 to 99 Description		Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H09.24	Hexadecimal: Min.: Max.: Default: Value Range: 0 to 2000 Description	sonance frequency 2009-19h 0 2000 0	Effective Time: Unit: Data Type: Change: the current mec	- UInt16 Unchangeable
H09.30	Torque distur Hexadecimal: Min.: Max.: Default: Value Range: -100.0% to 100 Description	-100.0 100.0 0.0	Effective Time: Unit: Data Type: Change:	Real time % UInt16 Immediately
H09.31	Filter time cor Hexadecimal: Min.: Max.: Default: Value Range: 0.00 ms to 25.0 Description	0.00 25.00 0.50	effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately

H09.32 Gravity compensation value

Hex:	2009-21h	Effective	Real time
		mode:	
Min.:	0.0	Unit:	-
Max.:	50.0	Data Type:	UInt16
Default:	0.0	Change:	Real-time
Value Range:			
0.0 to 50.0			

Description

Defines the gravity compensation value. Setting this parameter properly in vertical axis applications can reduce the falling amplitude upon start.

H09.33 **Positive friction compensation**

Hexadecimal: 2009-22h -100.0 Min.: 100.0 Max.: Default: 0.0

Value Range:

-100.0% to 100.0%

Description

Defines the forward friction compensation value.

H09.34 Negative friction compensation

-100.0% to 100.0% Description

Hexadecimal: 2009-23h Min.: -100.0 Max.: 100.0 0.0 Default: Value Range:

Ef	fective Time:	Real time
Ur	nit:	%
Da	ata Type:	Int16
Cł	nange:	Immediately

Effective Time: Real time

Unit:

Data Type:

Change:

%

Int16

Immediately

Defines the reverse direction friction compensation value.

H09.35 Friction compensation speed threshold

Hexadecimal:	2009-24h	Effective Time:	Real time
Min.:	0.1	Unit:	rpm
Max.:	30.0	Data Type:	UInt16
Default:	2.0	Change:	Immediately
Value Range:			
0.1rpm-30.0rp	m		
Description			

H09.36 Friction compensation speed

· · · · · · · · · · · · · · · · · · ·			
Hexadecimal:	2009-25h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	2	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			
0: Speed refere	ence		
1: Model tracki	ng speed		

2: Speed feedback

Description H09.38 Low-frequency resonance suppression frequency at the mechanical end Hexadecimal: 2009-27h Effective Time: Real time Min.: 1.0 Unit: Ηz Max.: 100.0 Data Type: UInt16 Default: 100.0 Change: At stop Value Range: 1.0 Hz to 100.0 Hz Description H09.39 Low-frequency resonance suppression at the mechanical end Hexadecimal: 2009-28h Effective Time: Real time Unit: Min.: 0 Max.: 3 Data Type: UInt16 2 Default: Change: At stop Value Range: 0 to 3 Description H09.41 Frequency of the 5th notch Hexadecimal: 2009-2Ah Effective Time: Real time Min.: 50 Unit: Ηz Max.: 8000 Data Type: UInt16 4000 Default: Change: At stop Value Range: 50 Hz to 8000 Hz Description H09.42 Width level of the 5th notch Hexadecimal: 2009-2Bh Effective Time: Real time Min.: 0 Unit: Max.: 20 Data Type: UInt16 2 Default: Change: Immediately Value Range: 0 to 20 Description H09.43 Depth level of the 5th notch Hexadecimal: 2009-2Ch Effective Time: Real time Min.: 0 Unit: 99 Max.: Data Type: UInt16 0 Default: Change: Immediately Value Range: 0 to 99 Description

H09.44	Frequency of	low-frequency resonance supp	ression 1 at me	chanical load end
	Hexadecimal:	2009-2Dh	Effective Time	: Real time
	Min.:	0.0	Unit:	Hz
	Max.:	200.0	Data Type:	UInt16
	Default:	0.0	Change:	Immediately
	Value Range:		U	2
	0.0 Hz to 200.0	Hz		
	Description			
	-			
H09.45	Responsivene	ess of low-frequency resonance	suppression 1	at mechanical load end
	Hexadecimal:		Effective Time	
	Min.:	0.01	Unit:	-
	Max.:	10.00	Data Type:	UInt16
	Default:	1.00	Change:	Immediately
	Value Range:	1.00	enunge.	minediately
	0.01 to 10.00			
	Description			
	-			
H09.47	Width of low-	frequency resonance suppressi	ion 1 at mechar	nical load end
	Hexadecimal:	2009-30h	Effective Time	: Real time
	Min.:	0.00	Unit:	-
	Max.:	2.00	Data Type:	UInt16
	Default:	1.00	Change:	Immediately
	Value Range:			
	0.00 to 2.00			
	Description			
	-			
H09.49	Frequency of	low-frequency resonance supp	pression 2 at me	chanical load end
	Hexadecimal:		Effective Time	
	Min.:	0.0	Unit:	Hz
	Max.:	200.0	Data Type:	UInt16
	Default:	0.0	Change:	Immediately
	Value Range:		0	2
	0.0 Hz to 200.0	Hz		
	Description			
	-	eter based on the actual jitter fre	equency.	
H09.50	Responsivene	ess of low-frequency resonance	suppression 2	at mechanical load end
	Hexadecimal:		Effective Time	
	Min.:	0.01	Unit:	-
	Max.:	10.00	Data Type:	UInt16
	Default:	1.00	Change:	Immediately
	Value Range:		0	, ,
	0.01 to 10.00			
	Description			
	•	t setpoint in general cases. To inc	crease the setpo	int, reduce the delay time.
H09.52	Width of low-	frequency resonance suppressi	ion 2 at mechar	nical load end
	Hexadecimal:		Effective Time	
	. resta contrat.			

Min.:0.00Unit:-Max.:2.00Data Type:UInt16Default:1.00Change:ImmediatelyValue Range:0.00 to 2.00DescriptionUse the default setpoint in general cases. To increase the setpoint, increase the delay time.	
Default: 1.00 Change: Immediately Value Range: 0.00 to 2.00 Description	
Value Range: 0.00 to 2.00 Description	
0.00 to 2.00 Description	
Description	
H09.57 STune resonance suppression switchover frequency	
Hexadecimal: 2009-3Ah Effective Time: Real time	
Min.: 0 Unit: Hz	
Max.: 4000 Data Type: UInt16	
Default: 850 Change: Immediately	
Value Range:	
0 Hz to 4000 Hz	
Description	
If the resonance frequency is lower than the setpoint, use medium-frequency resonance	
suppression 2 to suppress resonance. Otherwise, use the notch to suppress resonance.	
H09.58 STune resonance suppression reset selection	
Hexadecimal: 2009-3Bh Effective Time: Real time	
Min.: 0 Unit: -	
Max.: 1 Data Type: UInt16	
Default: 0 Change: Immediately	
Value Range:	
0: Disable	
1: Enable	
Description	
Used to enable STune resonance suppression reset to clear parameters related to resonance	ۆ
suppression, medium-frequency resonance suppression 2 and notches 3 and 4.	

15.11 HOA Fault and Protection

H0A.00 Power input phase loss protection

Hexadecimal:	200A-01h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	2	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range			

Value Range:

0: Enable phase loss fault and inhibit phase loss warning

1: Enable phase loss fault and warning

2: Disable phase loss fault and warning

Description

The main circuit power specifications vary according to the servo drive model.

Servo drives supporting single-phase/three-phase 220 V and three-phase 380 V power supplies Objects available. When voltage fluctuation or phase loss occurs on the power supply, the drive triggers power input phase loss protection based on H0A.00.

Setpoint	Phase loss protection method	Remarks
0	Enable faults and inhibit warnings	If the main circuit input voltage is single phase for the drive with rated power of 1 kW and above (H01.02 \ge 6), E420.0 occurs.
1	Enable faults and warnings	 If the main circuit input voltage is single phase for the drive with rated power of 1 kW and above (H01.02 ≥ 6), E420.0 occurs. If the main circuit input voltage is single phase for the servo drive with 0.75 kW rated power (H01.02 = 5), E990.0 (Power input phase loss warning) occurs.
2	Inhibit faults and warnings	Er.420 and E990.0 will not be detected. In common bus mode, set H0A.00 to 2. Otherwise, the servo drive cannot enter "rdy" state after power-on. Note that power-off discharge and power-off retentive are not supported when H0A.00 is set to 2.

Data Type:

Change:

UInt16

Immediately

H0A.02 Vibration alarm switch

Max.:

Default:

Value Range: 0: Disabled 1: Enabled 1

0

H0A.03

Hexade	ecimal:	200A-03h	Effective Time:	Real time
Min.:		0	Unit:	-
Max.:		1	Data Type:	UInt16
Default	:	0	Change:	Immediately
Value I	Range:			
0: On				
1: Off				
Descri	ption			
-				
Power	-off mei	nory		
Hexade	ecimal:	200A-04h	Effective Time:	Real time
Min.:		0	Unit:	-

Description

It sets whether to enable the function of retentive at power failure.

Setpoint	Function	Instruction receiving method
0	Disabled	The function of retentive at power failure is disabled.
1		The function of retentive at power failure is enabled. The servo drive automatically stores the encoder feedback pulse count (H0b.17) at power failure, which can be viewed in the corresponding function code after power-on again.

H0A.04 Motor overload protection gain

Hexadecimal:	200A-05h	Effective Time:	Real time	
Min.:	50	Unit:	%	
Max.:	300	Data Type:	UInt16	
Default:	100	Change:	At stop	
Value Range:				

50% to 300%

Description

Determines the motor overload duration before E620.0 (Motor overload) is reported. You can change the setpoint to advance or delay the time when overload protection is triggered based on the motor temperature. The setpoint 50% indicates the time is cut by half; 150% indicates the time is increased by 50%.

Set this parameter based on the actual temperature of the motor.

H0A.08 Overspeed threshold

 Hexadecimal:
 200A-09h

 Min.:
 0

 Max.:
 10000

 Default:
 0

Effective Time: Real time Unit: rpm Data Type: UInt16 Change: Immediately

Value Range:

0rpm-10000rpm

Description

Defines the overspeed threshold of the motor.

Setpoint	Overspeed Threshold	Condition for Reporting E500.0
0	Maximum motor speed x 1.2	
1 to 10000	If H0A-08 ≥ (Maximum motor speed x 1.2): Overspeed threshold = Maximum motor speed x 1.2	If the speed feedback exceeds the overspeed threshold several times, the drive reports E500.0 (Motor
	If H0A-08 < (Maximum motor speed x 1.2): Overspeed threshold = H0A.08	overspeed).

H0A.09 Maximum position pulse frequency

Hexadecimal:	200A-0Ah	Effective Time:	Real time
Min.:	100	Unit:	kHz
Max.:	4000	Data Type:	UInt16
Default:	4000	Change:	At stop
Value Range:			

100 kHz-4000 kHz

Description

Defines the maximum frequency of input pulses when the position reference source is pulse reference (H05.00 = 0) in the position control mode.

When the actual pulse input frequency exceeds the value of H0A.09, the drive reports EB01.0 (excessive position reference increment).

H0A.10 Threshold of excessive position deviation

 Hexadecimal:
 200A-0Bh

 Min.:
 1

 Max.:
 1073741824

 Default:
 27486951

 Value Range:
 1

Effective Time: Real time Unit: Encoder unit Data Type: UInt32 Change: Immediately

1 to 1073741824

Description

Defines the threshold for excessive position deviation in the position control mode. When the position deviation exceeds this threshold, the drive reports EB00.0 (Position deviation too large).

H0A.12 Runaway protection

	Hexadecimal:		Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	1	Change:	Immediately
	Value Range:			
	0: Disabled			
	1: Enabled			
	Description			
		er to enable runaway protection.		
	0: Disables E23	4.0 detection when the motor dri	ves a vertical ax	is or is driven by the load
	1: Enables runa	away protection		
H0A.16	Threshold of l	ow-frequency resonance positi	on deviation	
	Hexadecimal:		Effective Time:	Real time
	Min.:	1	Unit:	-
	Max.:	1000	Data Type:	UInt16
	Default:	5	Change:	Immediately
	Value Range:		U	,
	1 to 1000			
	Description			
	-			
H0A.17	Reference/Pu	lse selection		
	Hexadecimal:	200A-12h	Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:		0	·
	0: Pulse unit			
	1: Reference ur	ait		
	1. Reference u	iie iii		

Description

Defines the unit for the position settings in H05.21, H05.22, and H0A.10.

Setpoint	Description
0	Pulse unit
1	Reference unit

H0A.19 DI8 filter time constant Hexadecimal: 200A-14h Effective Time: Upon the next power-on Min.: Λ Unit: Max.: 255 Data Type: UInt16 80 Default: Change: At stop Value Range: 0 to 255 Description H0A.20 DI9 filter time constant Hexadecimal: 200A-15h Effective Time: Upon the next power-on Min.: 0 Unit: Max.: 255 Data Type: UInt16 80 Default: Change: At stop Value Range: 0 to 255 Description H0A.22 Sigma_Delta filter time Hexadecimal: 200A-17h Effective Time: Upon the next power-on Min.: 0 Unit: Max.: 3 Data Type: UInt16 Default: 0 Change: At stop Value Range: 0 to 3 Description H0A.23 Tz signal filter time Hexadecimal: 200A-18h Effective Time: Upon the next power-on Min.: 0 Unit: Max.: 31 Data Type: UInt16 15 Default: Change: At stop Value Range: 0 to 31 Description H0A.24 Filter time constant of low-speed pulse input pin Hexadecimal: 200A-19h Effective Time: Upon the next power-on Min.: 0 Unit: Max.: 255 Data Type: UInt16 Default: 30 Change: At stop

Value Range:

0-255

Description

Defines the filter time constant of low-speed pulse input terminal which is enabled (H05.01 = 0) when the position reference source is pulse input (H05.00 = 0) in the position control mode. When peak interference exists in the low-speed pulse input terminal, set this parameter to suppress peak interference and prevent motor malfunction due to interference signal inputted to the servo drive.

Maximum Frequency of Input Pulses	Recommended filter value (25 ns)
< 167 kbps	30
167k–250k	20
250k-500k	10

time

H0A.25 Filter time constant of speed feedback display value

Hexadecimal:	200A-1Ah	Effective Time:	Real tim
Min.:	0	Unit:	ms
Max.:	5000	Data Type:	UInt16
Default:	200	Change:	At stop
Value Range:			

Value Range 0 ms to 5000 ms

Description

Defines the low-pass filter time constant of the speed information for speed feedback and position references.

H0A.26 Motor overload detection

Hexadecimal:	200A-1Bh	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	3	Data Type:	UInt16
Default:	3	Change:	At stop

Value Range:

0: Show motor overload warning (E909.0) and fault (E620.0)

1: Hide motor overload warning (E909.0) and fault (E620.0)

- 2: No meaning
- 3: Enabled for new motors

Description

Defines whether to enable motor overload detection.

Setpoint	Function
0	Not hide
1	Hide motor overload warning (E909.0) and motor overload fault (E620.0)
2	No assignment
3	Enabled for new motors

H0A.27 Speed DO filter time constant

Hexadecimal:	200A-1Ch	Effective Time:	Real time
Min.:	0	Unit:	ms
Max.:	5000	Data Type:	UInt16
Default:	10	Change:	At stop

Value Range:

0 ms to 5000 ms

Description

Defines the the average filter time constant of the speed information for speed feedback and position references.

H0A.28 Quadrature encoder filter time constant

Effective Time: Upon the next power-on Unit: ns Data Type: UInt16 Change: At stop

H0A.30 Filter time constant of high-speed pulse input pin

Hexadecimal:	200A-1Fh	Effective Time:	Upon the next power-on
Min.:	0	Unit:	ns
Max.:	255	Data Type:	UInt16
Default:	2	Change:	At stop
Value Range:			
0 ns to 255 ns			

Description

Defines the filter time constant of high-speed pulse input terminal which is enabled (H05.01 = 1) when the position reference source is pulse reference (H05.00 = 0) in the position control mode. When peak interference exists in the high-speed pulse input terminal, set this parameter to suppress peak interference and prevent motor malfunction due to interference signal inputted to the servo drive.

Maximum Frequency of Input Pulses	Recommended Filter Time Constant (Unit: 25 ns)
500k-1M	5
> 1 Mpps	3

H0A.32 Motor stall over-temperature protection time window

 Hexadecimal:
 200A-21h

 Min.:
 10

 Max.:
 65535

 Default:
 200

Effective Time: Real time Unit: ms Data Type: UInt16 Change: Immediately

Value Range:

10 ms to 65535 ms

Description

Defines the overtemperature duration before E630.0 (Motor stall) is detected by the servo drive. H0A.32 can be used to adjust the sensitivity of motor stall overtemperature detection.

H0A.33 Motor stall over-temperature detection

Hexadecimal:	200A-22h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16

Default: 1 Change: Value Range:

0: Disabled

1: Enable

2: Enabled for new over-temperature

Description

Enables or disables the detection for E630.0 (Motor stall overtemperature protection).

	Setpoint	Function	
0 Shield		Shield	
	1	Enabled	
	2	New over-temperature protection	

Immediately

H0A.35 Inhibit reading encoder EEPRROM on power-on (for third-party encoders)

		• •	•
Hexadecimal:	200A-24h	Effective Time:	Upon the next power-on
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			
0: Allow			
1: Inhibit			

H0A.36 Encoder multi-turn overflow fault

Hexadecimal:	200A-25h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			

۷

Description

0: Not hide

1: Hide

Description

Defines whether to hide the encoder multi-turn overflow fault in the absolute position linear mode (H02.01 = 1).

Setpoint	Function
0	Not hide
1	Shield

H0A.38 **IGBT over-temperature threshold**

Hexadecimal: 200A-27h Min.: 0 175 Max.: Default: 135 Value Range: 0°C to 175°C Description

Effective Time:	Upon the next power-on
Unit:	°C
Data Type:	UInt16
Change:	At stop

H0A.39 IGBT over-temperature protection switch

	· · · · · · · · · · · · · · · · · · ·		
Hexadecimal:	200A-28h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0: Disabled			
1: Enabled			
Description			
-			
Software limit	selection		
Hexadecimal:	200A-29h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	2	Data Type:	UInt16
Default:	0	Change:	At stop

0: No operation

1: Activated immediately

2: Activated after homing is done

Description

Value Range:

H0A.40

Setpoint	Function	
0	No operation	
1	At once	
2	Activated after homing is done	

H0A.41 Forward position of software limit

Hexadecimal:	200A-2Ah
Min.:	-2147483648
Max.:	2147483647
Default:	2147483647

Value Range:

-2147483648 to 2147483647

Description

When the absolute position counter (H0b.07) is larger than H0A.41, the servo drive reports E950.0 (Forward limit switch warning) and executes stop at forward limit.

Unit:

Data Type: Change:

H0A.43 Reverse position of software limit

Hexadecimal:	200A-2Ch
Min.:	-2147483648
Max.:	2147483647
Default:	-2147483648

Effective Time: Real time Unit: -Data Type: Int32 Change: At stop

Effective Time: Real time

Int32

At stop

Value Range: -2147483648 to 2147483647

Description

When the absolute position counter (H0b.07) is smaller than H0A.43, the servo drive reports warning E952.0 (Reverse limit switch warning) and executes stop at reverse limit.

H0A.47 Brake protection

Hexadecimal: 200A-30h

Effective Time: Real time

	Min.: Max.: Default: Value Range: 0 to 1 Description -	0 1 0	Unit: Data Type: Change:	- UInt16 Immediately
H0A.48	Gravity load Hexadecimal: Min.: Max.: Default: Value Range: 0 to 3000 Description	200A-31h 0 3000 300	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H0A.49	Hexadecimal: Min.: Max.: Default: Value Range: 0°C to 175°C Description	wafer over-temperature thresh 200A-32h 0 175 115 nperature threshold for regenera	Effective Time: Unit: Data Type: Change:	Upon the next power-on °C UInt16 At stop
H0A.50	Torque refere Hexadecimal: Min.: Max.: Default: Value Range: 0 ms to 5000 m Description	0 5000 200	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 At stop
H0A.51	Encoder fault Hexadecimal: Min.: Max.: Default: Value Range: 0 to 31 Description	tolerance count 200A-34h 0 31 31	Effective Time: Unit: Data Type: Change:	Upon the next power-on - UInt16 Immediately
H0A.52	Defines the te Hexadecimal: Min.: Max.:	mperature threshold for encod 200A-35h 0 175	er overtempera Effective Time: Unit: Data Type:	-

	Default: Value Range:	105	Change:	Immediately
	0° to 175°			
	Description			
	When the num	ber of communication failures b	etween the encod	der and the drive exceeds H0A.50,
	the communic	ation between the encoder and	the drive fails.	
H0A.55	Runaway curr	rent threshold		
	Hexadecimal:	200A-38h	Effective Time:	Real time
	Min.:	100.0	Unit:	%
	Max.:	400.0	Data Type:	UInt16
	Default:	200.0	Change:	Immediately
	Value Range:			
	100.0% to 400.	0%		
	Description			
	Defines the cui	rrent threshold for runaway prot	ection detection.	
H0A.57	Runaway spee			
	Hexadecimal:		Effective Time:	
	Min.:	1	Unit:	rpm
	Max.:	1000 10	Data Type:	UInt16
	Default:	10	Change:	Immediately
	Value Range: 1rpm-1000rpm	2		
	Description	I		
	-	erspeed threshold for runaway p	protection detection	on.
H0A.58	Speed feedba	ck filtering time		
	Hexadecimal:	-	Effective Time:	Upon the next power-on
	Min.:	0.1	Unit:	ms
	Max.:	100.0	Data Type:	UInt16
	Default:	2.0	Change:	Immediately
	Value Range:			
	0.1 ms to 100.0) ms		
	Description			
	Defines the spe	eed feedback filter time for runa	way protection de	etection.
H0A.59		tection detection time		
	Hexadecimal:		Effective Time:	
	Min.:	10	Unit:	ms
	Max.:	1000	Data Type:	UInt16
	Default:	30	Change:	Immediately
	Value Range: 10 ms to 1000	me		
		1115		
	Description The runaway fa	ault will be reported when runav	vay keeps active f	or a period longer than H0A.59.
H0A.61	Dhaca loss da	tection time threshold		
HUA.01	Hexadecimal:		Effective Time:	Real time
	Min.:	30	Unit:	ms
	Max.:	65535	Data Type:	UInt16
			Data Type.	

	Default: Value Range: 30 ms to 65535 Description	50 5 ms	Change:	Immediately
H0A.85	-	e detection torque threshold 200A-56h 4.0 400.0 5.0	Effective Time: Unit: Data Type: Change:	Real time % UInt16 At stop
H0A.86	Wire breakage Hexadecimal: Min.: Max.: Default: Value Range: 5 ms to 1000 m Description	5 1000 30	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 At stop

15.12 HOB Display Parameters

H0b.00 Motor speed actual value

Effective Time: -Unit: rpm Data Type: Int16 Change: Unchangeable

rpm

Int16

Unchangeable

-9999rpm to 9999rpm

Description

Indicates the round actual motor speed, which is accurate to 1 rpm. Set in H0A.25 (Filter time constant of speed feedback display) the filter time constant for H0b.00.

Unit:

Data Type:

Change:

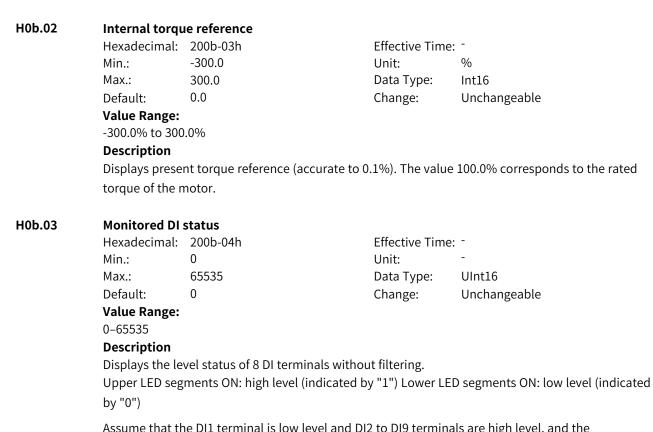
Effective Time: -

H0b.01 Speed reference

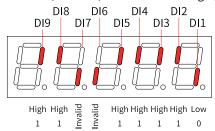
 Hexadecimal:
 200b-02h

 Min.:
 -9999

 Max.:
 9999


Max.: 999 Default: 0

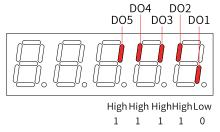
Value Range:


-9999rpm to 9999rpm

Description

Indicates the present speed reference (accurate to 1rpm) of the drive in the position and speed control modes.

Assume that the DI1 terminal is low level and DI2 to DI9 terminals are high level, and the corresponding binary number is "110011110". In this case, the value of H0b.03 (Monitored DO signal) read by the software tool is 414 (decimal). See the following figure.


H0b.05 Monitored DO status

Effective Time:	-
Unit:	-
Data Type:	UInt16
Change:	Unchangeable

Displays the level status of 5 DO terminals without filtering.

Upper LED segments ON: high level (indicated by "1") Lower LED segments ON: low level (indicated by "0")

Assume that the DO1 terminal is low level and DO2 to DO5 terminals are high level, and the corresponding binary number is "11110". In this case, the value of H0b.05 (Monitored DO signal) read by the software tool is 30 (decimal). See the following figure.

H0b.07 Absolute position counter

Hexadecimal:	200b-08h
Min.:	-2147483648
Max.:	2147483647
Default:	0

Effective Time:	-
Unit:	Reference unit
Data Type:	Int32
Change:	Unchangeable

-2147483648 to 2147483647 Description

Value Range:

Indicates present absolute position (reference unit) of the motor in the position control mode. This parameter is a 32-bit integer, which is displayed as a decimal on the keypad.

H0b.09 Mechanical angle

	•
Hexadecimal:	200b-0Ah
Min.:	0
Max.:	65535
Default:	0
Value Range:	

Effective Time: ⁻ Unit: ⁻ Data Type: UInt16 Change: Unchangeable

0 to 65535

Description

Displays present mechanical angle (encoder unit) of the motor. The setpoint 0 indicates the mechanical angle is 0°.

Actual mechanical angle = 360° x H0b.09/(Maximum value of H0b.09 + 1)

Maximum value of H0b.09 for an absolute encoder: 65535

H0b.10 Electrical angle

Effective Time: -Unit: ° Data Type: UInt16 Change: Unchangeable Indicates the present electrical angle of the motor, which is accurate to 0.1°. The electrical angle variation range is $\pm 360.0^{\circ}$ during rotation. If the motor has four pairs of poles, each revolution generates four rounds of angle change from 0° to 359°. Similarly, if the motor has five pairs of poles, each revolution generates five rounds of angle change from 0° to 359°.

H0b.11 Speed corresponding to the input position reference

 Hexadecimal:
 200b-0Ch

 Min.:
 -9999

 Max.:
 9999

 Default:
 0

 Value Range:

 -9999rpm to 999rpm

 Description

Effective Time: -Unit: rpm Data Type: Int16 Change: Unchangeable

H0b.12 Average load rate

0.0% to 6553.5%

Description

Unit: % Data Type: UInt16 Change: Unchangeable

Effective Time: -

Displays the percentage of the average load torque to the rated torque of the motor, which is accurate to 0.1%. The value 100.0% corresponds to the rated torque of the motor.

H0b.13 Input position reference counter

 Hexadecimal:
 200b-0Eh

 Min.:
 -2147483648

 Max.:
 2147483647

 Default:
 0

 Value Range:

 -2147483648 to 2147483647

 Description

Effective Time: -Unit: Reference unit Data Type: Int32 Change: Unchangeable

H0b.15 Encoder position deviation counter

```
      Hexadecimal:
      200b-10h

      Min.:
      -2147483648

      Max.:
      2147483647

      Default:
      0

      Value Range:

      -2147483648 to 2147483647

      Description
```

Effective Time: -Unit: Encoder unit Data Type: Int32 Change: Unchangeable

Encoder unit

Unchangeable

Int32

H0b.17 Feedback pulse counter

Hexadecimal:	200b-12h	Effective Time:	-
Min.:	-2147483648	Unit:	Eı
Max.:	2147483647	Data Type:	In
Default:	0	Change:	U

Value Range:

-2147483648 to 2147483647

Description

Used to count the position pulses fed back by the encoder in any control mode. This parameter is a 32-bit integer, which is displayed as a decimal on the keypad.

H0b.19 Total power-on time

 Hexadecimal:
 200b-14h

 Min.:
 0.0

 Max.:
 214748364.7

 Default:
 0.0

 Value Range:
 Value Range:

0.0s-214748364.7s

Effective Time: -Unit: S Data Type: UInt32 Change: Unchangeable

Description Used to record the total operating time of the servo drive. This parameter is a 32-bit integer, which is displayed as a decimal on the keypad. Note:

If the servo drive is switched on and off repeatedly within a short period of time, a deviation within 1h may be present in the total power-on time record.

H0b.24 RMS value of phase current

 Hexadecimal:
 200b-19h

 Min.:
 0.00

 Max.:
 655.35

 Default:
 0.00

 Value Range:
 100

Effective Time: -Unit: A Data Type: UInt16 Change: Unchangeable

V

°C

UInt16

Unchangeable

UInt16

Unchangeable

Effective Time: -

Effective Time: -

0.00 A to 655.35 A

Description

Displays the RMS value of the phase current of the motor, accurate to 0.01 A.

H0b.26 Bus voltage

Hexadecimal: 200b-1Bh Min.: 0.0 Max.: 6553.5

Default: 0.0

Value Range:

0.0 V to 6553.5 V

Description

Displays the DC bus voltage of the main circuit input voltage after rectification, which is accurate to 0.01 V.

Unit:

Data Type:

Change:

Unit:

Data Type:

Change:

H0b.27 Module temperature

 Hexadecimal:
 200b-1Ch

 Min.:
 0

 Max.:
 65535

Default: 0

Value Range:

0°C to 65535°C

Description

Indicates the temperature of the module inside the servo drive, which can be used as a reference for estimating the actual temperature of the drive.

```
H0b.28
               Absolute encoder fault information given by FPGA
               Hexadecimal: 200b-1Dh
                                                                Effective Time: -
               Min.:
                               0
                                                                Unit:
               Max.:
                               65535
                                                                                UInt16
                                                                Data Type:
               Default:
                               0
                                                                Change:
                                                                                Unchangeable
               Value Range:
               0 to 65535
               Description
H0b.29
               System status information given by FPGA
               Hexadecimal: 200b-1Eh
                                                                Effective Time: -
               Min.:
                                                                Unit:
                               Ω
               Max.:
                               65535
                                                                Data Type:
                                                                                UInt16
               Default:
                               0
                                                                Change:
                                                                                Unchangeable
               Value Range:
               0 to 65535
               Description
H0b.30
               System fault information given by FPGA
               Hexadecimal: 200b-1Fh
                                                                Effective Time: -
               Min.:
                               0
                                                                Unit:
                               65535
               Max.:
                                                                Data Type:
                                                                                UInt16
               Default:
                               0
                                                                Change:
                                                                                Unchangeable
               Value Range:
               0 to 65535
               Description
H0b.33
               Fault log
               Hexadecimal: 200b-22h
                                                                Effective Time: -
               Min.:
                               0
                                                                Unit:
                               19
               Max.:
                                                                Data Type:
                                                                                UInt16
                               0
               Default:
                                                                Change:
                                                                                Immediately
               Value Range:
               0: Present fault
                1: Last fault2: 2nd to last fault3: 3rd to last fault4: 4th to last fault
               5: 5th to last fault 6: 6th to last fault7: 7th to last fault8: 8th to last fault9: 9th to last fault10: 10th to
               last fault11: 11th to last fault12: 12th to last fault13: 13th to last fault14: 14th to last fault15: 15th to
               last fault16: 16th to last fault17: 17th to last fault18: 18th to last fault19: 19th to last fault
               Description
               Used to view the latest 20 faults of the drive.
H0b.34
               Fault code of the selected fault
               Hexadecimal: 200b-23h
                                                                Effective Time: -
               Min.:
                               Ω
                                                                Unit:
               Max.:
                               65535
                                                                                UInt16
                                                                Data Type:
                               0
               Default:
                                                                Change:
                                                                                Unchangeable
               Value Range:
               0 to 65535
```

Description

-

	-					
110h 25	Timo stamp u	non accurrance of the colocted	fault			
H0b.35		pon occurrence of the selected		_		
	Hexadecimal: Min.:	0.0	Effective Time: Unit:	S		
	Min.: Max.:	214748364.7		UInt32		
			Data Type:			
	Default:	0.0	Change:	Unchangeable		
	Value Range:	4.7				
	0.0s-21474836	4.75				
	Description -					
H0b.37	Motor speed u	pon occurrence of the selected	fault			
1100.57	Hexadecimal:	-	Effective Time:	-		
	Min.:	-32767	Unit:	rpm		
	Max.:	32767	Data Type:	Int16		
	Default:	0	Change:	Unchangeable		
		0	change.	Unchangeable		
	Value Range: -32767rpm to 3	2767rnm				
	Description	527071011				
	-					
H0b.38	Motor phase L	J current upon occurrence of th	e selected fault	:		
	Hexadecimal:		Effective Time:			
	Min.:	-327.67	Unit:	А		
	Max.:	327.67	Data Type:	Int16		
	Default:	0.00	Change:	Unchangeable		
	Value Range:		0.10.1801	enenangeaute		
	-327.67 A to 327.67 A					
	Description					
	-					
H0b.39	Motor phase V	current upon occurrence of the	e selected fault			
	Hexadecimal:	200b-28h	Effective Time:	-		
	Min.:	-327.67	Unit:	А		
	Max.:	327.67	Data Type:	Int16		
	Default:	0.00	Change:	Unchangeable		
	Value Range:		C C	Ū.		
	-327.67 A to 32	7.67 A				
	Description					
	-					
H0b.40		pon occurrence of the selected				
	Hexadecimal:	200b-29h	Effective Time:			
	Min.:	0.0	Unit:	V		
	Max.:	6553.5	Data Type:	Ulnt16		
	Default:	0.0	Change:	Unchangeable		
	Value Range:					
	0.0 V to 6553.5	V				
	Description					
	-					

```
H0b.41
              DI status upon occurrence of the selected fault
              Hexadecimal: 200b-2Ah
                                                            Effective Time: -
              Min.:
                             0
                                                            Unit:
              Max.:
                             65535
                                                            Data Type:
                                                                           UInt16
                             0
                                                                           Unchangeable
              Default:
                                                            Change:
              Value Range:
              0 to 65535
              Description
H0b.42
              DO status upon occurrence of the selected fault
              Hexadecimal: 200b-2Bh
                                                            Effective Time: -
              Min.:
                             0
                                                            Unit:
                             65535
              Max.:
                                                            Data Type:
                                                                           UInt16
                                                                           Unchangeable
              Default:
                             0
                                                            Change:
              Value Range:
              0 to 65535
              Description
H0b.43
              Group No. of the abnormal parameter
              Hexadecimal: 200b-2Ch
                                                            Effective Time: -
              Min.:
                             0
                                                            Unit:
              Max.:
                             65535
                                                            Data Type:
                                                                           UInt16
                             0
                                                            Change:
                                                                           Unchangeable
              Default:
              Value Range:
              0 to 65535
              Description
H0b.44
              Offset of the abnormal parameter within the parameter group
              Hexadecimal: 200b-2Dh
                                                            Effective Time: -
              Min.:
                             0
                                                            Unit:
                             65535
                                                            Data Type:
              Max.:
                                                                           UInt16
              Default:
                             0
                                                            Change:
                                                                           Unchangeable
              Value Range:
              0 to 65535
              Description
H0b.45
              Internal fault code
              Hexadecimal: 200b-2Eh
                                                            Effective Time: -
              Min.:
                             0
                                                            Unit:
                             65535
              Max.:
                                                            Data Type:
                                                                           UInt16
              Default:
                             0
                                                            Change:
                                                                           Unchangeable
              Value Range:
              0 to 65535
              Description
```

 H0b.46
 Absolute encoder fault information given by FPGA upon occurrence of the selected fault

 Hexadecimal:
 200b-2Fh
 Effective Time:

	Min.: Max.: Default: Value Range: 0 to 65535 Description -	0 65535 0	Unit: Data Type: Change:	- UInt16 Unchangeable
H0b.47	System status Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	5 information given by FPGA up 200b-30h 0 65535 0	oon occurrence of Effective Time: Unit: Data Type: Change:	
H0b.48	System fault i Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	nformation given by FPGA upo 200b-31h 0 65535 0	n occurrence of Effective Time: Unit: Data Type: Change:	
H0b.51	Internal fault Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	code upon occurrence of the se 200b-34h 0 65535 0	elected fault Effective Time: Unit: Data Type: Change:	- - UInt16 Unchangeable
H0b.52	Timeout fault Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	flat bit given by FPGA upon oc 200b-35h 0 65535 0	currence of the Effective Time: Unit: Data Type: Change:	
H0b.53	Position devia Hexadecimal: Min.: Max.:		Effective Time: Unit: Data Type:	- Reference unit Int32

0 Default: Value Range: -2147483648 to 2147483647 Description

H0b.55 Motor speed actual value

Hexadecimal: 200b-38h Min.: -6000.0 Max.: 6000.0 0.0 Default: Value Range:

Effective Time: rpm Unit: Data Type: Int32 Change: Unchangeable

V

UInt16

Unchangeable

Unchangeable

-6000.0rpm to 6000.0rpm Description

Indicates the round actual motor speed, which is accurate to 1 rpm. Set in H0A.25 (Filter time constant of speed feedback display) the filter time constant for H0b.00.

Change:

H0b.57 Bus voltage of the control circuit

Hexadecimal: 200b-3Ah Effective Time: -Min.: 0.0 Unit: Max.: 65535.0 Data Type: Default: 0.0 Change: Value Range: 0.0 V to 65535.0 V Description Displays the bus voltage of the control circuit.

H0b.58 Mechanical absolute position (low 32 bits)

Hexadecimal: 200b-3Bh Min.: -2147483647 2147483647 Max.: Default: 0 Value Range:

Effective Time:	-
Unit:	Encoder unit
Data Type:	Int32
Change:	Unchangeable

-2147483647 to 2147483647

Description

Displays the low 32-bit value (encoder unit) of the mechanical position feedback when the absolute encoder is used.

H0b.60 Mechanical absolute position (high 32 bits)

Hexadecimal: 200b-3Dh -2147483647 Min.: Max.: 2147483647 0 Default:

Effective Time: -Encoder unit Unit: Data Type: Int32 Change: Unchangeable

Value Range:

-2147483647 to 2147483647

Description

Displays the high 32-bit value (encoder unit) of the mechanical position feedback when the absolute encoder is used.

H0b.64 Real-time input position reference counter

Hexadecimal: 200b-41h

Effective Time: -

		-2147483648 2147483647 0 2147483647 lue of the pulse reference counter ratio. This value is independent of	_	
H0b.63	3: Bus undervo 4: Soft start fail 5: Encoder initi	0 7 0 nit error power input error Itage	Effective Time: Unit: Data Type: Change:	- UInt16 Unchangeable
H0b.66	Encoder temp Hexadecimal: Min.: Max.: Default: Value Range: -32768°C to 32 Description	200b-43h -32768 32767 0	Effective Time: Unit: Data Type: Change:	- °C Int16 Unchangeable
H0b.70	Number of rev Hexadecimal: Min.: Max.: Default: Value Range: ORev-65535Rev Description	0 65535 0	ute encoder Effective Time: Unit: Data Type: Change:	- Rev Ulnt16 Unchangeable
H0b.71	Single-turn po Hexadecimal: Min.: Max.: Default: Value Range:	Osition fed back by the absolute 200b-48h 0 2147483647 0	e encoder Effective Time: Unit: Data Type: Change:	- Encoder unit UInt32 Unchangeable

0 to 2147483647 **Description** Displays the position feedback of the absolute encoder within one turn.

H0b.73 Single-turn offset position of absolute encoder

 Hexadecimal:
 200b-4Ah

 Min.:
 0

 Max.:
 2147483647

 Default:
 0

 Value Range:
 0

 0 to 2147483647
 Description

Effective Time: -Unit: Encoder unit Data Type: UInt32 Change: Unchangeable

H0b.75 Load inertia ratio in online inertia auto-tuning

 Hexadecimal:
 200b-4Ch

 Min.:
 0.00

 Max.:
 655.35

 Default:
 0.00

 Value Range:
 0.00

 0.00 to 655.35

 Description

Effective Time: -Unit: -Data Type: UInt16 Change: Unchangeable

H0b.76 External load in online inertia auto-tuning

Effective Time: -Unit: -Data Type: UInt16 Change: Unchangeable

H0b.77 Absolute position fed back by the absolute encoder (low 32 bits)

 Hexadecimal:
 200b-4Eh

 Min.:
 -2147483647

 Max.:
 2147483647

 Default:
 0

 Value Range:

 -2147483647 to 2147483647

 Description

Effective Time: -Unit: Encoder unit Data Type: Int32 Change: Unchangeable

H0b.79 Absolute position fed back by the absolute encoder (high 32 bits)

 Hexadecimal:
 200b-50h

 Min.:
 -2147483647

 Max.:
 2147483647

 Default:
 0

 Value Range:

 -2147483647 to 2147483647

Effective Time: -Unit: Encoder unit Data Type: Int32 Change: Unchangeable

Description

H0b.81	Load position	within one turn in abs	olute position rotatior	n mode (low 32 bits)
	Hexadecimal:	200b-52h	Effective Time	e: -
	Min.:	-2147483647	Unit:	Encoder unit
	Max.:	2147483647	Data Type:	Int32
	Default:	0	Change:	Unchangeable
	Value Range:			ger de ger
	-2147483647 t	0 2147483647		
	Description			
	-			
H0b.83			solute position rotation	-
	Hexadecimal:		Effective Time	
	Min.:	-2147483647	Unit:	Encoder unit
	Max.:	2147483647	Data Type:	Int32
	Default:	0	Change:	Unchangeable
	Value Range:			
	-2147483647 t	o 2147483647		
	Description			
	-			
H0b.85	Load position	within one turn in abs	olute position rotatior	n mode
	Hexadecimal:	200b-56h	Effective Time	e: -
	Min.:	-2147483647	Unit:	Reference unit
	Max.:	2147483647	Data Type:	Int32
	Default:	0	Change:	Unchangeable
	Value Range:		0	U U
	-2147483647 to	o 2147483647		
	Description			
	-			
15.13	H0C Comn	nunication Par	ameters	
H0C.00	Drive axis add			
	Hexadecimal:	200C-01h	Effective Time	e: Real time

 Hexadecimal:
 200C-011

 Min.:
 0

 Max.:
 247

 Default:
 1

 Value Range:
 1

Unit: -Data Type: UInt16 Change: Immediately

0 to 247 Description

CAN Indicates the slave node address. Ensure this parameter is consistent with the configuration of the host controller.

H0C.02 Serial baud rate

Hexadecimal:	200C-03h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	6	Data Type:	UInt16

5 Default: Value Range: 0:2400bps

1:4800bps

- 2:9600bps
- 3: 19200bps
- 4:38400bps
- 5: 57600bps
- 6: 115200bps

Description

Setpoint	Baud rate
0	2400bps
1	4800bps
2	9600bps
3	19200bps
4	38400bps
5	57600bps
6	115200bps

H0C.03 Modbus data format

- Hexadecimal: 200C-04h Min.: 0 3 Max.: 0
- Default:

Value Range:

- 0: No parity, 2 stop bits
- 1: Even parity, 1 stop bit
- 2: Odd parity, 1 stop bit
- 3: No parity, 1 stop bit

Description

Defines the data check mode between the servo drive and the host controller during communication.

Setpoint	Data format
0	No check, 2 stop bits
1	Even parity check, 1 stop bit
2	Odd parity check, 1 stop bit
3	No check, 1 stop bits

The data format set in the servo drive must be the same as that in the host controller. Otherwise, communication will fail.

H0C.08 **CAN communication rate**

Hexadecimal:	200C-09h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	8	Data Type:	UInt16
Default:	5	Change:	Immediately
Value Range:			

Effective Time: Real time Unit: Data Type: UInt16 Change: Immediately

Change: Immediately 0: 20K 1: 50K 2: 100K 3: 125K 4: 250K 5: 500K 6: 1M 7: 1M **Description**

It sets the CAN (CANlink or CANopen) communication rate between the servo drive and the host controller. The communication rate set in the servo drive must be the same as that in the host controller. Otherwise, communication will fail. If H0C.08 is set to 6, the baud rate is 1 Mbps. 80% sampling points are used to match most PLCs with a 1M standard baud rate.

If H0C.08 is set to 7, the baud rate is 1 Mbps. 70% sampling points are used to match most PLCs with a 1M non-standard (deviated) baud rate. Reducing sampling points can also reduce error frames.

Setpoint	Baud rate
0	20K
1	50K
2	100K
3	125К
4	250K
5	500K
6	1M
7	1M

H0C.09 Communication VDI

Hexadecimal:	200C-0Ah	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0: Disabled			
1: Enabled			

1: Enabled **Description**

To use the VDI function:

- 1. Set H0C.09 to enable VDI.
- 2. Set the default level after power-on through H0C.10.
- 3. Set the DI function of the VDI terminal through parameters in group H17.
- 4. Set VDI output through H31.00.

H0C.10 VDI default value upon power-on

 Hexadecimal:
 200C-0Bh

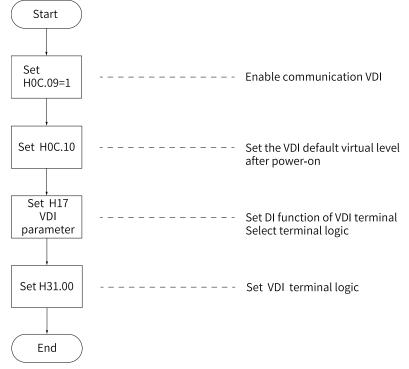
 Min.:
 0

 Max.:
 65535

 Default:
 0

 Value Range:

 0-65535


 Description

Effective Time:	Upon the next power-on
Unit:	-
Data Type:	UInt16
Change:	Immediately

Configures the initial value of VDI upon power-on. Bit 0 corresponds to VDI1. Bit 1 corresponds to VDI2. ...

bit15 corresponds to VDI16.

Use the VDI according to the following procedure:

H0C.11 Communication VDO

Hexadecimal:	200C-0Ch	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0: Disabled			
1: Enabled			

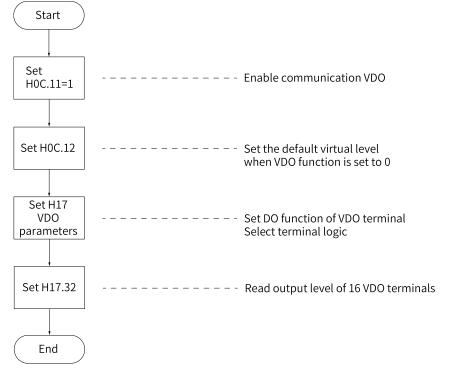
Description

To use the VDO function:

1. Enable VDO through H0C.11.

2. Set the default level after power-on through H0C.12.

- 3. Set the DO function of the VDO terminal through parameters in group H17.
- 4: Read the output level of the VDO terminal through H17.32.


H0C.12 Default level of the VDO allocated with function 0

Hexadecimal:	200C-0Dh	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0 to 65535			
Description			

Used to configure the initial values of VDO upon power-on. bit0 corresponds to VDO1. bit1 corresponds to VDO2. ...

bit15 corresponds to VDO16.

Use the VDO according to the following procedure:

H0C.13 Update parameter values written through communication to EEPROM

Hexadecimal:	200C-0Eh	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	1	Change:	Immediately
Value Range:			
0: Not update E	EPROM		
1: Update EEPR	OM		
Description			
-			

H0C.14 Modbus error code

Hexadecimal:	200C-0Fh	Effective Time:	-
Min.:	0	Unit:	-
Max.:	4	Data Type:	UInt16
Default:	2	Change:	Unchangeable
Value Range:			
0: N/A			
1: Illegal param	neter (command code)		

2: Command code data address

3: Illegal data

4: Slave device fault

Description

-			

H0C.16 Update parameter values written through CAN communication to EEPROM

Hexadecimal: 200C-11h Min.: 0 Max.: 1 Default: 0 **Value Range:** 0: Not update EEPROM 1: Update EEPROM Effective Time: Real time Unit: -Data Type: UInt16 Change: Immediately

H0C.25 Modbus command response delay

Hexadecimal:	200C-1Ah	Effective Time:	Real time
Min.:	0	Unit:	ms
Max.:	20	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Range:			
0 ms to 20 ms			

Description

Min.:

Max.:

0 1

Description

Defines the delay from the moment when the slave receives a command from the host controller to the moment when the slave returns a response.

H0C.26 Modbus communication data sequence

HUC.20	Moubus com	nunication uata sequence		
	Hexadecimal:	200C-1Bh	Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	1	Change:	Immediately
	Value Range:			
	0: High 16 bits	before low 16 bits		
	1: Low 16 bits	before high 16 bits		
	Description			
	-			
H0C.30	Modbus error	frame format		
	Hexadecimal:	200C-1Fh	Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	1	Change:	Immediately
	Value Range:			
	0: Old protoco	l		
	1: New protoc	ol (standard)		
	Description			
	-			
H0C.31		ving selection		
	Hexadecimal:	200C-20h	Effective Time:	Upon the next power-on

)0C-20h	Effective Time:	Upon the next po
	Unit:	-
	Data Type:	UInt16

Default: 0 Value Range: 0: Receiving interrupt enabled 1: Current loop interrupt inquiry Description Change: Immediately

15.14 H0d Auxiliary Parameters

H0d.00 Software Reset

Hexadecimal:200d-01hMin.:0Max.:1Default:0Value Range:0: No operation

Effective Time: Real time Unit: -Data Type: UInt16 Change: At stop

Effective Time: Real time

UInt16

At stop

1: Enable Description

Programs in the drive are reset automatically (similar to the program reset upon power-on) after the software reset function is enabled, without the need for a power cycle.

Unit:

Data Type:

Change:

H0d.01 Fault Reset

Hexadecimal:200d-02hMin.:0Max.:1Default:0

Value Range:

0: No operation

1: Enable

Description

When a No. 1 or No. 2 resettable fault occurs, you can enable the fault reset function in the nonoperational state after rectifying the fault cause, stopping the keypad from displaying the fault and allowing the drive to enter the "rdy" state.

When a No. 3 warning occurs, you can enable the fault reset function directly, regardless of the servo drive status.

Defines whether to enable fault reset.

Setpoint	Function	Remarks
0	No operation	-
1	Fault Reset	 When a No. 1 or No. 2 resettable fault occurs, you can enable the fault reset function in the non-operational state after rectifying the fault cause, stopping the keypad from displaying the fault and allowing the drive to enter the "rdy" state. When a No. 3 warning occurs, you can enable the fault reset function directly, regardless of the servo drive status.

H0d.02	Inertia auto-t Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65 Description	0 65 0		Effective Time: Unit: Data Type: Change:	Real time - UInt16 At stop
H0d.03	Initial angle a Hexadecimal: Min.: Max.: Default: Value Range: 0: No operatio 1: Enabled Description	200d-04h 0 1 0		Effective Time: Unit: Data Type: Change:	- - UInt16 At stop
H0d.04	Read/write in Hexadecimal: Min.: Max.: Default: Value Range: 0: No operatio 1: Write ROM 2: Read ROM Description	0 2 0		Effective Time: Unit: Data Type: Change:	Real time - UInt16 At stop
H0d.05	Emergency st Hexadecimal: Min.: Max.: Default: Value Range: 0: No operatio 1: Emergency Description	200d-06h 0 1 0 n stop		Effective Time: Unit: Data Type: Change:	- UInt16 Immediately
		Setpoint		Fu	nction
		0	No operation		
		1	Emergency stop		

H0d.06 Current loop parameter auto-tuning

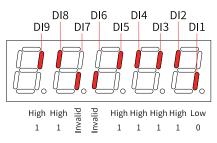
Hexadecimal:	200d-07h
Min.:	0
Max.:	2

Effective Time: Real time Unit: -Data Type: UInt16 H0d.12

H0d.17

H0d.18

Description


	Default:	0	Change:	At stop
	Value Range:		U	·
	0: No operation	1		
	1: Save parame	ters		
	2: Do not save p			
	Description			
	-			
2	Phase U/V cur	rent balance correction		
	Hexadecimal:	200d-0Dh	Effective Time:	-
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 1			
	Description			
	-			
•	Forced DI/DO		.	
	Hexadecimal:		Effective Time:	Real time
	Min.:	0	Unit:	-
	Max.:	3	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:			
	0: No operation			
		abled, forced DO disabled		
	2: Forced DO er	nabled, forced DI disabled		
	3: Forced DI an	d DO enabled		
	Description			
	Forced DI/DO s	election.		
,	Forced DI setti	ing		
•	Hexadecimal:	•	Effective Time:	Pool time
	Min.:	0	Unit:	-
	Max.:	511	Data Type:	UInt16
	Default:	511	Change:	Immediately
	Value Range:		e.iuiigei	
	0–511			

Defines whether the DI functions set in group H03 is active when forced DI is activated (H0d.17 = 1 or 3).

The value of H0d.18 is displayed as a hexadecimal on the keypad. When it is converted to a binary value, "bit(n) = 1" indicates the level logic of DI function is high level; "bit(n) = 0" indicates the level logic of the DI function is low level.

Example:

H0d.18 value is 414 (decimal), and the corresponding binary value is 110011110, indicating that DI1 is low level and DI2 to DI9 are high level. The nine DI levels can also be monitored through H0b.03 (Monitored DI states).

View also the DI terminal logic in group H03 when checking whether a DI function is valid.

H0d.19 Forced DO setting

 Hexadecimal:
 200d-14h

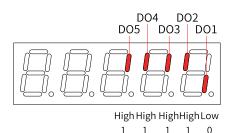
 Min.:
 0

 Max.:
 31

 Default:
 0

 Value Range:
 0

 0-31
 Jescription


Effective Time: Real time Unit: -Data Type: UInt16 Change: Immediately

Defines whether the DO functions assigned in group H04 are active when forced DO is active (H0d.17 = 2 or 3).

The value of H0d.19 is displayed as a hexadecimal on the keypad. When it is converted to a binary value, "bit(n) = 1" indicates the DO function is active; "bit(n) = 0" indicates the DO function is inactive.

Example:

If H0d.19 value is 30 (decimal), the corresponding binary is 11110, indicating that the DO1 function is invalid and functions of DO2 to DO5 are valid. The DO levels obtained based on the DO logics in group H04 and viewed in H0b.05 are shown as below:Assume that DO1 to DO5 logics in group H04 use 0 to indicate low level output at function valid.

H0d.20 Multi-turn absolute encoder reset Hexadecimal: 200d-15h

Effective Time: Real time

Min.:	0	Unit:	-
Max.:	2	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			

0: No operation

1 Reset

2: Reset the fault and multi-turn data

Description

You can reset the encoder error or the multi-turn data fed back by the encoder by setting H0d.20.

ĺ	Setpoint	Function
	0	No operation
	1	Reset encoder fault
	2	Reset encoder fault and multi-turn data

15.15 H11 Multi-Position Function Parameters

H11.00 Multi-position operation mode

Hexadecimal:	2011-01h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	5	Data Type:	UInt16
Default:	1	Change:	At stop
Value Range:			

0: Single run (number of displacements selected in H11.01)

1: Cyclic operation (number of displacement selected in H11.01)

2: DI-based operation (selected by DI)

3: Sequential operation

5: Axis-controlled continuous operation

Description

Setpoint	Operation Mode	Remarks	Operation Curve
0	Individual operation	 The drive stops after one cycle of operation. The drive switches to the next displacement automatically. The interval time between displacements can be set as needed. The PoslnSen (multi-position reference enable) signal is level-triggered. 	$V_{1max} \xrightarrow{V_{2max}} \xrightarrow{Displacement 1} \xrightarrow{Displacement 1} \xrightarrow{V_{2max}} \xrightarrow{V_{2max}} \xrightarrow{Ime} \xrightarrow{Ime} (t)$ $V_{1max}, V_{2max} : maximum operating speeds in displacement 1 and displacement 2$ $S_1, S_2 : displacement 1 and displacement 2$
1	Cyclic operation	 The drive starts from displacement 1 again after each cycle of operation. The drive switches to the next displacement automatically. The interval time between displacements can be set as needed. The cyclic operation mode is kept when the FunIN.28 (Multi-position reference enable) is active. The PosInSen (multi-position reference enable) signal is level-triggered. 	$V_{1max} \xrightarrow{V_{2max}} V_{2max} \xrightarrow{V_{2max}} \overbrace{- \\ S_1} \xrightarrow{- \\ S_2} \xrightarrow{- \\ S_2} \xrightarrow{- \\ Waiting time}} Time (t)$ $V_{1max}, V_{2max} : maximum operating speeds in displacement 1 and displacement 2$ $S_1, S_2 : displacement 1 and displacement 2$
2	DI-based operation	 The displacement to be executed next can be set when the current displacement is in progress. The motor stops after current displacement is done executing. After the PoslnSen (position reference enable) signal is enabled again, the present displacement will be executed. The speed No. is determined by the DI logic. The interval time between displacements is determined by the command delay of the host controller. The PoslnSen (multi-position reference enable) signal is edge- triggered. 	Speed (V) $V_x \max_{activated}$ $V_y \max_{activated}$

Setpoint	Operation Mode	Remarks	Operation Curve
3	Sequential operation	 The drive stops after one cycle of operation. (H11.05 = 0 or H11.05 > H11.01). The starting displacement after the first cycle of operation is defined by H11.05. The drive switches to the next displacement automatically. There is no interval time between displacements. The PoslnSen (multi-position reference enable) signal is level-triggered. 	$V_{1max} \xrightarrow{V_{2max}} \xrightarrow{V_{2max}} \xrightarrow{Displacement 1} \underbrace{V_{1max}}_{V_{2max}} \xrightarrow{V_{2max}} \xrightarrow{Displacement 2} \underbrace{V_{2max}}_{I} \xrightarrow{I} V_{2ma$
5	Axis-controlled continuous operation	 The drives executes one displacement only. The individual operation mode, and interrupted operation mode are included. The PosInSen (multi-position reference enable) signal is level-triggered. 	 Individual operation Individual operation Multi-pose enable trigger H11.12 D023=1 The PosInSen (multi-position reference enable) signal is triggered only once (FunIN.39/38 triggered later). The drive stops after executing the distance defined by H11.12. Sequential operation Multi-pos enable trigger with a st H11.12 position reached with a st H11.12 position reference enable) signal is triggered only once. Write H11.12 again and activate FunIN.39 when the distance defined by the first H11.12 is done. Then it starts to execute the second H11.12 directly. The travel distance therefore is the sum of the first H11.12 and the second H11.12. Interrupted operation Multi-pos enable trigger with the second H11.12. Interrupted operation Multi-posenable with the second H11.12 with the first H11.12 (such as 1000000) again and activate FunIN.38 when the first H11.12 (such as 9000000) is still in progress. After receiving the new distance (or speed), which is the second H11.12.

To use the multi-position function, assign FunIN.28 (PosInSen, multi-position reference enable) to a DI first. See "Group H03: Terminal input parameters" for the setting mode.

The positioning completed (COIN) signal is activated each time upon completion of a displacement. To determine whether a certain displacement is done executing, use FunOUT.5 (COIN, positioning completed). See "Group H04: Terminal output parameters" for details.

Ensure the S-ON signal is active during operation of each displacement. Otherwise, the drive stops immediately as defined by H02.05 (Stop mode at S-ON OFF) and the positioning completed (COIN) signal in inactive. In modes other than DI-based operation, if the S-ON signal is active but multiposition is disabled during operation of a certain displacement, the drive abandons the unsent displacement reference and stops, with the positioning completed (COIN) signal being active. If the multi-position function is enabled again, the displacement to be executed is defined by H11.02.

H11.01 Number of displacement references in multi-position mode

Hexadecimal:	2011-02h	Effective Time:	Real time
Min.:	1	Unit:	-
Max.:	16	Data Type:	UInt16
Default:	1	Change:	At stop
Value Range:			
1 + - 10			

1 to 16

Description

Defines the total number of displacement references in the multi-position mode. You can set different displacements, operating speeds, and acceleration/deceleration time for each displacement.

H11.00 \neq 2: Displacements are switched automatically in a sequence from 1, 2...H11.01. H11.00 = 2: Assign four DIs (hardware DI or VDI) with DI functions 6 to 9 (FunIN.6: CMD1 to FunIN.9: CMD4) and you can switch between different speeds by controlling the DI logic through the host controller. The segment No. is a 4-bit binary value. Bit0 to bit 3 correspond to CMD1 to CMD4.

The displacement No. is a 4-bit binary value. The relationship between the displacement numbers and CMD1...CMD4 is shown in the following table.

FunIN.9	FunIN.8	FunIN.7	FunIN.6	Segment No.
CMD4	CMD3	CMD2	CMD1	Segment No.
0	0	0	0	1
0	0	0	1	2
		•••		
1	1	1	1	16

H11.02 Starting displacement No. after pause

U .	•	
Hexadecimal:	2011-03h	
Min.:	0	
Max.:	1	
Default:	0	

Effective Time: Real time Unit: Data Type: UInt16 Change: At stop

Value Range:

0: Continue to execute the unexecuted displacements

1: Start from displacement 1

Description

Defines the starting displacement No. when the multi-position operation recovers from a pause. Pause:

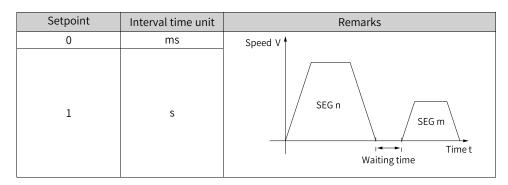
1. The servo drive switches to another control mode or the interrupt positioning function is enabled during multi-position operation.

2. The internal multi-position enable signal (FunIN.28:PosInSen) changes from "active" to	
"inactive".	

Setpoint	Starting displacement No. after pause	Remarks
0	Complete the remaining distance	For example, if H11.01 = 16 and the servo drive pauses when running to the 2nd position, it starts running from the 3rd position after restoring the multi-position running.
1	Start running again from 1st position	For example, if H11.01 = 16 and the servo drive pauses when running to the 2nd position, it starts running from the 1st position after restoring the multi-position running.

H11.03 Interval time unit

Hexadecimal:	2011-04h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0			


0: ms

1: s Description

Defines the unit of acceleration/deceleration time and the interval time during multi-position operation.

Acceleration/Deceleration time: time for the motor to change from 0 rpm to 1000 rpm at a constant speed.

Interval time: interval time that starts from the end of the last reference to the beginning of the next reference

When H11.00 = 3 (Sequential running), H11.03 is invalid, and there is no waiting time between positions.

When H11.00 = 2 (DI switchover), H11.03 is invalid, and the time interval between positions is determined by the delay time command from the host controller.

H11.04 Displacement reference type

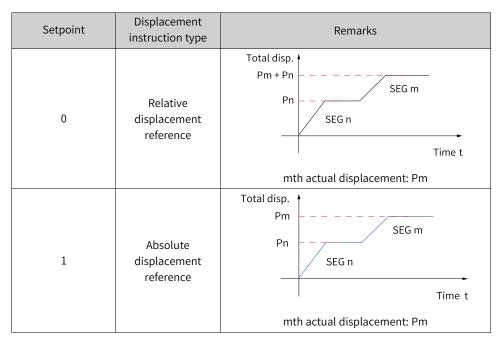
Hexadecimal:	2011-05h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	Immediately

Value Range:

0: Relative displacement reference

1: Absolute displacement reference

Description


Relative displacement: position increment of the target position relative to the current motor position

Absolute displacement: position increment of the target position relative to the motor home.

It sets the displacement reference type when the multi-position function is used.

Displacement reference: sum of position references in a certain period.

Relative displacement: position increment of the target position relative to the current motor position. Absolute displacement: position increment of the target position relative to motor home position. For example, the displacements of the nth position and mth position are Pn (Pn > 0) and Pm (Pm > 0) respectively. Suppose Pm is larger than Pn, the comparison diagram will be as follows.

When the actual displacement is a negative value, the motor runs in the reverse direction.

H11.05 Starting displacement No. in sequential operation

Hexadecimal:	2011-06h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	16	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0–16			
Description			

Defines whether to perform cyclic operation and the starting displacement No. after the first cycle of operation in the sequential operation mode (H11.00 = 3).

Setpoint	Starting displacement No. in sequential operation	Remarks
0	Not cyclic	The servo drive runs positions set in H11.01 only once, and stops after the running is completed. Then, the motor becomes in locked state.
1-16	1–16	The drive operates cyclically, with the starting displacement No. defined by H11.05 after the first cycle of operation. The value of H11.05 should be lower than or equal to H11.01.

H11.09	Deceleration u Hexadecimal: Min.: Max.: Default: Value Range: 0 ms to 65535 m Description	0 65535 65535	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately
H11.10	Start speed of Hexadecimal: Min.: Max.: Default: Value Range: Orpm–6000rpm Description	0 6000 0	Effective Time: Unit: Data Type: Change:	Real time rpm UInt16 Immediately
H11.11	Stop speed of Hexadecimal: Min.: Max.: Default: Value Range: Orpm-6000rpm Description	0 6000 0	Effective Time: Unit: Data Type: Change:	Real time rpm UInt16 Immediately
H11.12	Displacement Hexadecimal: Min.: Max.: Default: Value Range: -1073741824 to	2011-0Dh -1073741824 1073741824 10000	Effective Time: Unit: Data Type: Change:	Real time Reference unit Int32 Immediately

Description

Defines displacement 1 (reference unit) in multi-position operation.

H11.14 Max. speed of displacement 1

 Hexadecimal:
 2011-0Fh

 Min.:
 1

 Max.:
 6000

 Default:
 200

Effective Time: Real time Unit: rpm Data Type: UInt16 Change: Immediately

Value Range:

1 rpm to 6000 rpm

Description

Defines the maximum speed of displacement 1 in multi-position operation. The maximum speed is the average operating speed when the motor is not in the acceleration/ deceleration process. If H11.12 is set to a too low value, the actual motor speed will be lower than H11.14.

H11.15 Acc/Dec time of displacement 1

 Hexadecimal:
 2011-10h

 Min.:
 0

 Max.:
 65535

 Default:
 10

 Value Range:
 10

Effective Time: Real time Unit: ms Data Type: UInt16 Change: Immediately

0 ms to 65535 ms

Description

Defines the time for the motor to change from 0 rpm 1000 rpm at a constant speed during displacement 1.

Actual time needed for accelerating to H11.14 (Max. speed of displacement 1):

 $t = \frac{(H11.14) \times (H11.15)}{1000}$

Note: The rigidity must be good, and the speed loop can follow the position command.

H11.16 Interval time after displacement 1

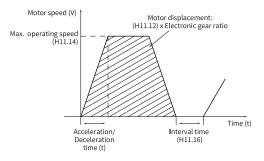
 Hexadecimal:
 2011-11h

 Min.:
 0

 Max.:
 10000

 Default:
 10

 Value Range:
 0


 0
 ms(s) to 1000 ms(s)

Effective Time: Real time Unit: ms (s) Data Type: UInt16 Change: Immediately

0 ms(s) to 10000 ms(s)

Description

Defines the interval time that starts from the end of displacement 1 to the beginning of the next displacement.

H11.17	Displacement	2				
	Hexadecimal:	2011-12h	Effective Time:	Real time		
	Min.:	-1073741824	Unit:	Reference unit		
	Max.:	1073741824	Data Type:	Int32		
	Default:	10000	Change:	Immediately		
	Value Range:					
	-1073741824 to	0 1073741824				
	Description					
H11.19		displacement 2				
	Hexadecimal:		Effective Time:			
	Min.:	1	Unit:	rpm		
	Max.:	6000	Data Type:	UInt16		
	Default:	200	Change:	Immediately		
	Value Range:					
	1 rpm to 6000 i	pm				
	Description -					
H11.20	Acc/Dec time	of displacement 2				
1111.20	Hexadecimal:	-	Effective Time:	Real time		
	Min.:	0	Unit:	ms		
	Max.:	65535	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:		0			
	0 ms to 65535 ms					
	Description					
	-					
H11.21	Interval time	after displacement 2				
	Hexadecimal:	2011-16h	Effective Time:	Real time		
	Min.:	0	Unit:	ms (s)		
	Max.:	10000	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:					
	0 ms(s) to 10000 ms(s)					
	Description -					
H11.22	Displacement	3				
	Hexadecimal:		Effective Time:	Real time		
	Min.:	-1073741824	Unit:	Reference unit		
	Max.:	1073741824	Data Type:	Int32		
	Default:	10000	Change:	Immediately		
	Value Range:		8			
	-1073741824 to 1073741824					
	Description					
	-					
H11.24		displacement 3	Effective Time	Deal time -		
	Hexadecimal:	2011-1311	Effective Time:	Real lille		

	Min.:	1	Unit:	rpm
	Max.:	6000	Data Type:	UInt16
	Default:	200	Change:	Immediately
	Value Range:			
	1 rpm to 6000	rpm		
	Description -			
H11.25	Acc/Dec time Hexadecimal:	of displacement 3	Effective Time:	Dool time
		2011-1AN 0	Unit:	ms
	Min.: Max.:	65535		
		10	Data Type:	UInt16
	Default:	10	Change:	Immediately
	Value Range:			
	0 ms to 65535	ms		
	Description -			
H11.26	Interval time	after displacement 3		
	Hexadecimal:	-	Effective Time:	Real time
	Min.:	0	Unit:	ms (s)
	Max.:	10000	Data Type:	UInt16
	Default:	10	Change:	Immediately
	Value Range:	10	chunge.	minediately
	0 ms(s) to 1000	0 ms(s)		
	Description	50 113(5)		
	-			
H11.27	Displacement	: 4		
	Hexadecimal:		Effective Time:	Real time
	Min.:	-1073741824	Unit:	Reference unit
	Max.:	1073741824	Data Type:	Int32
	Default:	10000		Immediately
	Value Range:		enanger	
	-1073741824 to	1073741824		
	Description	5 1015141024		
	-			
H11.29	Max. speed of	displacement 4		
	Hexadecimal:	2011-1Eh	Effective Time:	Real time
	Min.:	1	Unit:	rpm
	Max.:	6000	Data Type:	UInt16
	Default:	200	Change:	Immediately
	Value Range:		0	
	1 rpm to 6000	rpm		
	Description	r.		
	-			
H11.30	Acc/Dec time	of displacement 4		
H11.30	Acc/Dec time Hexadecimal:	-	Effective Time:	Real time
H11.30		-	Effective Time: Unit:	Real time ms

	Default: Value Range: 0 ms to 65535 r Description		Change:	Immediately
H11.31	Interval time a Hexadecimal: Min.: Max.: Default: Value Range: 0 ms(s) to 1000 Description	0 10000 10	Effective Time: Unit: Data Type: Change:	Real time ms (s) UInt16 Immediately
H11.32	Displacement Hexadecimal: Min.: Max.: Default: Value Range: -1073741824 to Description	2011-21h -1073741824 1073741824 10000	Effective Time: Unit: Data Type: Change:	Real time Reference unit Int32 Immediately
H11.34	Max. speed of Hexadecimal: Min.: Max.: Default: Value Range: 1 rpm to 6000 r Description	1 6000 200	Effective Time: Unit: Data Type: Change:	Real time rpm UInt16 Immediately
H11.35	Acc/Dec time of Hexadecimal: Min.: Max.: Default: Value Range: 0 ms to 65535 m Description	0 65535 10	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately
H11.36	Interval time a Hexadecimal: Min.: Max.: Default: Value Range:	after displacement 5 2011-25h 0 10000 10	Effective Time: Unit: Data Type: Change:	Real time ms (s) UInt16 Immediately

```
0 ms(s) to 10000 ms(s)
Description
```

H11.37	Displacement Hexadecimal: Min.: Max.: Default: Value Range: -1073741824 to Description	2011-26h -1073741824 1073741824 10000	Effective Time: Unit: Data Type: Change:	Real time Reference unit Int32 Immediately
H11.39	Max. speed of Hexadecimal: Min.: Max.: Default: Value Range: 1 rpm to 6000 Description	1 6000 200	Effective Time: Unit: Data Type: Change:	Real time rpm UInt16 Immediately
H11.40	Acc/Dec time Hexadecimal: Min.: Max.: Default: Value Range: 0 ms to 65535 Description	0 65535 10	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately
H11.41	Interval time Hexadecimal: Min.: Max.: Default: Value Range: 0 ms(s) to 1000 Description	0 10000 10	Effective Time: Unit: Data Type: Change:	Real time ms (s) UInt16 Immediately
H11.42	Displacement Hexadecimal: Min.: Max.: Default: Value Range: -1073741824 to	2011-2Bh -1073741824 1073741824 10000	Effective Time: Unit: Data Type: Change:	Real time Reference unit Int32 Immediately

_

Description

H11.44	Max. speed of displacement 7				
	Hexadecimal:	-	Effective Time:	Real time	
	Min.:	1	Unit:	rpm	
	Max.:	6000	Data Type:	UInt16	
	Default:	200	Change:	Immediately	
	Value Range:		8		
	1 rpm to 6000 r	nm			
	Description	þin			
	-				
H11.45	Acc/Dec time of	of displacement 7			
	Hexadecimal:	2011-2Eh	Effective Time:	Real time	
	Min.:	0	Unit:	ms	
	Max.:	65535	Data Type:	UInt16	
	Default:	10	Change:	Immediately	
	Value Range:		0	,	
	0 ms to 65535 r	ns			
	Description				
	-				
H11.46	Interval time a	after displacement 7			
	Hexadecimal:	2011-2Fh	Effective Time:	Real time	
	Min.:	0	Unit:	ms (s)	
	Max.:	10000	Data Type:	UInt16	
	Default:	10	Change:	Immediately	
	Value Range:		U U	-	
	0 ms(s) to 1000	0 ms(s)			
	Description	0			
	-				
H11.47	Displacement	8			
	Hexadecimal:	2011-30h	Effective Time:	Real time	
	Min.:	-1073741824	Unit:	Reference unit	
	Max.:	1073741824	Data Type:	Int32	
	Default:	10000	Change:	Immediately	
	Value Range:		0	2	
	-1073741824 to	1073741824			
	Description				
	-				
H11.49	-	displacement 8			
	Hexadecimal:	2011-32h	Effective Time:		
	Min.:	1	Unit:	rpm	
	Max.:	6000	Data Type:	UInt16	
	Default:	200	Change:	Immediately	
	Value Range:		5	2	
	1 rpm to 6000 r	m			
	Description				
	-				

H11.50	Acc/Dec time of	of displacement 8				
	Hexadecimal:	2011-33h	Effective Time:	Real time		
	Min.:	0	Unit:	ms		
	Max.:	65535	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:		enangei	minediatety		
	0 ms to 65535 r	ns				
	Description	113				
	-					
H11.51	Intorval time	after displacement 8				
1111.51	Hexadecimal:	-	Effective Time:	Deal time		
	Min.:	0	Unit:			
	Min.: Max.:	10000		ms (s)		
		10000	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:					
	0 ms(s) to 1000	0 ms(s)				
	Description -					
H11.52	Displacement	0				
HII.JZ	Hexadecimal:		Effective Time:	Deal time		
	Min.:	-1073741824	Unit:			
	Min Max.:			Reference unit		
		1073741824	Data Type:	Int32		
	Default:	10000	Change:	Immediately		
	Value Range:	1072741024				
	-1073741824 to	0 10/3/41824				
	Description					
	-					
H11.54	Max. speed of	displacement 9				
	Hexadecimal:	2011-37h	Effective Time:	Real time		
	Min.:	1	Unit:	rpm		
	Max.:	6000	Data Type:	UInt16		
	Default:	200	Change:	Immediately		
	Value Range:					
	1 rpm to 6000 rpm					
	Description					
	-					
H11.55	Acc/Dec time of	of displacement 9				
	Hexadecimal:	2011-38h	Effective Time:	Real time		
	Min.:	0	Unit:	ms		
	Max.:	65535	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:		-	-		
	0 ms to 65535 r	ns				
	Description					
H11.56		after displacement 9				
	Hexadecimal:	2011-39h	Effective Time:	Real time		

Max.:

1073741824

	Min.: Max.: Default: Value Range: 0 ms(s) to 1000 Description	0 10000 10 00 ms(s)	Unit: Data Type: Change:	ms (s) UInt16 Immediately
H11.57	Displacement Hexadecimal: Min.: Max.: Default: Value Range: -1073741824 to Description	2011-3Ah -1073741824 1073741824 10000	Effective Time: Unit: Data Type: Change:	Real time Reference unit Int32 Immediately
H11.59	Max. speed of Hexadecimal: Min.: Max.: Default: Value Range: 1 rpm to 6000 Description	1 6000 200	Effective Time: Unit: Data Type: Change:	Real time rpm UInt16 Immediately
H11.60	Acc/Dec time Hexadecimal: Min.: Max.: Default: Value Range: 0 ms to 65535 Description	0 65535 10	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately
H11.61	Interval time Hexadecimal: Min.: Max.: Default: Value Range: 0 ms(s) to 1000 Description	0 10000 10	Effective Time: Unit: Data Type: Change:	Real time ms (s) UInt16 Immediately
H11.62	Displacement Hexadecimal: Min.:		Effective Time: Unit:	Real time Reference unit

Data Type:

Int32

	Default: Value Range:	10000	Change:	Immediately
	-1073741824 to Description -	0 1073741824		
H11.64	Max. speed of Hexadecimal: Min.: Max.: Default: Value Range: 1 rpm to 6000 Description	1 6000 200	Effective Time: Unit: Data Type: Change:	Real time rpm UInt16 Immediately
H11.65	Acc/Dec time Hexadecimal: Min.: Max.: Default: Value Range: 0 ms to 65535 Description	0 65535 10	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately
H11.66	Interval time Hexadecimal: Min.: Max.: Default: Value Range: 0 ms(s) to 1000 Description	0 10000 10	Effective Time: Unit: Data Type: Change:	Real time ms (s) UInt16 Immediately
H11.67	Displacement Hexadecimal: Min.: Max.: Default: Value Range: -1073741824 to Description	2011-44h -1073741824 1073741824 10000	Effective Time: Unit: Data Type: Change:	Real time Reference unit Int32 Immediately
H11.69	Max. speed of Hexadecimal: Min.: Max.: Default: Value Range:	displacement 12 2011-46h 1 6000 200	Effective Time: Unit: Data Type: Change:	Real time rpm UInt16 Immediately

	1 rpm to 6000 r Description -	pm		
H11.70	Acc/Dec time of Hexadecimal: Min.: Max.: Default: Value Range: 0 ms to 65535 m Description	0 65535 10	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately
H11.71	Interval time a Hexadecimal: Min.: Max.: Default: Value Range: 0 ms(s) to 1000 Description	0 10000 10	Effective Time: Unit: Data Type: Change:	Real time ms (s) UInt16 Immediately
H11.72	Displacement Hexadecimal: Min.: Max.: Default: Value Range: -1073741824 to Description	2011-49h -1073741824 1073741824 10000	Effective Time: Unit: Data Type: Change:	Real time Reference unit Int32 Immediately
H11.74	Max. speed of Hexadecimal: Min.: Max.: Default: Value Range: 1 rpm to 6000 r Description	1 6000 200	Effective Time: Unit: Data Type: Change:	Real time rpm UInt16 Immediately
H11.75	Acc/Dec time of Hexadecimal: Min.: Max.: Default: Value Range: 0 ms to 65535 m	of displacement 13 2011-4Ch 0 65535 10 ms	Effective Time: Unit: Data Type: Change:	Real time ms UInt16 Immediately

Description

. .

H11.76	Interval time after displacement 13					
	Hexadecimal:	2011-4Dh	Effective Time:	Real time		
	Min.:	0	Unit:	ms (s)		
	Max.:	10000	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:		U	2		
	0 ms(s) to 1000	0 ms(s)				
	Description					
	-					
H11.77	Displacement	14				
	Hexadecimal:	2011-4Eh	Effective Time:	Real time		
	Min.:	-1073741824	Unit:	Reference unit		
	Max.:	1073741824	Data Type:	Int32		
	Default:	10000	Change:	Immediately		
	Value Range:		0	,		
	-1073741824 to	1073741824				
	Description					
	-					
H11.79	Max. speed of	displacement 14				
	Hexadecimal:	-	Effective Time:	Real time		
	Min.:	1	Unit:	rpm		
	Max.:	6000	Data Type:	UInt16		
	Default:	200	Change:	Immediately		
	Value Range:		0	<i>,</i>		
	1 rpm to 6000 r	m				
	Description	F				
	-					
H11.80	Acc/Dec time of	of displacement 14				
	Hexadecimal:	2011-51h	Effective Time:	Real time		
	Min.:	0	Unit:	ms		
	Max.:	65535	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:					
	0 ms to 65535 ms					
	Description					
	-					
H11.81	Interval time a	after displacement 14				
	Hexadecimal:	2011-52h	Effective Time:	Real time		
	Min.:	0	Unit:	ms (s)		
	Max.:	10000	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:		-			
	0 ms(s) to 1000	0 ms(s)				
	Description	、 <i>,</i>				
	-					

H11.82	Displacement	Displacement 15				
	Hexadecimal:		Effective Time:	Real time		
	Min.:	-1073741824	Unit:	Reference unit		
	Max.:	1073741824	Data Type:	Int32		
	Default:	10000				
		10000	Change:	Immediately		
	Value Range:					
	-1073741824 to	b 1073741824				
	Description -					
H11.84	Max. speed of	displacement 15				
	Hexadecimal:	2011-55h	Effective Time:	Real time		
	Min.:	1	Unit:	rpm		
	Max.:	6000	Data Type:	UInt16		
	Default:	200	Change:	Immediately		
	Value Range:	200	chunge.	minediatety		
	1 rpm to 6000	rom				
	Description					
1111 05		of diam la company 15				
H11.85	•	of displacement 15				
	Hexadecimal:		Effective Time:			
	Min.:	0	Unit:	ms		
	Max.:	65535	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:					
	0 ms to 65535 ms					
	Description					
	-					
H11.86	Interval time	after displacement 15				
	Hexadecimal:	2011-57h	Effective Time:	Real time		
	Min.:	0	Unit:	ms (s)		
	Max.:	10000	Data Type:	UInt16		
	Default:	10	Change:	Immediately		
	Value Range:		8			
	0 ms(s) to 10000 ms(s)					
	Description					
	-					
H11.87	Displacement					
	Hexadecimal:		Effective Time:	Real time		
	Min.:	-1073741824	Unit:	Reference unit		
	Max.:	1073741824	Data Type:	Int32		
	Default:	10000	Change:	Immediately		
	Value Range:					
	-1073741824 to	0 1073741824				
	Description					
	-					
H11.89		displacement 16		5 1.1		
	Hexadecimal:	2011-5Ah	Effective Time:	keal time		

	Min.: Max.: Default: Value Range: 1 rpm to 6000 Description	1 6000 200 rpm	Unit: Data Type: Change:	rpm UInt16 Immediately
H11.90	Acc/Dec time	of displacement 16		
	Hexadecimal:	2022 0011	Effective Time:	neur unie
	Min.:	0	Unit:	ms
	Max.:	65535	Data Type:	UInt16
	Default:	10	Change:	Immediately
	Value Range:			
	0 ms to 65535	ms		
	Description			
	-			
H11.91	Interval time	after displacement 16		
	Hexadecimal:	2011-5Ch	Effective Time:	Real time
	Min.:	0	Unit:	ms (s)
	Max.:	10000	Data Type:	UInt16
	Default:	10	Change:	Immediately
	Value Range:			
	0 ms(s) to 1000	00 ms(s)		
	Description			

15.16 H12 Multi-Speed Operation References

H12.00 Multi-speed operation mode

-

Hexadecimal:	2012-01h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	2	Data Type:	UInt16
Default:	1	Change:	At stop

Value Range:

0: Stop after running for one cycle (number of speeds defined by H12.01)

1: Cyclic operation (number of speeds defined by H12.01)

2: DI-based operation

Description

Defines the multi-speed operation mode when the speed reference source is multi-speed reference (H06.01 = 5, H06.02 = 1/2/3) in the speed control mode.

Speed arrival (FunOUT.19: V-Arr) signal is valid when a certain speed reference reaches the set value.

Set point	Operation Mode	Remarks	Operation Curve
0	Individual operation	The drive stops after one cycle of operation. The drive switches to the next displacement automatically.	Speed (V) V 1max V 2max V
1	Cyclic operation	The drive starts from speed 1 after each cycle of operation. The drive automatically switches to the next speed. The cyclic operation state remains active as long as the S- ON signal is active.	Speed (V) V _{1max} V _{2max} V _{2max} V _{2max} V _{2max} V _{2max} V _{2max} Speed 1 Speed 2 Speed 1 Speed 2 V _{2max} V _{2max}
2	External DI signal	The drive operates continuously as long as the S- ON signal is active. The speed No. is determined by the DI logic. The operating time of each speed is determined only by the interval time of speed switchover. The speed reference direction can be switched through FunIN.5 (DIR-SEL).	Speed (V) V _{xmax} V _{zmax} V _{ymax} Set DI Set DI

H12.01 Number of speed references in multi-speed mode

Hexadecimal:	2012-02h	Effective Time:	Real time
Min.:	1	Unit:	-
Max.:	16	Data Type:	UInt16
Default:	16	Change:	At stop
Value Range:			
1 to 16			
Description			

Defines the total number of speed references in the multi-speed mode. Different speed references, operating time, and acceleration/deceleration time (four groups optional) can be set for each speed.

H12.00 \neq 2: Speeds are switched automatically in a sequence from 1, 2...H12.01. H12.00 is 2: Assign four DIs (Hardware DI or VDI) with DI functions 6 to 9 (FunIN.6: CMD1 to FunIN.9: CMD4) and control the DI logic through the host controller to switch between different speeds. The displacement No. is a 4-bit binary value. Bit 0 to bit 3 correspond to CMD1 to CMD4.

FunIN.9	FunIN.8	FunIN.7	FunIN.6	Segment No.
CMD4	CMD3	CMD2	CMD1	Segment No.
0	0	0	0	1
0	0	0	1	2
1	1	1	1	16

The value of CMD(n) is 1 upon active DI logic and 0 upon inactive DI logic.

H12.02 **Operating time unit**

Hexadecimal:	2012-03h	Effective Time:	Real time
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			
0: sec			
1: min			
Description			
Defines the tim	e unit of multi-speed operation.		
0: s			
1: min			

H12.03 Acceleration time 1

Hexadecimal:	2012-04h
Min.:	0
Max.:	65535
Default:	10
Value Range:	

Effective Time:	Real time
Unit:	ms
Data Type:	UInt16
Change:	Immediately

Effective Time: Real time

ms

UInt16

Immediately

0 ms to 65535 ms

Description

Four groups of acceleration/deceleration time can be set for each speed reference. Acceleration time is the time for the motor to accelerate from 0 RPM to 1000 RPM at a constant speed.

> Unit: Data Type:

Change:

H12.04 Deceleration time 1

Hexadecimal:	2012-05h
Min.:	0
Max.:	65535
Default:	10
Value Range:	

0 ms to 65535 ms

Description Four groups of acceleration/deceleration time can be set for each speed reference. Deceleration time is the time for the motor to decelerate from 1000 RPM to 0 RPM at a constant speed.

H12.05 Acceleration time 2

 Hexadecimal:
 2012-06h

 Min.:
 0

 Max.:
 65535

 Default:
 50

 Value Range:
 0

 0 ms to 65535 ms

Description

Description

Four groups of acceleration/deceleration time can be set for each speed reference. Acceleration time is the time for the motor to accelerate from 0 RPM to 1000 RPM at a constant speed.

H12.06 Deceleration time 2

 Hexadecimal:
 2012-07h

 Min.:
 0

 Max.:
 65535

 Default:
 50

 Value Range:

0 ms to 65535 ms

Effective Time:Real timeUnit:msData Type:UInt16Change:Immediately

Description Four groups of acceleration/deceleration time can be set for each speed reference. Deceleration time is the time for the motor to decelerate from 1000 RPM to 0 RPM at a constant speed.

H12.07 Acceleration time 3

 Hexadecimal:
 2012-08h

 Min.:
 0

 Max.:
 65535

 Default:
 100

 Value Range:

Effective Time: Real time Unit: ms Data Type: UInt16 Change: Immediately

0 ms to 65535 ms Description

Four groups of acceleration/deceleration time can be set for each speed reference. Acceleration time is the time for the motor to accelerate from 0 RPM to 1000 RPM at a constant speed.

H12.08 Deceleration time 3

 Hexadecimal:
 2012-09h

 Min.:
 0

 Max.:
 65535

 Default:
 100

 Value Range:
 100

Effective Time: Real time Unit: ms Data Type: UInt16 Change: Immediately

0 ms to 65535 ms **Description**

Four groups of acceleration/deceleration time can be set for each speed reference. Deceleration time is the time for the motor to decelerate from 1000 RPM to 0 RPM at a constant speed.

H12.09 Acceleration time 4

Hexadecimal: 2012-0Ah Min.: 0 Effective Time: Real time Unit: ms

Effective Time: Real time Unit: ms Data Type: UInt16 Change: Immediately

Max.:	65535	Data Type:	UInt16
Default:	150	Change:	Immediately
Value Range:			
0 ms to 65535	ms		
Description			
Four groups of	acceleration/deceleration t	ime can be set for eac	h speed reference.
Acceleration ti	me is the time for the motor	to accelerate from 0	RPM to 1000 RPM at a constant
speed.			
Deceleration	time 4		
Hexadecimal:	2012-0Bh	Effective Time:	Real time
Min.:	0	Unit:	ms
Max.:	65535	Data Type:	UInt16
Default:	150	Change:	Immediately
Value Range:			
0 ms to 65535	ms		
Description			
Four groups of	acceleration/deceleration t	ime can be set for eac	h speed reference.
Deceleration ti	me is the time for the motor	r to decelerate from 10	000 RPM to 0 RPM at a constant
speed.			
Speed referen			
Hexadecimal:		Effective Time:	
Min.:	-6000	Unit:	rpm
Max.:	6000	Data Type:	Int16
Default:	0	Change:	Immediately
Value Range:			
-6000 rpm to 6	6000 rpm		
Description			
-			
Operating tim	e of speed 1		
Operating tim Hexadecimal:		Effective Time:	Real time
		Effective Time: Unit:	Real time s (m)
	2012-16h		
Hexadecimal: Min.:	2012-16h 0.0	Unit:	s (m)
Hexadecimal: Min.: Max.: Default:	2012-16h 0.0 6553.5	Unit: Data Type:	s (m) Ulnt16
Hexadecimal: Min.: Max.:	2012-16h 0.0 6553.5 5.0	Unit: Data Type:	s (m) Ulnt16
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6555	2012-16h 0.0 6553.5 5.0	Unit: Data Type:	s (m) Ulnt16
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-16h 0.0 6553.5 5.0	Unit: Data Type:	s (m) Ulnt16
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description Defines the op	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1.	Unit: Data Type: Change:	s (m) UInt16 Immediately
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6555 Description Defines the op The operating	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1. time is the sum of the speed	Unit: Data Type: Change: d variation time from p	s (m) UInt16 Immediately previous speed reference to pres
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description Defines the op The operating speed reference	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1. time is the sum of the speed the plus the average operating	Unit: Data Type: Change: d variation time from p g time of present spee	s (m) UInt16 Immediately previous speed reference to pres
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description Defines the op The operating speed reference If the operating	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1. time is the sum of the speed the plus the average operating g time is set to 0, the drive s	Unit: Data Type: Change: d variation time from p g time of present spee kips this speed referer	s (m) UInt16 Immediately previous speed reference to pres ed reference. nce automatically.
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description Defines the op The operating speed reference If the operating As long as H12	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1. time is the sum of the speed re plus the average operatin g time is set to 0, the drive si .00 (Multi-speed operation r	Unit: Data Type: Change: d variation time from p g time of present spee kips this speed referer node) is set to 2 (DI-ba	s (m) UInt16 Immediately previous speed reference to pres ed reference. Ince automatically. Insed operation) and the speed N
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description Defines the op The operating speed reference If the operating As long as H12 determined by	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1. time is the sum of the speed the plus the average operation g time is set to 0, the drive st .00 (Multi-speed operation r the external DI does not characteristics)	Unit: Data Type: Change: d variation time from p g time of present spee kips this speed referer node) is set to 2 (DI-ba ange, the drive contin	s (m) UInt16 Immediately previous speed reference to prese ed reference. Ince automatically. Insed operation) and the speed N uues operating at the speed defin
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description Defines the op The operating speed reference If the operating As long as H12 determined by by this speed r	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1. time is the sum of the speed re plus the average operatin g time is set to 0, the drive si .00 (Multi-speed operation r the external DI does not char eference, not affected by the	Unit: Data Type: Change: d variation time from p g time of present spee kips this speed referer node) is set to 2 (DI-ba ange, the drive contin e reference operating	s (m) UInt16 Immediately previous speed reference to prese ed reference. Ince automatically. Insed operation) and the speed N uues operating at the speed defin
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description Defines the op The operating speed reference If the operating As long as H12 determined by by this speed r Acceleration /	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1. time is the sum of the speed se plus the average operating g time is set to 0, the drive sh .00 (Multi-speed operation r the external DI does not ch eference, not affected by the Deceleration time of speed	Unit: Data Type: Change: d variation time from p g time of present spee kips this speed referer node) is set to 2 (DI-ba ange, the drive contin e reference operating 1	s (m) UInt16 Immediately previous speed reference to prese ed reference. Ince automatically. Assed operation) and the speed N ues operating at the speed defin time.
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description Defines the op The operating speed reference If the operating As long as H12 determined by by this speed r Acceleration/I Hexadecimal:	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1. time is the sum of the speed re plus the average operation g time is set to 0, the drive si .00 (Multi-speed operation r the external DI does not char eference, not affected by the Deceleration time of speed 2012-17h	Unit: Data Type: Change: d variation time from p g time of present speed kips this speed referer node) is set to 2 (DI-ba ange, the drive contin e reference operating 11 Effective Time:	s (m) UInt16 Immediately previous speed reference to pres ed reference. Ince automatically. Assed operation) and the speed N ues operating at the speed defin time.
Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description Defines the op The operating speed reference If the operating As long as H12 determined by by this speed r Acceleration /	2012-16h 0.0 6553.5 5.0 3.5s(m) erating time of speed 1. time is the sum of the speed se plus the average operating g time is set to 0, the drive sh .00 (Multi-speed operation r the external DI does not ch eference, not affected by the Deceleration time of speed	Unit: Data Type: Change: d variation time from p g time of present spee kips this speed referer node) is set to 2 (DI-ba ange, the drive contin e reference operating 1	s (m) UInt16 Immediately previous speed reference to pres ed reference. Ince automatically. Assed operation) and the speed N ues operating at the speed defin time.

H12.10

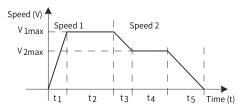
H12.20

H12.21

H12.22

Default: 0

Value Range:


0: Zero acceleration/deceleration time

- 1: Acceleration/Deceleration time 1
- 2: Acceleration/Deceleration time 2
- 3: Acceleration/Deceleration time 3
- 4: Acceleration/Deceleration time 4

Description

Defines the acceleration/deceleration time of speed 1.

Setpoint	Acceleration/Deceleration time	Remarks
0	Zero acceleration/	Acceleration time: 0
0	deceleration time	Deceleration time: 0
1	Acceleration/Deceleration	Acceleration time: H12.03
L	time 1	Deceleration time: H12.04
2	Acceleration/Deceleration	Acceleration time: H12.05
Z	time 2	Deceleration time: H12.06
3	Acceleration/Deceleration	Acceleration time: H12.07
5	time 3	Deceleration time: H12.08
4	Acceleration/Deceleration	Acceleration time: H12.09
4	time 4	Deceleration time: H12.10

• V_{1max}, V_{2max}: reference values of speed 1 and speed 2

• t1: actual acceleration/deceleration time of speed 1

 \bullet t $_3$, t $_5$: acceleration/deceleration time of speed 2

• Operating time = Time taken in switching from the last speed to current speed + Duration of constant-speed operation at current speed (For example, the operating time of speed 1 is the sum of t_1 and t_2 ; the operating time of speed 2 is the sum of t_3 and t_4 .)

• Do not set the operating time of a certain speed to 0. Otherwise, the drive skips this speed and switches to the next speed directly.

The actual acceleration time t1 is as follows.

$$t_1 = \frac{V_1}{1000} \times Acc.$$
 time set for the speec

The actual deceleration time t₂ is:

$$t_2 = \frac{V_1}{1000} \times Dec.$$
 time set for the speed

H12.23 Reference 2

 Hexadecimal:
 2012-18h

 Min.:
 -6000

 Max.:
 6000

 Default:
 100

 Value Range:
 -6000 rpm to 6000 rpm

Effective Time:	Real time
Unit:	rpm
Data Type:	Int16
Change:	Immediately

Change: Immediately

H12.24 **Operating time of speed 2** Hexadecimal: 2012-19h Effective Time: Real time Min.: 0.0 Unit: s (m) 6553.5 UInt16 Max.: Data Type: Default: 5.0 Change: Immediately Value Range: 0.0s(m) to 6553.5s(m) Description H12.25 Acceleration/Deceleration time of speed 2 Hexadecimal: 2012-1Ah Effective Time: Real time Min.: 0 Unit: 4 Max.: Data Type: UInt16 0 Default: Change: Immediately Value Range: See H12.22. Description H12.26 **Reference 3** Hexadecimal: 2012-1Bh Effective Time: Real time rpm Min.: -6000 Unit: Max.: 6000 Data Type: Int16 300 Default: Immediately Change: Value Range: -6000 rpm to 6000 rpm Description H12.27 **Operating time of speed 3** Hexadecimal: 2012-1Ch Effective Time: Real time Min.: 0.0 Unit: s (m) UInt16 Max.: 6553.5 Data Type: Default: 5.0 Change: Immediately Value Range: 0.0s(m) to 6553.5s(m) Description H12.28 Acceleration/Deceleration time of speed 3 Hexadecimal: 2012-1Dh Effective Time: Real time Min.: 0 Unit: 4 Max.: Data Type: UInt16 Default: 0 Change: Immediately Value Range: See H12.22. Description

Description

H12.29	Reference 4 Hexadecimal: Min.: Max.: Default: Value Range: -6000 rpm to 6 Description	-6000 6000 500	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately
H12.30	Operating time Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-1Fh 0.0 6553.5 5.0	Effective Time: Unit: Data Type: Change:	Real time s (m) UInt16 Immediately
H12.31	Acceleration/D Hexadecimal: Min.: Max.: Default: Value Range: See H12.22. Description	Deceleration time of speed 4 2012-20h 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H12.32	Reference 5 Hexadecimal: Min.: Max.: Default: Value Range: -6000 rpm to 6 Description	-6000 6000 700	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately
H12.33	Operating tim Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-22h 0.0 6553.5 5.0	Effective Time: Unit: Data Type: Change:	Real time s (m) UInt16 Immediately
H12.34	Acceleration/D	Deceleration time of speed 5		

Hexadecimal: 2012-23h

Effective Time: Real time

Description	ly
H12.35 Reference 6 Hexadecimal: 2012-24h Effective Time: Real time Min.: -6000 Unit: rpm Max.: 6000 Data Type: Int16 Default: 900 Change: Immediate Value Range: -6000 rpm to 6000 rpm Description -6000	ly
H12.36Operating time of speed 6Hexadecimal: $2012-25h$ Effective Time:Real timeMin.: 0.0 Unit:s (m)Max.: 6553.5 Data Type:UInt16Default: 5.0 Change:ImmediateValue Range: $0.0s(m)$ to $6553.5s(m)$ Description	y
H12.37 Acc./dec. time of speed 6 Hexadecimal: 2012-26h Effective Time: Real time Min.: 0 Unit: - Max.: 4 Data Type: UInt16 Default: 0 Change: Immediate Value Range: See H12.22. Description -	y
H12.38 Reference 7 Hexadecimal: 2012-27h Effective Time: Real time Min.: -6000 Unit: rpm Max.: 6000 Data Type: Int16 Default: 600 Change: Immediate Value Range: -6000 rpm to 6000 rpm Description -6000	ly
H12.39Operating time of speed 7Hexadecimal:2012-28hMin.:0.0Max.:6553.5Data Type:UInt16	

H12.40		Deceleration time of speed 7	Change:	Immediately
	Hexadecimal: Min.: Max.: Default: Value Range: See H12.22. Description	2012-29h 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H12.41	Reference 8 Hexadecimal: Min.: Max.: Default: Value Range: -6000 rpm to 6 Description	-6000 6000 300	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately
H12.42	Operating tim Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-2Bh 0.0 6553.5 5.0	Effective Time: Unit: Data Type: Change:	Real time s (m) UInt16 Immediately
H12.43	Acceleration/I Hexadecimal: Min.: Max.: Default: Value Range: See H12.22. Description	Deceleration time of speed 8 2012-2Ch 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H12.44	Reference 9 Hexadecimal: Min.: Max.: Default: Value Range:	2012-2Dh -6000 6000 100	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately

	–6000 rpm to 6000 rpm Description -				
H12.45	Operating tim Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-2Eh 0.0 6553.5 5.0	Effective Time: Unit: Data Type: Change:	Real time s (m) UInt16 Immediately	
H12.46	Acceleration/I Hexadecimal: Min.: Max.: Default: Value Range: See H12.22. Description	Deceleration time of speed 9 2012-2Fh 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately	
H12.47	Reference 10 Hexadecimal: Min.: Max.: Default: Value Range: –6000 rpm to 6 Description	-6000 6000 -100	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately	
H12.48	Operating tim Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-31h 0.0 6553.5 5.0	Effective Time: Unit: Data Type: Change:	Real time s (m) UInt16 Immediately	
H12.49	Acceleration/I Hexadecimal: Min.: Max.: Default: Value Range: See H12.22.	Deceleration time of speed 10 2012-32h 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately	

_

Description

H12.50	Reference 11 Hexadecimal: Min.: Max.: Default: Value Range: -6000 rpm to 6 Description	-6000 6000 -300	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately
H12.51	Operating tim Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-34h 0.0 6553.5 5.0	Effective Time: Unit: Data Type: Change:	Real time s (m) UInt16 Immediately
H12.52	Acceleration/I Hexadecimal: Min.: Max.: Default: Value Range: See H12.22. Description	Deceleration time of speed 11 2012-35h 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H12.53	Reference 12 Hexadecimal: Min.: Max.: Default: Value Range: -6000 rpm to 6 Description	2012-36h -6000 6000 -500 000 rpm	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately
H12.54	Operating tim Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-37h 0.0 6553.5 5.0	Effective Time: Unit: Data Type: Change:	Real time s (m) UInt16 Immediately

H12.55	Acceleration/I Hexadecimal: Min.: Max.: Default: Value Range: See H12.22. Description	Deceleration time of speed 12 2012-38h 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H12.56	Reference 13 Hexadecimal: Min.: Max.: Default: Value Range: -6000 rpm to 6 Description	-6000 6000 -700	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately
H12.57	Operating tim Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-3Ah 0.0 6553.5 5.0	Effective Time: Unit: Data Type: Change:	Real time s (m) UInt16 Immediately
H12.58	Acceleration/I Hexadecimal: Min.: Max.: Default: Value Range: See H12.22. Description	Deceleration time of speed 13 2012-3Bh 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H12.59	Reference 14 Hexadecimal: Min.: Max.: Default: Value Range: –6000 rpm to 6 Description	2012-3Ch -6000 6000 -900 000 rpm	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately
H12.60	Operating tim Hexadecimal:	-	Effective Time:	Real time

	Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	0.0 6553.5 5.0 3.5s(m)	Unit: Data Type: Change:	s (m) UInt16 Immediately
H12.61	Acceleration/I Hexadecimal: Min.: Max.: Default: Value Range: See H12.22. Description	Deceleration time of speed 14 2012-3Eh 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H12.62	Reference 15 Hexadecimal: Min.: Max.: Default: Value Range: -6000 rpm to 6 Description	-6000 6000 -600	Effective Time: Unit: Data Type: Change:	Real time rpm Int16 Immediately
H12.63	Operating tim Hexadecimal: Min.: Max.: Default: Value Range: 0.0s(m) to 6553 Description	2012-40h 0.0 6553.5 5.0	Effective Time: Unit: Data Type: Change:	Real time s (m) UInt16 Immediately
H12.64	Acceleration/I Hexadecimal: Min.: Max.: Default: Value Range: See H12.22. Description	Deceleration time of speed 15 2012-41h 0 4 0	Effective Time: Unit: Data Type: Change:	Real time - UInt16 Immediately
H12.65	Reference 16 Hexadecimal: Min.: Max.:	2012-42h -6000 6000	Effective Time: Unit: Data Type:	Real time rpm Int16

Default: -300 Change: Immediately Value Range: -6000 rpm to 6000 rpm Description H12.66 **Operating time of speed 16** Hexadecimal: 2012-43h Effective Time: Real time Min.: 0.0 Unit: s (m) Max.: 6553.5 Data Type: UInt16 5.0 Default: Change: Immediately Value Range: 0.0s(m) to 6553.5s(m) Description H12.67 Acc./dec. time of speed 16 Hexadecimal: 2012-44h Effective Time: Real time Min.: 0 Unit: 4 Data Type: UInt16 Max.: Default: 0 Change: Immediately Value Range: See H12.22. Description

15.17 H17 VDO/VDI settings

H17.00 VDI1 function selection

Hexadecimal: 2017-01h Min.: 0

Max.: 41 0

Default:

Value Range: 0: No assignment

1: S-ON

2: Warning reset signal

3: Gain switchover switch

4: Switchover between main and auxiliary commands

5: Multi-reference direction

6: Multi-reference switchover CMD1

7: Multi-reference switchover CMD2

8: Multi-reference switchover CMD3

9: Multi-reference switchover CMD4

10: Mode switchover M1-SEL

Effective Time: At stop Unit: Data Type: UInt16 Change: Immediately

- 11: Mode switchover M2-SEL
- 12: Zero clamp enable signal
- 13: Position reference inhibited
- 14: Positive limit switch
- 15: Reverse limit switch
- 16: Positive external torque limit
- 17: Negative external torque limit
- 18: Forward jog
- 19: Reverse jog
- 20: Step enable
- 21: Hand wheel override signal 1
- 22: Hand wheel override signal 2
- 23: Hand wheel enable signal
- 24: Electronic gear ratio selection
- 25: Torque reference direction
- 26: Speed reference direction
- 27: Position reference direction
- 28: Multi-position reference enable
- 29: Interrupt positioning canceled
- 30: None
- 31: Home switch
- 32: Homing enable
- 33: Interrupt positioning inhibited
- 34: Emergency stop
- 35: Clear position deviation
- 36: Internal speed limit source
- 37: Pulse reference inhibited
- 38: Writing reference causes interrupt
- 39: Writing reference does not cause interrupt
- 40: Clear positioning and reference completed signals
- 41: Current position as home

H17.01 VDI1 logic selection

0			
Hexadecimal:	2017-02h	Effective Time:	At stop
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Danger		•	

Value Range:

- 0: Active when the written value is 1
- 1: Active when the written value changes from 0 to 1

It sets the input level logic of VDI1 for enabling the VDI1 function.

Setpoint	VDI1 logic upon active DI function	Remarks
0	0: Active when 1 is written	High Active Low > 1 ms
1	Active when written value changes from 0 to 1	Active High Low -> 1 ms

Effective Time: At stop

Effective Time: At stop

UInt16

Immediately

Unit:

Data Type:

Change:

UInt16

Immediately

Unit:

Data Type:

Change:

H17.02 VDI2 function selection

Hexadecimal:2017-03hMin.:0Max.:41Default:0Value Range:-See H17.00.-Description-

H17.03 VDI2 logic selection

VDIZ logic sele			
Hexadecimal:	2017-04h	Effective Time	: At stop
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			

0: Active when the written value is 1

1: Active when the written value changes from 0 to 1

Description

H17.04 VDI3 function selection

 Hexadecimal:
 2017-05h

 Min.:
 0

 Max.:
 41

 Default:
 0

 Value Range:
 See H17.00.

 Description

-

H17.05 VDI3 logic selection

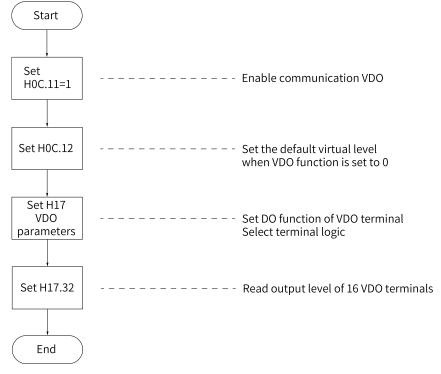
Hexadecimal:	2017-06h	Effective Time:	At stop
Min.:	0	Unit:	-
Max.:	1	Data Type:	UInt16
Default:	0	Change:	At stop
Value Range:			

0: Active when the written value is 1 1: Active when the written value changes from 0 to 1 Description H17.06 **VDI4 function selection** Hexadecimal: 2017-07h Effective Time: At stop Min.: 0 Unit: Max.: 41 Data Type: UInt16 Default: 0 Change: Immediately Value Range: See H17.00. Description H17.07 **VDI4 logic selection** Hexadecimal: 2017-08h Effective Time: At stop Min.: 0 Unit: Max.: 1 Data Type: UInt16 0 Change: At stop Default: Value Range: 0: Active when the written value is 1 1: Active when the written value changes from 0 to 1 Description H17.08 **VDI5 function selection** Hexadecimal: 2017-09h Effective Time: At stop Min.: 0 Unit: Data Type: Max.: 41 UInt16 Default: 0 Change: Immediately Value Range: See H17.00. Description H17.09 **VDI5 logic selection** Hexadecimal: 2017-0Ah Effective Time: At stop 0 Unit: Min.: Max.: 1 Data Type: UInt16 0 Default: At stop Change: Value Range: 0: Active when the written value is 1 1: Active when the written value changes from 0 to 1 Description H17.10 **VDI6 function selection** Hexadecimal: 2017-0Bh Effective Time: At stop Min.: 0 Unit: Max.: 41 Data Type: UInt16

	Default: Value Range: See H17.00. Description	0	Change:	Immediately
H17.11			Effective Time: Unit: Data Type: Change: to 1	At stop - UInt16 At stop
H17.12	VDI7 function Hexadecimal: Min.: Max.: Default: Value Range: See H17.00. Description		Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H17.13			Effective Time: Unit: Data Type: Change: to 1	At stop - UInt16 At stop
H17.14	VDI8 function Hexadecimal: Min.: Max.: Default: Value Range: See H17.00. Description		Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H17.15	VDI8 logic sel e Hexadecimal: Min.:		Effective Time: Unit:	At stop -

		1 0 the written value is 1 the written value changes from 0	Data Type: Change: to 1	UInt16 At stop
H17.16	VDI9 function Hexadecimal: Min.: Max.: Default: Value Range: See H17.00. Description		Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H17.17			Effective Time: Unit: Data Type: Change: to 1	At stop - UInt16 At stop
H17.18	VDI10 functio Hexadecimal: Min.: Max.: Default: Value Range: See H17.00. Description		Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H17.19			Effective Time: Unit: Data Type: Change: to 1	At stop - UInt16 At stop

H17.20	VDI11 function selection				
	Hexadecimal:	2017-15h	Effective Time:	At stop	
	Min.:	0	Unit:	-	
	Max.:	41	Data Type:	UInt16	
	Default:	0	Change:	Immediately	
	Value Range:		8		
	See H17.00.				
	Description				
	-				
H17.21	VDI11 logic se				
	Hexadecimal:	2017-16h	Effective Time:	At stop	
	Min.:	0	Unit:	-	
	Max.:	1	Data Type:	UInt16	
	Default:	0	Change:	At stop	
	Value Range:				
	0: Active when	the written value is 1			
	1: Active when	the written value changes from 0	to 1		
	Description				
	-				
H17.22	VDI12 function	n selection			
	Hexadecimal:	2017-17h	Effective Time:	At stop	
	Min.:	0	Unit:	-	
	Max.:	41	Data Type:	UInt16	
	Default:	0	Change:	Immediately	
	Value Range:				
	See H17.00.				
	Description				
	-				
H17.23	VDI12 logic se	lection			
	Hexadecimal:		Effective Time:	At stop	
	Min.:	0	Unit:	-	
	Max.:	1	Data Type:	UInt16	
	Default:	0	Change:	At stop	
	Value Range:	0	change.	, it stop	
	-	the written value is 1			
			to 1		
	Description	the written value changes from 0	10 1		
	-				
H17.24	VDI13 function				
	Hexadecimal:		Effective Time:	At stop	
	Min.:	0	Unit:	-	
	Max.:	41	Data Type:	UInt16	
	Default:	0	Change:	Immediately	
	Value Range:				
	See H17.00.				
	Description				
	_				


H17.25	VDI13 logic se	lection		
	Hexadecimal:	2017-1Ah	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:		0.1	
	-	the written value is 1		
	1: Active when	the written value changes from 0	to 1	
	Description			
H17.26	VDI14 function	n selection		
	Hexadecimal:	2017-1Bh	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	41	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:			
	See H17.00.			
	Description			
	-			
H17.27	VDI14 logic se	lection		
	Hexadecimal:		Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0		
		0	Change:	At stop
	Value Range:			
		the written value is 1		
	1: Active when	the written value changes from 0	to 1	
	Description -			
H17.28	VDI15 function			
	Hexadecimal:	2017-1Dh	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	41	Data Type:	UInt16
	Default:	0	Change:	Immediately
	Value Range:			
	See H17.00.			
	Description			
	-			
H17.29	VDI15 logic se			
	Hexadecimal:	2017-1Eh	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:		-	-
	-	the written value is 1		
		the written value changes from 0	to 1	
	I. ACTIVE WHEI	the written value changes non 0		

Value Range: 0-65535

H17.30	VDI16 functio Hexadecimal: Min.: Max.: Default: Value Range: See H17.00. Description	 Effective Time: Unit: Data Type: Change:	At stop - UInt16 Immediately
H17.31		Effective Time: Unit: Data Type: Change:) to 1	At stop - UInt16 At stop
H17.32	VDO virtual le Hexadecimal: Min.: Max.: Default:	Effective Time: Unit: Data Type: Change:	- - UInt16 Unchangeable

It sets the default virtual level of the VDO allocated with function 0 (disabled).

Use the VDO according to the following procedure:

H17.33 VDO1 function selection

Hexadeo	imal: 2017-22h	Effective Time:	At stop
Min.:	0	Unit:	-
Max.:	24	Data Type:	UInt16
Default:	0	Change:	At stop
Value Ra	ange:		

- 0: No assignment
- 1: Servo ready
- 2: Motor rotation
- 3: Zero speed
- 4: Speed matching
- 5: Positioning completed
- 6: Proximity
- 7: Torque limited
- 8: Speed limited
- 9: Brake
- 10: Warning
- 11: Fault
- 12: Output 3-bit warning code
- 13: Output 3-bit warning code
- 14: Output 3-bit warning code
- 15: Interrupt positioning completed
- 16: Homing completed
- 17: Electrical homing completed
- 18: Torque reach
- 19: Speed reach
- 22: Internal command completed
- 23: Writing next command allowed
- 24: Internal motion completed

H17.34 VDO1 logic level

Hexadecimal: 2017-23h Min.: 0 Max.: 1 Default: 0

Value Range:

0: Output 1 upon active logic

1: Output 0 upon active logic

Description

Effective Time: At stop Unit: -Data Type: UInt16 Change: At stop

Setpoint	VDO1 terminal logic	Remarks
0	Output 1 when function valid	High Active Low 1ms
1	Output 0 when function valid	High 1ms Low Active

H17.35 VDO2 function selection

Hexadecimal: 2017-24h Min.: 0 Effective Time: At stop Unit: -

	Max.: Default: Value Range: See H17.33. Description	24 0	Data Type: Change:	UInt16 At stop
H17.36	VDO2 logic lev Hexadecimal: Min.: Max.: Default: Value Range: 0: Output 1 up 1: Output 0 up Description	2017-25h 0 1 0 on active logic	Effective Time: Unit: Data Type: Change:	At stop - UInt16 At stop
H17.37	VDO3 function Hexadecimal: Min.: Max.: Default: Value Range: See H17.33. Description		Effective Time: Unit: Data Type: Change:	At stop - UInt16 At stop
H17.38 H17.39	VDO3 logic leve Hexadecimal: Min.: Max.: Default: Value Range: 0: Output 1 up 1: Output 0 up Description - VDO4 function Hexadecimal: Min.: Max.:	2017-27h 0 1 0 on active logic on active logic	Effective Time: Unit: Data Type: Change: Effective Time: Unit: Data Type:	- UInt16 At stop
H17.40	Default: Value Range: See H17.33. Description - VDO4 logic lev Hexadecimal:	0 /el	Change:	At stop
	nexadecimal:	2017-2311	Effective Time:	πι sιυμ

	Min.: Max.: Default: Value Range: 0: Output 1 up 1: Output 0 up Description	-	Unit: Data Type: Change:	- UInt16 At stop
H17.41	VDO5 function Hexadecimal: Min.: Max.: Default: Value Range: See H17.33. Description		Effective Time: Unit: Data Type: Change:	At stop - UInt16 At stop
H17.42	VDO5 logic lev Hexadecimal: Min.: Max.: Default: Value Range: 0: Output 1 up 1: Output 0 up Description	2017-2Bh 0 1 0 on active logic	Effective Time: Unit: Data Type: Change:	At stop - UInt16 At stop
H17.43	VDO6 function Hexadecimal: Min.: Max.: Default: Value Range: See H17.33. Description		Effective Time: Unit: Data Type: Change:	At stop - UInt16 At stop
H17.44	VDO6 logic lev Hexadecimal: Min.: Max.: Default: Value Range: 0: Output 1 upu 1: Output 0 upu Description	2017-2Dh 0 1 0 on active logic	Effective Time: Unit: Data Type: Change:	At stop - UInt16 At stop

H17.45	VDO7 function			
	Hexadecimal:		Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	24	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:			
	See H17.33. Description			
	-			
H17.46	VDO7 logic lev	vel		
	Hexadecimal:	2017-2Fh	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:			
	0: Output 1 upo	•		
	1: Output 0 upo	on active logic		
	Description			
	-			
H17.47	VDO8 functior	selection		
	Hexadecimal:		Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	24	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:		8	
	See H17.33.			
	Description			
	-			
117 40				
H17.48	VDO8 logic lev Hexadecimal:			At stop
	Min.:	0	Effective Time: Unit:	-
	Max.:	1		UInt16
	Default:	0	Data Type: Change:	At stop
	Value Range:		change.	, it stop
	0: Output 1 up	on active logic		
	1: Output 0 up	-		
	Description	on active logic		
	-			
H17.49	VDO9 function			•••
	Hexadecimal:		Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	24	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:			
	See H17.33.			
	Description -			

H17.50	VDO9 logic lev	el		
	Hexadecimal:	2017-33h	Effective Time:	At stop
	Min.:	0	Unit:	
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
		0	change.	At Stop
	Value Range:			
	0: Output 1 upo	-		
	1: Output 0 upo	on active logic		
	Description			
	-			
H17.51	VDO10 functio			
	Hexadecimal:	2017-34h	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	24	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:			
	See H17.33.			
	Description			
	-			
H17.52	VDO10 logic le	vel		
	Hexadecimal:	2017-35h	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:		onungei	, le ocop
	-	an active logic		
	0: Output 1 upo	-		
	1: Output 0 upo	on active logic		
	Description			
H17.53	VDO11 functio	n selection		
	Hexadecimal:	2017-36h	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	24	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:	-	onungei	
	See H17.33.			
	Description -			
H17.54	VDO11 logic le	vel		
	-	2017-37h	Effective Time:	At stop
	Min.:	0	Unit:	-
	Min.: Max.:	1		UInt16
			Data Type:	
	Default:	0	Change:	At stop
	Value Range:			
	0: Output 1 upo	-		
	1: Output 0 upo	on active logic		

Description H17.55 VDO12 function selection Hexadecimal: 2017-38h Effective Time: At stop Min.: 0 Unit: 24 Data Type: Max.: UInt16 Default: 0 Change: At stop Value Range: See H17.33. Description H17.56 VDO12 logic level Effective Time: At stop Hexadecimal: 2017-39h Min.: 0 Unit: Max.: 1 Data Type: UInt16 Default: 0 Change: At stop Value Range: 0: Output 1 upon active logic 1: Output 0 upon active logic Description H17.57 **VDO13 function selection** Hexadecimal: 2017-3Ah Effective Time: At stop Min.: 0 Unit: 24 Max.: Data Type: UInt16 0 Default: Change: At stop Value Range: See H17.33. Description H17.58 VDO13 logic level Hexadecimal: 2017-3Bh Effective Time: At stop Min.: 0 Unit: Data Type: Max.: 1 UInt16 0 Default: Change: At stop Value Range: 0: Output 1 upon active logic 1: Output 0 upon active logic Description H17.59 VDO14 function selection Hexadecimal: 2017-3Ch Effective Time: At stop Min.: 0 Unit: 24 Max.: Data Type: UInt16 Default: 0 Change: At stop Value Range:

	See H17.33.			
	Description			
	-			
H17.60	VDO14 logic le	vel		
	Hexadecimal:		Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
		0	change.	ni stop
	Value Range:			
	0: Output 1 upo	0		
	1: Output 0 upo	on active logic		
	Description			
	-			
H17.61	VDO15 functio	on selection		
	Hexadecimal:	2017-3Eh	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	24	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:			
	See H17.33.			
	Description			
	-			
H17.62	VDO15 logic le	vel		
	Hexadecimal:	2017-3Fh	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:		0	
	0: Output 1 upo	on active logic		
	1: Output 0 upo	-		
		on active togic		
	Description			
H17.63	VD016 from attic			
п17.05	VDO16 functio			Atotan
	Hexadecimal:		Effective Time:	ALSTOP
	Min.:	0	Unit:	-
	Max.:	24	Data Type:	UInt16
	Default:	0	Change:	At stop
	Value Range:			
	See H17.33.			
	Description			
	-			
H17.64	VDO16 logic le			
	Hexadecimal:	2017-41h	Effective Time:	At stop
	Min.:	0	Unit:	-
	Max.:	1	Data Type:	UInt16
	Default:	0	Change:	At stop

Value Range: 0: Output 1 upon active logic 1: Output 0 upon active logic Description

15.18 H1B Motor Storage Property

H1B.14	Bit01 of motor Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	Effective Time: Unit: Data Type: Change:	- - UInt16 At stop
H1B.15	Bit23 of motor Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	Effective Time: Unit: Data Type: Change:	- - UInt16 At stop
H1B.16	Bit45 of motor Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	 Effective Time: Unit: Data Type: Change:	- - UInt16 At stop
H1B.17	Bit67 of motor Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	Effective Time: Unit: Data Type: Change:	- - UInt16 At stop
H1B.18	Bit89 of moto Hexadecimal:	Effective Time:	-

	Min.: Max.: Default: Value Range: 0 to 65535 Description -	0 65535 0	Unit: Data Type: Change:	- UInt16 At stop
H1B.19	Bit11 of moto Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description		Effective Time: Unit: Data Type: Change:	- - UInt16 At stop
H1B.20	Bit13 of moto Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description		Effective Time: Unit: Data Type: Change:	- - UInt16 At stop
H1B.21	Bit15 of moto Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description		Effective Time: Unit: Data Type: Change:	- - UInt16 At stop
H1B.47	Motor storage Hexadecimal: Min.: Max.: Default: Value Range: 0 to 65535 Description	e property shield word 1 201B-30h 0 65535 0	Effective Time: Unit: Data Type: Change:	Upon the next power-on - UInt16 At stop
H1B.48	Motor storage Hexadecimal: Min.: Max.:	e property shield word 2 201B-31h 0 65535	Effective Time: Unit: Data Type:	Upon the next power-on - UInt16

Default: 0 Change: At stop Value Range: 0 to 65535 Description

15.19 H30 Servo status variables read through communication

H30.00 Servo status read through communication

	0		
Hexadecimal:	2030-01h	Effective Time:	-
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	0	Change:	Unchangeable
Value Range:			
0 to 65535			

0 to 65535

Description

H30.00 value is hexadecimal, and is not displayed on the keypad. It is read as binary, and each bit of the binary is defined as follows:

bit	Servo State	Remarks
0	Servo ready	It determines whether the servo main circuit DC bus voltage is ready and the servo drive is ready for running.
		0: Servo drive not ready
		1: Servo ready
1-11	Reserved	-
		It determines the servo running state.
		00: Servo drive not ready (main circuit DC bus voltage not set up correctly)
12–13	Servo running state	01: Servo drive ready (main circuit DC bus voltage set up correctly, servo drive is ready for running)
		10: Servo drive running (S-ON active)
		11: Servo drive fault (a level 1 or level 2 fault occurs)
14-15	Reserved	-

H30.01 DO function state 1 read through communication

Hexadecimal:	2030-02h	Effective Time:	-
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	0	Change:	Unchangeable
Value Range:			
0 to 65535			

Used to read the state of DO functions 1 to 16 through communication. H30.01 is a hexadecimal which is not displayed on the keypad and must be converted to a binary equivalent when it is being read through communication.

bit	DO Function	Remarks
0	DO function 1 (FunOUT.1: S-RDY, servo	0: Servo drive not ready
0	ready)	1: Servo ready
15	DO function 16 (FunOUT.16:	0: Home not found
15	HomeAttain, homing output)	1: Home found

H30.02 DO function state 2 read through communication

Hexadecimal:	2030-03h	Effective Time	: -	
Min.:	0	Unit:	-	
Max.:	65535	Data Type:	UInt16	
Default:	0	Change:	Unchangeable	
Value Range:				
0 to 65535				
Description				
Bit 0 correspor	nds to DO function 17.			
Bit 1 corresponds to DO function 18.				
Bit 2 correspor	nds to DO function 19			

Bit 2 corresponds to DO function 19. ...

By analogy

H30.04

bit	DO Function	Remarks
0	DO function 17 (FunOUT.17: S- ElecHomeAttain, electrical homing output)	0: Electrical homing not completed 1: Electrical homing completed
4 to 15	Reserved	-

H30.03 Input pulse reference sampling value read through communication

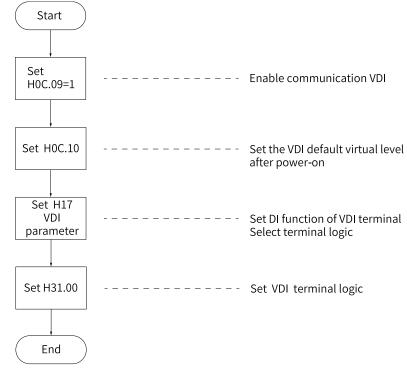
Hexadecimal:	2030-04h	Effective Time:	-
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	0	Change:	Unchangeable
Value Range:			
0 to 65535			
Description			
-			
DI status read	I through communication		
Hexadecimal:	2030-05h	Effective Time:	-

Hexadecimal:	2030-05h	Effective Time:	-
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	0	Change:	Unchangeable
Value Range:			
0 to 65535			

15.20 H31 Related variables set through communication

H31.00 VDI virtual level set through communication

Hexadeci-	2031-01h	Effective Time:	Real time
mal:			
Min.:	0	Unit:	-
Max.:	65535	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Rang	ge:		
0–65535			

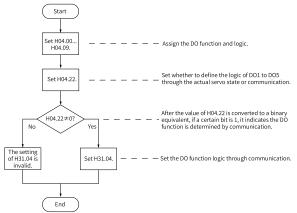

Description

When H0C.09 is set to 1, the VDI state is defined by H31.00.

The VDI logic is determined by H0C.10 (Default VDI virtual level value upon power-on) upon initial power-on. Then, H31.00 is determined by the VDI logic.

"bit(n) = 1" of H31.00 indicates the logic of VDI (n+1) is "1". "bit(n)=0" indicates the logic of VDI (n+1) is "0".

Use the VDI according to the following procedure:



H31.04 DO state set through communication

Hexadeci-	2031-05h	Effective Time:	Real time
mal:			
Min.:	0	Unit:	-
Max.:	31	Data Type:	UInt16
Default:	0	Change:	Immediately
Value Rang	ge:		
0 to 31			

Set H04.22 to define the DO state source by H31.04.

Use the DO according to the following procedure:

H31.09 Speed reference set through communication

Hexadeci-	2031-0Ah	Effective Time:	Real time
mal:			
Min.:	-6000.000	Unit:	rpm
Max.:	6000.000	Data Type:	Int32
Default:	0.000	Change:	Immediately
Value Rang	ge:		

-6000.000rpm to 6000.000rpm

Description

Set H06.02 to 4 to define the speed reference in the speed control mode through H31.09 (unit: 0.001 rpm).

H31.11 Torque reference set through communication

Hexadeci-	2031-0Ch	Effective Time:	Real time
mal:			
Min.:	-100.000	Unit:	%
Max.:	100.000	Data Type:	Int32
Default:	0.000	Change:	Immediately
Value Rang	ge:		
-100.000%	to 100.000%		

Description

Set H07.02 to 4 to define the torque reference in the torque control mode through H31.11 (unit: 0.001%). The setpoint 100.000% corresponds to the rated torque of the motor.

16 Parameter List

16.1 Parameter Group H00

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H00.00	2000-01h	Motor SN	0 to 65535	14101	-	At stop	" H00_en.00" on page 376
H00.02	2000-03h	Customized No.	0.00 to 42949672.95	0.00	-	Unchangea ble	"H00_en.02" on page 376
H00.04	2000-05h	Encoder version	0.0 to 6553.5	0.0	-	Unchangea ble	" H00_en.04" on page 376
H00.05	2000-06h	Serial-type motor code	0 to 65535	0	-	Unchangea ble	" H00_en.05" on page 376
H00.06	2000-07h	FPGA customized SN	0.00 to 10485.75	0.00	-	Unchangea ble	" H00_en.06" on page 376
H00.08	2000-09h	Bus encoder type	0 to 65535	0	-	Real-time	" H00_en.08" on page 377
H00.09	2000-0Ah	Rated voltage	0: 220 V 1: 380 V	0	V	At stop	" H00_en.09" on page 377
H00.10	2000-0Bh	Rated power	0.01kW to 655.35kW	0.01	kW	At stop	" H00_en.10" on page 377
H00.11	2000-0Ch	Rated current	0.01A to 655.35A	0.01	A	At stop	" H00_en.11" on page 377
H00.12	2000-0Dh	Rated torque	0.10N·m-655.35N·m	0.10	N∙m	At stop	" H00_en.12" on page 378
H00.13	2000-0Eh	Max. torque	0.10N·m-655.35N·m	0.10	N∙m	At stop	" H00_en.13" on page 378
H00.14	2000-0Fh	Rated speed	100rpm-9000rpm	100	RPM	At stop	" H00_en.14" on page 378
H00.15	2000-10h	Maximum speed	100rpm-9000rpm	100	RPM	At stop	" H00_en.15" on page 378
H00.16	2000-11h	Moment of inertia Jm	0.01 kgcm ² -655.35 kgcm ²	0.01	kgcm ²	At stop	" H00_en.16" on page 378
H00.17	2000-12h	Number of PMSM pole pairs	2 to 360	2	-	At stop	" H00_en.17" on page 378
H00.18	2000-13h	Stator resistance	0.001Ω to 65.535Ω	0.001	Ω	At stop	" H00_en.18" on page 379
H00.19	2000-14h	Stator inductance Lq	0.01mH-655.35mH	0.01	mH	At stop	" H00_en.19" on page 379
H00.20	2000-15h	Stator inductance Ld	0.01mH-655.35mH	0.01	mH	At stop	" H00_en.20" on page 379

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H00.21	2000-16h	Linear back EMF coefficient	0.01 mV/RPM to 655.35 mV/RPM	0.01	mV/rpm	At stop	" H00_en.21" on page 379
H00.22	2000-17h	Torque coefficient Kt	0.01 N · m/Arms to 655.35 N · m/Arms	0.01	N∙m/ Arms	At stop	" H00_en.22" on page 379
H00.23	2000-18h	Electrical constant Te	0.01ms to 655.35ms	0.01	ms	At stop	" H00_en.23" on page 380
H00.24	2000-19h	Mechanical constant Tm	0.01ms to 655.35ms	0.01	ms	At stop	" H00_en.24" on page 380
H00.27	2000-1Ch	Sine/Cosine number of serial encoder motor	0 to 65535	1	-	Real-time	" H00_en.27" on page 380
H00.28	2000-1Dh	Absolute encoder position offset	0 P/Rev–1073741824 P/Rev	0	PPR	At stop	" H00_en.28" on page 380
H00.30	2000-1Fh	Encoder selection (HEX)	0: Regular incremental encoder (UVW-ABZ) 1: Wire-saving encoder (ABZ[UVW]) 2: Regular incremental encoder (ABZ, without UVW) 16: TAMAGAWA encoder 18: Nikon encoder 19: Inovance encoder 48: Optical scale	19	-	At stop	" H00_en.30" on page 380
H00.31	2000-20h	Encoder PPR	1 P/Rev–1073741824 P/Rev	8388608	PPR	At stop	" H00_en.31" on page 381
H00.35	2000-24h	Motor code saved in the serial encoder	0 to 65535	0	-	At stop	" H00_en.35" on page 381
H00.37	2000-26h	Encoder function setting bit	0 to 255	0	-	Unchangea ble	" H00_en.37" on page 381
H00.43	2000-2Ch	Max. current	0.00 A to 655.35 A	16.95	A	At stop	" H00_en.43" on page 381

16.2 Parameter Group H01

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H01.00	2001-01h	MCU software version	0.0–6553.5	0.0	-	Unchangea ble	" H01_en.00" on page 382
H01.01	2001-02h	FPGA software version	0.0-6553.5	0.0	-	Unchangea ble	" H01_en.01" on page 382
H01.02	2001-03h	Servo Drive Model	0-65535	0	-	At stop	" H01_en.02" on page 382

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H01.04	2001-05h	Voltage class	0 V to 65535 V	220	V	Immediate ly	" H01_en.04" on page 382
H01.05	2001-06h	Rated power	0.01 kW-655.35 kW	75.00	kW	Immediate ly	" H01_en.05" on page 382
H01.06	2001-07h	Max. output power	0.01 kW-655.35 kW	75.00	kW	Immediate ly	" H01_en.06" on page 383
H01.07	2001-08h	Rated output current	0.01 A to 655.35 A	5.50	A	Immediate ly	" H01_en.07" on page 383
H01.08	2001-09h	Max. output current	0.01 A to 655.35 A	16.90	A	Immediate ly	" H01_en.08" on page 383
H01.10	2001-0Bh	Carrier frequency	4000-20000	8000	-	Immediate ly	" H01_en.10" on page 383
H01.11	2001-0Ch	Current loop modulation frequency	0: Carrier frequency 1: 2 × carrier frequency	1	-	At stop	" H01_en.11" on page 383
H01.12	2001-0Dh	Speed loop scheduling frequency-division coefficient	1: Current loop modulation frequency/1 2: Current loop modulation frequency/2 4: Current loop modulation frequency/4 8: Current loop modulation frequency/8 16: Current loop modulation frequency/16 32: Current loop modulation frequency/32	1	-	Immediate ly	" H01_en.12" on page 384
H01.13	2001-0Eh	Position loop scheduling frequency-division coefficient	2: Current loop modulation frequency/2 4: Current loop modulation frequency/4 8: Current loop modulation frequency/8 16: Current loop modulation frequency/16 32: Current loop modulation frequency/32 64: Current loop modulation frequency/64 128: Current loop modulation frequency/128	4	-	Immediate ly	" H01_en.13" on page 384
H01.14	2001-0Fh	Dead zone time	0.01 us to 20.00 us	2.00	us	Immediate ly	" H01_en.14" on page 384

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H01.15	2001-10h	DC bus overvoltage protection threshold	0 V to 2000 V	420	V	Immediate ly	<i>" H01_en.15"</i> on page 384
H01.16	2001-11h	DC bus voltage discharge threshold	0 V to 2000 V	380	V	Immediate ly	<i>" H01_en.16"</i> on page 385
H01.17	2001-12h	DC bus undervoltage threshold	0 V to 2000 V	200	V	Immediate ly	" H01_en.17" on page 385
H01.18	2001-13h	Servo drive overcurrent protection threshold	10%-100%	100	%	Immediate ly	" H01_en.18" on page 385
H01.19	2001-14h	Sampling coefficient of 7860	1-65535	3200	-	Immediate ly	<i>" H01_en.19"</i> on page 385
H01.20	2001-15h	Dead zone compensation	0.00us-20.00us	2.00	us	Immediate ly	" H01_en.20" on page 385
H01.21	2001-16h	Minimum switch- on time of bootstrap circuit	1.0us-20.0us	4.0	us	At stop	" H01_en.21" on page 386
H01.22	2001-17h	D-axis back EMF constant	0.0%-6553.5%	60.0	%	Immediate ly	" H01_en.22" on page 386
H01.23	2001-18h	Q-axis back EMF constant	0.0%-6553.5%	100.0	%	Immediate ly	" H01_en.23" on page 386
H01.24	2001-19h	D-axis current loop gain	1-65535	1000	-	Immediate ly	" H01_en.24" on page 386
H01.25	2001-1Ah	D-axis current loop integral compensation factor	0–65535	200	-	Immediate ly	" H01_en.25" on page 386
H01.26	2001-1Bh	Sinc3 filter data extraction rate in current sampling	0: Extraction rate 32 1: Extraction rate 64 2: Extraction rate 128 3: Extraction rate 256	0	-	At stop	" H01_en.26" on page 387
H01.27	2001-1Ch	Q-axis current loop gain	1-65535	1000	-	Immediate ly	" H01_en.27" on page 387
H01.28	2001-1Dh	Q-axis current loop integral compensation factor	0-65535	100	-	Immediate ly	" H01_en.28" on page 387
H01.29	2001-1Eh	Control power voltage sampling coefficient	50.0-150.0	100.0	-	At stop	" H01_en.29" on page 387

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H01.30	2001-1Fh	Bus voltage gain tuning	50.0%-150.0%	100.0	%	Immediate ly	" H01_en.30" on page 387
H01.31	2001-20h	FOC calculation time	1.00us-100.00us	2.60	us	Immediate ly	" H01_en.31" on page 388
H01.32	2001-21h	Relative gain of UV sampling	0–65535	0	-	Unchangea ble	" H01_en.32" on page 388
H01.37	2001-26h	Model identification version	0–65535	0	-	Immediate ly	" H01_en.37" on page 388
H01.44	2001-2Dh	Sinc3 filter data extraction rate in 2nd group of current sampling	0: Extraction rate 32 1: Extraction rate 64 2: Extraction rate 128 3: Extraction rate 256	2	-	At stop	" H01_en.44" on page 388
H01.45	2001-2Eh	Phase U duty cycle obtained upon voltage injection	0–65535	0	-	Immediate ly	" H01_en.45" on page 389
H01.47	2001-30h	MCU current reference processing time	0.00us-60.00us	38.00	us	Immediate ly	" H01_en.47" on page 389
H01.48	2001-31h	AD sampling delay	0.00us-20.00us	1.00	us	Immediate ly	" H01_en.48" on page 389
H01.49	2001-32h	Serial encoder data dissemination delay	0.00us-500.00us	61.00	us	Immediate ly	" H01_en.49" on page 389
H01.50	2001-33h	Interval version of DSP software	0.00-655.35	0.00	-	Immediate ly	" H01_en.50" on page 389
H01.52	2001-35h	D-axis proportional gain in performance priority mode	0–65535	2000	-	Immediate ly	" H01_en.52" on page 389
H01.53	2001-36h	D-axis integral gain in performance priority mode	0.00-655.35	2.00	-	Immediate ly	" H01_en.53" on page 390
H01.54	2001-37h	Q-axis proportional gain in performance priority mode	0–65535	2000	-	Immediate ly	" H01_en.54" on page 390
H01.55	2001-38h	Q-axis integral gain in performance priority mode	0.00-655.35	1.00	-	Immediate ly	" H01_en.55" on page 390

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H01.56	2001-39h	2nd group of proportional gain coefficient in performance priority mode	0.0%-1000.0%	100.0	%	Immediate ly	" H01_en.56" on page 390
H01.57	2001-3Ah	3rd group of proportional gain coefficient in performance priority mode	0.0%-1000.0%	100.0	%	Immediate ly	" H01_en.57" on page 390
H01.58	2001-3Bh	1st gain switchover threshold in performance priority mode	0.0%-300.0%	1.0	%	Immediate ly	" H01_en.58" on page 391
H01.59	2001-3Ch	2nd gain switchover threshold in performance priority mode	0.0%-300.0%	2.0	%	Immediate ly	" H01_en.59" on page 391
H01.60	2001-3Dh	3rd gain switchover threshold in performance priority mode	0.0%-300.0%	100.0	%	Immediate ly	" H01_en.60" on page 391
H01.61	2001-3Eh	4th gain switchover threshold in performance priority mode	0.0%-300.0%	200.0	%	Immediate ly	" H01_en.61" on page 391
H01.62	2001-3Fh	Phase U/V 7860 detection protection threshold	0-320	280	-	Unchangea ble	" H01_en.62" on page 391
H01.63	2001-40h	Serial encoder data transmission compensation time	0.00-10.00	0.00	-	At stop	" H01_en.63" on page 392

16.3 Parameter Group H02

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H02.00	2002-01h	Control mode	0: Speed control mode 1: Position control mode 2: Torque control mode 3: Torque<->Speed control mode 4: Speed<->Position control mode 5: Torque<->Position control mode 6: Torque<->Speed<->Position compound mode	1	-	At stop	" H02_en.00" on page 392
H02.01	2002-02h	Absolute position detection system	0: Incremental position mode 1: Absolute position linear mode 2: Absolute position rotation mode	0	-	At stop	" H02_en.01" on page 393
H02.02	2002-03h	Forward direction	0: Counterclockwise (CCW) as forward direction 1: Clockwise (CW) as forward direction	0	-	At stop	" H02_en.02" on page 393
H02.03	2002-04h	Output pulse phase	0: Phase A leads phase B 1: Phase A lags behind phase B	0	-	At stop	" H02_en.03" on page 394
H02.05	2002-06h	Stop mode at S- OFF	0: Coast to stop, keeping de- energized state 1: Stop at zero speed, keeping de- energized state 2: Stop at zero speed, keeping dynamic braking state 3: Dynamic braking stop, keeping dynamic braking state	0	-	At stop	" H02_en.05" on page 394
H02.06	2002-07h	Stop mode at No.2 fault	0: Coast to stop, keeping de- energized state 1: Stop at zero speed, keeping de- energized state 2: Stop at zero speed, keeping dynamic braking state 3: Dynamic braking stop, keeping DB state 4: DB stops, keeping operation state	2	-	At stop	" H02_en.06" on page 395
H02.07	2002-08h	Stop mode at overtravel	0: Coast to stop, keeping de- energized state 1: Stop at zero speed, keeping position lock state 2: Stop at zero speed, keeping de- energized state	1	-	At stop	" H02_en.07" on page 395

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H02.08	2002-09h	Stop mode at No.1 fault	0: Coast to stop, keeping de- energized state 1: DB stop, keeping de-energized state 2: DB stop, keeping DB state	2	-	At stop	" H02_en.08" on page 395
H02.09	2002-0Ah	Delay from brake output ON to command received	0 ms to 500 ms	250	ms	Immediate ly	<i>" H02_en.09"</i> on page 396
H02.10	2002-0Bh	Delay from brake output OFF to motor de- energized in the standstill state	1 ms to 1000 ms	150	ms	Immediate ly	" H02_en.10" on page 396
H02.11	2002-0Ch	Motor speed threshold at brake output OFF in rotation state	0 rpm to 3000 rpm	30	rpm	Immediate ly	" H02_en.11" on page 396
H02.12	2002-0Dh	Delay from S-ON OFF to brake output OFF in rotation state	1 ms to 1000 ms	500	ms	Immediate ly	" H02_en.12" on page 396
H02.14	2002-0Fh	Stop mode and state switching speed condition	10rpm–100rpm	10	rpm	At stop	<i>"</i> H02_en.14" on page 397
H02.15	2002-10h	Warning display on the keypad	0: Output warning information immediately 1: Not output warning information	0	-	At stop	" H02_en.15" on page 397
H02.17	2002-12h	Stop at zero speed upon main circuit power-off	0: Disabled 1: Enabled	1	-	At stop	" H02_en.17" on page 397
H02.18	2002-13h	S-ON filter time constant	0 ms to 64 ms	0	ms	At stop	" H02_en.18" on page 397
H02.19	2002-14h	S-ON brake open delay	0 ms to 1000 ms	0	ms	At stop	" H02_en.19" on page 397
H02.20	2002-15h	Dynamic brake relay coil ON delay	10 ms to 30000 ms	30	ms	Immediate ly	" H02_en.20" on page 398
H02.21	2002-16h	Min. permissible resistance of regenerative resistor	0 Ω to 65535 Ω	40	Ω	Unchangea ble	" H02_en.21" on page 398
H02.22	2002-17h	Power of built-in regenerative resistor	0 W to 65535 W	40	W	Unchangea ble	" H02_en.22" on page 398

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H02.23	2002-18h	Resistance of built- in regenerative resistor	0 Ω to 65535 Ω	50	Ω	Unchangea ble	" H02_en.23" on page 398
H02.24	2002-19h	Resistor heat dissipation coefficient	10-100	30	-	At stop	" H02_en.24" on page 399
H02.25	2002-1Ah	Regenerative resistor type	0: Built-in 1: External, natural ventilated 2: External, forced air cooling 3: Not needed	0	-	At stop	" H02_en.25" on page 399
H02.26	2002-1Bh	Power capacity of external regenerative resistor	1 W-65535 W	40	W	At stop	" H02_en.26" on page 400
H02.27	2002-1Ch	Resistance of external regenerative resistor	1 Ω to 1000 Ω	50	Ω	At stop	" H02_en.27" on page 400
H02.28	2002-1Dh	220 V min. bus voltage	190 V to 260 V	235	V	At stop	" H02_en.28" on page 400
H02.30	2002-1Fh	User password	0-65535	0	-	At stop	" H02_en.30" on page 401
H02.31	2002-20h	System parameter initialization	0: No operation 1: Restore default settings 2: Clear fault records	0	-	At stop	" H02_en.31" on page 401
H02.32	2002-21h	Default keypad display	0–99	50	-	Immediate ly	" H02_en.32" on page 401
H02.34	2002-23h	CAN software version	0.00-655.35	0.00	-	Unchangea ble	" H02_en.34" on page 402
H02.35	2002-24h	Keypad display refresh frequency	0 Hz–29 Hz	0	Hz	Immediate ly	" H02_en.35" on page 402
H02.41	2002-2Ah	Manufacturer password	0–65535	0	-	At stop	" H02_en.41" on page 402

16.4 Parameter Group H03

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H03.00	2003-01h	DI function allocation 1 (activated upon power-on)	0: Corresponding to null 1: Corresponding to FunIN.1 2: Corresponding to FunIN.2 4: Corresponding to FunIN.3 8: Corresponding to FunIN.4 16: Corresponding to FunIN.5 32: Corresponding to FunIN.6 64: Corresponding to FunIN.7 128: Corresponding to FunIN.7 128: Corresponding to FunIN.9 512: Corresponding to FunIN.10 1024: Corresponding to FunIN.11 2048: Corresponding to FunIN.12 4096: Corresponding to FunIN.13 8192: Corresponding to FunIN.14 16384: Corresponding to FunIN.15	0	-	Immediate ly	" H03_en.00" on page 402
H03.01	2003-02h	DI function allocation 2 (activated upon power-on)	0: Corresponding to null 1: Corresponding to FunIN.17 2: Corresponding to FunIN.18 4: Corresponding to FunIN.19 8: Corresponding to FunIN.20 16: Corresponding to FunIN.21 32: Corresponding to FunIN.22 64: Corresponding to FunIN.23 128: Corresponding to FunIN.24 256: Corresponding to FunIN.25 512: Corresponding to FunIN.26 1024: Corresponding to FunIN.27 2048: Corresponding to FunIN.28 4096: Corresponding to FunIN.29 8192: Corresponding to FunIN.30 16384: Corresponding to FunIN.31	0		Immediate ly	" H03_en.01" on page 403
H03.02	2003-03h	DI1 function selection	See " <i>H03_en.02</i> " on page 404 for details.	14	-	Immediate ly	" H03_en.02" on page 404
H03.03	2003-04h	DI1 logic selection	0: Active low 1: Active high	0	-	Immediate ly	" H03_en.03" on page 405
H03.04	2003-05h	DI2 function	See H03.02.	15	-	Immediate ly	" H03_en.04" on page 405
H03.05	2003-06h	DI2 logic selection	0: Active low 1: Active high	0	-	Immediate ly	" H03_en.05" on page 406
H03.06	2003-07h	DI3 function	See H03.02.	13	-	Immediate ly	" H03_en.06" on page 406
H03.07	2003-08h	DI3 logic selection	0: Active low 1: Active high	0	-	Immediate ly	" H03_en.07" on page 406

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H03.08	2003-09h	DI4 function selection	See H03.02.	2	-	Immediate ly	" H03_en.08" on page 406
H03.09	2003-0Ah	DI4 logic selection	0: Active low 1: Active high	0	-	Immediate ly	" H03_en.09" on page 406
H03.10	2003-0Bh	DI5 function selection	See H03.02.	1	-	Immediate ly	" H03_en.10" on page 407
H03.11	2003-0Ch	DI5 logic selection	0: Active low 1: Active high	0	-	Immediate ly	" H03_en.11" on page 407
H03.16	2003-11h	DI8 function selection	See H03.02.	31	-	Immediate ly	" H03_en.16" on page 407
H03.17	2003-12h	DI8 logic selection	0: Active low 1: Active high	0	-	Immediate ly	" H03_en.17" on page 407
H03.18	2003-13h	DI9 function selection	See H03.02.	0	-	Immediate ly	" H03_en.18" on page 408
H03.19	2003-14h	DI9 logic selection	0: Active low 1: Active high	0	-	Immediate ly	" H03_en.19" on page 408
H03.34	2003-23h	DI function allocation 3 (activated upon power-on)	0: 0x0: Corresponding to null 1: 0x1: Corresponding to FunIN.33 2: 0x2: Corresponding to FunIN.34 4: 0x4: Corresponding to FunIN.35 8: 0x8: Corresponding to FunIN.36 16: 0x10: Corresponding to FunIN.37 32: 0x20: Corresponding to FunIN.38 64: 0x40: Corresponding to FunIN.39 128: 0x80: Corresponding to FunIN.39 128: 0x80: Corresponding to FunIN.40 256: 0x100: Corresponding to FunIN.41 512: 0x200: Corresponding to FunIN.42 1024: 0x400: Corresponding to FunIN.43 2048: 0x800: Corresponding to FunIN.44 4096: 0x1000: Corresponding to FunIN.45 8192: 0x2000: Corresponding to FunIN.46 16384: 0x4000: Corresponding to FunIN.47	0		Immediate ly	" H03_en.34" on page 408

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H03.35	2003-24h	DI function allocation 4 (activated upon power-on)	0: 0x0: Corresponding to null 1: 0x1: Corresponding to FunIN.49 2: 0x2: Corresponding to FunIN.50 4: 0x4: Corresponding to FunIN.51 8: 0x8: Corresponding to FunIN.52 16: 0x10: Corresponding to FunIN.53 32: 0x20: Corresponding to FunIN.54 64: 0x40: Corresponding to FunIN.55 128: 0x80: Corresponding to FunIN.56 256: 0x100: Corresponding to FunIN.57 512: 0x200: Corresponding to FunIN.58 1024: 0x400: Corresponding to FunIN.59 2048: 0x800: Corresponding to FunIN.60 4096: 0x1000: Corresponding to FunIN.61 8192: 0x2000: Corresponding to FunIN.62 16384: 0x4000: Corresponding to FunIN.63	0	-	Immediate ly	" H03_en.35" on page 409
H03.60	2003-3Dh	DI1 filter	0.00 ms to 500.00 ms	3.00	ms	Immediate ly	" H03_en.60" on page 409
H03.61	2003-3Eh	DI2 filter	0.00 ms to 500.00 ms	3.00	ms	Immediate ly	" H03_en.61" on page 410
H03.62	2003-3Fh	DI3 filter	0.00 ms to 500.00 ms	3.00	ms	Immediate ly	" H03_en.62" on page 410
H03.63	2003-40h	DI4 filter	0.00 ms to 500.00 ms	3.00	ms	Immediate ly	" H03_en.63" on page 410
H03.64	2003-41h	DI5 filter	0.00 ms to 500.00 ms	3.00	ms	Immediate ly	" H03_en.64" on page 410
H03.65	2003-42h	DI8 filter 1	0.00 ms to 500.00 ms	0.00	ms	Immediate ly	" H03_en.65" on page 411
H03.66	2003-43h	DI9 filter 1	0.00 ms to 500.00 ms	0.00	ms	Immediate ly	" H03_en.66" on page 411

16.5 Parameter Group H04

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H04.00	2004-01h	DO1 function selection	See " H04_en.00" on page 411 for details.	1	-	Immediate ly	" H04_en.00" on page 411
H04.01	2004-02h	DO1 logic level	0: Output low (L) level when active (optocoupler ON) 1: Output high (H) level when active (optocoupler OFF)	0	-	Immediate ly	" H04_en.01" on page 412
H04.02	2004-03h	DO2 function selection	See H04.00.	5	-	Immediate ly	" H04_en.02" on page 412
H04.03	2004-04h	DO2 logic level	0: Output low (L) level when active (optocoupler ON) 1: Output high (H) level when active (optocoupler OFF)	0	-	Immediate ly	" H04_en.03" on page 413
H04.04	2004-05h	DO3 function	See H04.00.	9	-	Immediate ly	" H04_en.04" on page 413
H04.05	2004-06h	DO3 logic level	0: Output low (L) level when active (optocoupler ON) 1: Output high (H) level when active (optocoupler OFF)	0	-	Immediate ly	" H04_en.05" on page 413
H04.06	2004-07h	DO4 function	See H04.00.	11	-	Immediate ly	" H04_en.06" on page 413
H04.07	2004-08h	DO4 logic level	0: Output low (L) level when active (optocoupler ON) 1: Output high (H) level when active (optocoupler OFF)	0	-	Immediate ly	" H04_en.07" on page 413
H04.08	2004-09h	DO5 function selection	See H04.00.	16	-	Immediate ly	" H04_en.08" on page 414
H04.09	2004-0Ah	DO5 logic level	0: Output low (L) level when active (optocoupler ON) 1: Output high (H) level when active (optocoupler OFF)	0	-	Immediate ly	" H04_en.09" on page 414
H04.22	2004-17h	DO source selection	0-31	0	-	At stop	" H04_en.22" on page 414

16.6 Parameter Group H05

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.00	2005-01h	Primary position reference source	0: Pulse reference 1: Step reference 2: Multi-position reference	0	-	At stop	" H05_en.00" on page 415
H05.01	2005-02h	Position pulse reference input terminal	0: Low speed 1: High speed	0	-	At stop	" H05_en.01" on page 416
H05.02	2005-03h	Pulses per revolution	0 P/Rev–1048576 P/Rev	0	PPR	At stop	" H05_en.02" on page 418
H05.04	2005-05h	First-order low- pass filter time constant	0.0 ms to 6553.5ms	0.0	ms	At stop	" H05_en.04" on page 418
H05.05	2005-06h	Step amount	-9999 to +9999	50	Refer ence unit	At stop	" H05_en.05" on page 418
H05.06	2005-07h	Time constant of moving average filter	0.0 ms to 128.0ms	0.0	ms	At stop	" H05_en.06" on page 419
H05.07	2005-08h	Electronic gear ratio 1 (numerator)	1 to 1073741824	262144	-	Real-time	" H05_en.07" on page 419
H05.09	2005-0Ah	Electronic gear ratio 1 (denominator)	1 to 1073741824	10000	-	Real-time	" H05_en.09" on page 419
H05.11	2005-0Ch	Electronic gear ratio 2 (numerator)	1 to 1073741824	262144	-	Real-time	" H05_en.11" on page 419
H05.13	2005-0Eh	Electronic gear ratio 2 (denominator)	1 to 1073741824	10000	-	Real-time	" H05_en.13" on page 420
H05.15	2005-10h	Pulse reference form	0: Direction + Pulse, positive logic 1: Direction + Pulse, negative logic 2: Phase A + phase B quadrature pulse, quadrupled frequency 3: CW + CCW	0	-	At stop	" H05_en.15" on page 420
H05.16	2005-11h	Clear action	0: Clear position deviation upon S- OFF and fault 1: Clear position deviation pulses upon S-OFF and fault 2: Clear position deviation by CIrPosErr signal input from DI	0	-	At stop	" H05_en.16" on page 421
H05.17	2005-12h	Number of encoder frequency-division pulses	35 P/Rev-32767 P/Rev	2500	PPR	At stop	" H05_en.17" on page 422
H05.19	2005-14h	Speed feedforward control	0: No speed feedforward 1: Internal speed feedforward	1	-	At stop	" H05_en.19" on page 422

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.20	2005-15h	Condition for positioning completed signal output	0: Absolute position deviation lower than the setpoint of H05.21 1: Absolute position deviation lower than the setpoint of H05.21 and the filtered position reference is 0 2: Absolute position deviation lower than the setpoint of H05.21 and the unfiltered position reference is 0 3: Absolute position deviation kept lower than the setpoint of H05.21 within the time defined by H05.60 and the unfiltered position reference is 0	0	-	Real-time	" H05_en.20" on page 423
H05.21	2005-16h	Threshold of positioning completed	1 to 65535	183	Encoder unit	Real-time	" H05_en.21" on page 423
H05.22	2005-17h	Proximity threshold	1 to 65535	65535	Encoder unit	Real-time	" H05_en.22" on page 424
H05.23	2005-18h	Interrupt positioning selection	0: Disable 1: Enabled	0	-	At stop	" H05_en.23" on page 424
H05.24	2005-19h	Interrupt positioning displacement	0 to 1073741824	10000	Refer ence unit	Real-time	" H05_en.24" on page 424
H05.26	2005-1Bh	Constant operating speed in interrupt positioning	0rpm–6000rpm	200	RPM	Real-time	" H05_en.26" on page 425
H05.27	2005-1Ch	Acc./Dec. time of interrupt positioning	0ms to 1000ms	10	ms	Real-time	" H05_en.27" on page 425
H05.29	2005-1Eh	Interruption fixed length unlock	0: Disabled 1: Enabled	1	-	Real-time	" H05_en.29" on page 425
H05.30	2005-1Fh	Homing enable selection	0: Disabled 1: Homing enabled through the HomingStart signal input from DI 2: Electrical homing enabled through the HomingStart signal input from DI 3: Homing started immediately upon power-on 4: Homing executed immediately 5: Electrical homing started 6: Current position as home 8: D-triggered position as home	0	-	Real-time	" H05_en.30" on page 426

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.31	2005-20h	Homing mode	 0: Forward, home switch as deceleration point and home 1: Reverse, home switch as deceleration point and home 2: Forward, Z signal as deceleration point and home 3: Reverse, motor Z signal as deceleration point and home 4: Forward, home switch as deceleration point and Z signal as home 5: Reverse, home switch as deceleration point and Z signal as home 6: Forward, positive limit switch as deceleration point and home 7: Reverse, negative limit switch as deceleration point and home 7: Reverse, negative limit switch as deceleration point and home 8: Forward, positive limit switch as deceleration point and home 8: Forward, positive limit switch as deceleration point and Z signal as home 9: Reverse, negative limit switch as deceleration point and Z signal as home 10: Forward, mechanical limit position as deceleration point and home 11: Reverse, mechanical limit position as deceleration point and home 12: Forward, mechanical limit position as deceleration point and home 13: Reverse, mechanical limit position as deceleration point and Z signal as home 14: Forward single-turn homing 15: Reverse single-turn homing 	0		Real-time	" H05_en.31" on page 427
H05.32	2005-21h	Speed of high- speed search for home switch signal	16: Nearby single-turn homing 0rpm–3000rpm	100	RPM	Real-time	" H05_en.32" on page 428
H05.33	2005-22h	Speed of low- speed search for home switch signal	0rpm–1000rpm	10	RPM	Real-time	" H05_en.33" on page 428
H05.34	2005-23h	Acceleration/ Deceleration time during homing	0ms to 1000ms	1000	ms	Real-time	" H05_en.34" on page 428

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.35	2005-24h	Home search time limit	0ms to 65535ms	10000	ms	Real-time	" H05_en.35" on page 429
H05.36	2005-25h	Mechanical home offset	-1073741824 to 1073741824	0	Refer ence unit	Real-time	" H05_en.36" on page 429
H05.38	2005-27h	Servo pulse output source	 0: Encoder frequency division output 1: Pulse reference synchronous output 2: Frequency division or synchronous output inhibited 	0	-	At stop	" H05_en.38" on page 429
H05.39	2005-28h	Electronic gear ratio switchover condition	0: Switchover after position reference is kept 0 for 2.5 ms 1: Switched in real time	0	-	At stop	" H05_en.39" on page 430
H05.40	2005-29h	Mechanical home offset and action upon overtravel	0: H0536 as the coordinate after homing, reverse homing applied after homing triggered again on overtravel 1: H0536 as the relative offset after homing, reverse homing applied after homing triggered again on overtravel 2: H0536 as the coordinate after homing, reverse homing auto- applied on overtravel 3: H0536 as the relative offset after homing, reverse homing auto- applied on overtravel	0	-	At stop	" H05_en.40" on page 431
H05.41	2005-2Ah	Z pulse output polarity	0: Negative (Z pulse active low) 1: Positive (Z pulse active high)	1	-	At stop	" H05_en.41" on page 431
H05.43	2005-2Ch	Position pulse edge	0: Falling edge-triggered 1: Rising edge-triggered	1	-	Real-time	" H05_en.43" on page 432
H05.44	2005-2Dh	Encoder multi-turn data offset	0 to 65535	0	-	Real-time	" H05_en.44" on page 433
H05.46	2005-2Fh	Position offset in absolute position linear mode (low 32 bits)	-2147483648 to 2147483647	0	Encoder unit	At stop	" H05_en.46" on page 433
H05.48	2005-31h	Position offset in absolute position linear mode (high 32 bits)	-2147483648 to 2147483647	0	Encoder unit	At stop	" H05_en.48" on page 433
H05.50	2005-33h	Mechanical gear ratio in absolute position rotation mode (numerator)	1 to 65535	1	-	At stop	" H05_en.50" on page 433

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.51	2005-34h	Mechanical gear ratio in absolute position rotation mode (denominator)	1 to 65535	1	-	At stop	" H05_en.51" on page 433
H05.52	2005-35h	Pulses per revolution of the load in absolute position rotation mode (low 32 bits)	0 to 2147483647	0	Encoder unit	At stop	" H05_en.52" on page 434
H05.54	2005-37h	Pulses per revolution of the load in absolute position rotation mode (high 32 bits)	0 to 127	0	Encoder unit	At stop	" H05_en.54" on page 434
H05.56	2005-39h	Speed threshold in homing upon hit- and-stop	0rpm–1000rpm	2	RPM	Real-time	" H05_en.56" on page 434
H05.57	2005-3Ah	Mechanical limit times threshold	0 to 65535	20	-	Real-time	" H05_en.57" on page 434
H05.58	2005-3Bh	Torque threshold in homing upon hit-and-stop	0.0% to 300.0%	100.0	%	Real-time	" H05_en.58" on page 434
H05.59	2005-3Ch	Positioning window time	0ms to 30000ms	0	ms	Real-time	" H05_en.59" on page 435
H05.60	2005-3Dh	Hold time of positioning completed	0ms to 30000ms	0	ms	Real-time	" H05_en.60" on page 435
H05.61	2005-3Eh	Encoder frequency-division pulse output (32- bit)	0 P/Rev–262143 P/Rev	0	PPR	At stop	" H05_en.61" on page 435
H05.63	2005-40h	Real time update of position reference source	0 to 1	0	-	At stop	" H05_en.63" on page 435
H05.66	2005-43h	Homing time unit	0: 1 ms 1: 10 ms 2: 100 ms	0	-	At stop	" H05_en.66" on page 436

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H05.67	2005-44h	Offset between zero point and single-turn absolute position	0 to 2147483648	0	-	At stop	" H05_en.67" on page 436
H05.69	2005-46h	Auxiliary homing function	0: Disabled 1: Enable single-turn homing 2: Record deviation position 3: Start a new search for the Z signal (homing) 4: Clear the position deviation	0	-	At stop	" H05_en.69" on page 436

16.7 Parameter Group H06

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.00	2006-01h	Source of main speed reference A	0: Digital setting (H06.03)	0	-	At stop	" H06_en.00" on page 436
H06.01	2006-02h	Source of auxiliary speed reference B	0: Digital setting (H06.03) 5: Multi-speed reference	5	-	At stop	" H06_en.01" on page 437
H06.02	2006-03h	Speed reference source	0: Source of main speed reference A 1: Source of auxiliary speed reference B 2: A+B 3: Switched between A and B 4: Communication	0	-	At stop	" H06_en.02" on page 437
H06.03	2006-04h	Speed reference set through keypad	–6000 rpm to +6000 rpm	200	RPM	Real-time	" H06_en.03" on page 438
H06.04	2006-05h	Jog speed setpoint	0rpm–6000rpm	100	RPM	Real-time	" H06_en.04" on page 438
H06.05	2006-06h	Acceleration ramp time constant of speed reference	0ms to 65535ms	0	ms	Real-time	" H06_en.05" on page 438
H06.06	2006-07h	Deceleration ramp time constant of speed reference	0ms to 65535ms	0	ms	Real-time	" H06_en.06" on page 439
H06.07	2006-08h	Maximum speed limit	0rpm–6000rpm	6000	RPM	Real-time	" H06_en.07" on page 439
H06.08	2006-09h	Forward speed threshold	0rpm–6000rpm	6000	RPM	Real-time	" H06_en.08" on page 439
H06.09	2006-0Ah	Reverse speed threshold	0rpm–6000rpm	6000	RPM	Real-time	" H06_en.09" on page 440

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H06.11	2006-0Ch	Torque feedforward control	0: No torque feedforward 1: Internal torque feedforward	1	-	Real-time	" H06_en.11" on page 440
H06.13	2006-0Eh	Speed smoothing time	0us-20000us	0	us	At stop	" H06_en.13" on page 441
H06.15	2006-10h	Zero clamp speed threshold	0rpm-6000rpm	10	RPM	Real-time	" H06_en.15" on page 441
H06.16	2006-11h	Threshold of TGON (motor rotation) signal	0rpm-1000rpm	20	RPM	Real-time	" H06_en.16" on page 442
H06.17	2006-12h	Threshold of V- Cmp (speed matching) signal	0rpm-100rpm	10	RPM	Real-time	" H06_en.17" on page 443
H06.18	2006-13h	Threshold of speed reach signal	10rpm-6000rpm	1000	RPM	Real-time	" H06_en.18" on page 443
H06.19	2006-14h	Threshold of zero speed output signal	1rpm-6000rpm	10	RPM	Real-time	" H06_en.19" on page 444
H06.28	2006-1Dh	Cogging torque ripple compensation	0 to 1	0	-	Real-time	" H06_en.28" on page 445
H06.31	2006-20h	Sine frequency	0 to 16000	50	-	Real-time	" H06_en.31" on page 445
H06.32	2006-21h	Sine amplitude	0 to 30000	30	-	Real-time	" H06_en.32" on page 445
H06.33	2006-22h	Sine amplitude	0: Disabled 1: Position reference sine 2: Speed reference sine 3: Torque reference sine	30	-	Real-time	" H06_en.33" on page 446
H06.35	2006-24h	Sine offset	-9900 to 9900	0	-	Real-time	" H06_en.35" on page 446

16.8 Parameter Group H07

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H07.00	2007-01h	Source of main torque reference A	0: Keypad (H07.03)	0	-	At stop	" H07_en.00" on page 446
H07.01	2007-02h	Source of auxiliary torque reference B	0: Keypad (H07.03)	0	-	At stop	" H07_en.01" on page 446

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H07.02	2007-03h	Torque reference source	 0: Source of main torque reference A 1: Source of auxiliary torque reference B 2: Source of A+B 3: Switched between A and B 4: Communication 	0	-	At stop	" H07_en.02" on page 447
H07.03	2007-04h	Torque reference set through keypad	-400.0%-400.0%	0.0	%	Immediate ly	" H07_en.03" on page 447
H07.05	2007-06h	Torque reference filter time constant	0.00 ms to 30.00 ms	0.50	ms	Immediate ly	" H07_en.05" on page 448
H07.06	2007-07h	2nd torque reference filter time constant	0.00 ms to 30.00 ms	0.27	ms	Immediate ly	<i>" H07_en.06"</i> on page 448
H07.07	2007-08h	Torque limit source	0: Forward/Reverse internal torque limit (default) 1: Forward/Reverse external torque limit (selected through P-CL and N- CL)	0	-	At stop	" H07_en.07" on page 448
H07.09	2007-0Ah	Positive internal torque limit	0.0%-400.0%	350.0	%	Immediate ly	" H07_en.09" on page 449
H07.10	2007-0Bh	Negative internal torque limit	0.0%-400.0%	350.0	%	Immediate ly	" H07_en.10" on page 449
H07.11	2007-0Ch	Positive external torque limit	0.0%-400.0%	350.0	%	Immediate ly	" H07_en.11" on page 449
H07.12	2007-0Dh	Negative external torque limit	0.0%-400.0%	350.0	%	Immediate ly	" H07_en.12" on page 449
H07.15	2007-10h	Emergency-stop torque	0.0%-300.0%	100.0	%	At stop	" H07_en.15" on page 450
H07.17	2007-12h	Speed limit source	0: Internal speed limit (in torque control) 1: 0 (no action) 2: 1st or 2nd speed limit input selected by FunIN.36	0	-	Immediate ly	" H07_en.17" on page 450
H07.19	2007-14h	Forward speed limit/1st speed limit in torque control	0 rpm to 6000 rpm	3000	rpm	Immediate ly	" H07_en.19" on page 450
H07.20	2007-15h	Reverse speed limit/2nd speed limit in torque control	0 rpm to 6000 rpm	3000	rpm	Immediate ly	" H07_en.20" on page 450
H07.21	2007-16h	Base value for torque reach	0.0%-300.0%	0.0	%	Immediate ly	" H07_en.21" on page 451

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H07.22	2007-17h	Torque reach valid value	0.0%-300.0%	20.0	%	Immediate ly	" H07_en.22" on page 451
H07.23	2007-18h	Torque reach invalid value	0.0%-300.0%	10.0	%	Immediate ly	" H07_en.23" on page 451
H07.24	2007-19h	Field weakening depth	60%-120%	115	%	Immediate ly	" H07_en.24" on page 452
H07.25	2007-1Ah	Max. permissible demagnetizing current	0%-200%	100	%	Immediate ly	" H07_en.25" on page 452
H07.26	2007-1Bh	Field weakening selection	0-1	1	-	Immediate ly	" H07_en.26" on page 452
H07.27	2007-1Ch	Flux weakening gain	1 Hz-1000 Hz	30	Hz	Immediate ly	" H07_en.27" on page 452
H07.40	2007-29h	Speed limit window in the torque control mode	0.5 ms to 30.0 ms	1.0	ms	Immediate ly	" H07_en.40" on page 453

16.9 Parameter Group H08

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H08.00	2008-01h	Speed loop gain	0.1 Hz-2000.0 Hz	40.0	Hz	Immediate ly	" H08_en.00" on page 453
H08.01	2008-02h	Speed loop integral time constant	0.15 ms to 512.00 ms	19.89	ms	Immediate ly	" H08_en.01" on page 454
H08.02	2008-03h	Position loop gain	0.0 Hz-2000.0 Hz	64.0	Hz	Immediate ly	" H08_en.02" on page 454
H08.03	2008-04h	2nd speed loop gain	0.1 Hz-2000.0 Hz	75.0	Hz	Immediate ly	" H08_en.03" on page 454
H08.04	2008-05h	2nd speed loop integral time constant	0.15 ms to 512.00 ms	10.61	ms	Immediate ly	" H08_en.04" on page 454
H08.05	2008-06h	2nd position loop gain	0.0 Hz-2000.0 Hz	120.0	Hz	Immediate ly	" H08_en.05" on page 454
H08.08	2008-09h	2nd gain mode setting	0: Fixed to the 1st group of gains, P/ PI switched through external DI1:Switched between the 1st and 2nd group of gains as defined by H08.09	1	-	Immediate ly	" H08_en.08" on page 455

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H08.09	2008-0Ah	Gain switchover condition	0: Fixed to the 1st gain set (PS) 1: Switch with external DI (PS) 2: Torque reference too large (PS) 3: Speed reference too large (PS) 4: Speed reference change rate too large (PS) 5: Speed reference low/high speed threshold (PS) 6: Position deviation too large (P) 7: Position reference available (P) 8: Positioning unfinished (P) 9: Actual speed (P) 10: Position reference + Actual speed (P)	0	-	Immediate ly	" H08_en.09" on page 455
H08.10	2008-0Bh	Gain switchover delay	0.0 ms to 1000.0 ms	5.0	ms	At stop	" H08_en.10" on page 457
H08.11	2008-0Ch	Gain switchover level	0-20000	50	-	Immediate ly	" H08_en.11" on page 457
H08.12	2008-0Dh	Gain switchover dead time	0-20000	30	-	At stop	" H08_en.12" on page 457
H08.13	2008-0Eh	Position gain switchover time	0.0 ms to 1000.0 ms	3.0	ms	At stop	" H08_en.13" on page 458
H08.14	2008-0Fh	Auto-tuned inertia value	0.00-200.00	0.00	-	Unchangea ble	" H08_en.14" on page 458
H08.15	2008-10h	Load moment of inertia ratio	0.00-120.00	2.00	-	Immediate ly	" H08_en.15" on page 458
H08.18	2008-13h	Speed feedforward filter time constant	0.00 ms to 64.00 ms	0.50	ms	Immediate ly	" H08_en.18" on page 459
H08.19	2008-14h	Speed feedforward gain	0.0%-100.0%	0.0	%	Immediate ly	" H08_en.19" on page 459
H08.20	2008-15h	Torque feedforward filter time constant	0.00 ms to 64.00 ms	0.50	ms	Immediate ly	" H08_en.20" on page 459
H08.21	2008-16h	Torque feedforward gain	0.0%-200.0%	0.0	%	Immediate ly	" H08_en.21" on page 459
H08.22	2008-17h	Speed feedback filtering option	0: Inhibited 1: 2 times 2: 4 times 3: 8 times 4: 16 times	0	-	At stop	" H08_en.22" on page 460
H08.23	2008-18h	Cutoff frequency of speed feedback low-pass filter	100 Hz-4000 Hz	4000	Hz	Immediate ly	" H08_en.23" on page 460

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H08.24	2008-19h	PDFF control coefficient	0.0%-1000.0%	100.0	%	Immediate ly	" H08_en.24" on page 461
H08.27	2008-1Ch	Cutoff frequency of speed observer	10 Hz–2000 Hz	170	Hz	Immediate ly	" H08_en.27" on page 461
H08.28	2008-1Dh	Speed inertia correction coefficient	10%-10000%	100	%	Immediate ly	" H08_en.28" on page 461
H08.29	2008-1Eh	Speed observer filter time	0.02 ms to 20.00 ms	0.80	ms	Immediate ly	" H08_en.29" on page 461
H08.31	2008-20h	Disturbance observer cutoff frequency	1 Hz–1700 Hz	600	Hz	Immediate ly	" H08_en.31" on page 462
H08.32	2008-21h	Disturbance observer compensation coefficient	0%-100%	0	%	Immediate ly	" H08_en.32" on page 462
H08.33	2008-22h	Disturbance inertia correction coefficient	1%-10000%	100	%	Immediate ly	" H08_en.33" on page 462
H08.34	2008-23h	Medium- and high- frequency jitter suppression phase modulation 1	0%-1600%	0	%	Immediate ly	" H08_en.34" on page 462
H08.35	2008-24h	Medium- and high- frequency jitter suppression frequency 1	0 Hz–1000 Hz	0	Hz	Immediate ly	" H08_en.35" on page 462
H08.36	2008-25h	Medium- and high- frequency jitter suppression compensation 1	0%-200%	0	%	Immediate ly	" H08_en.36" on page 463
H08.37	2008-26h	Phase modulation for medium- frequency jitter suppression 2	-90-90	0	-	Immediate ly	" H08_en.37" on page 463
H08.38	2008-27h	Frequency of medium-frequency jitter suppression 2	0 Hz–1000 Hz	0	Hz	Immediate ly	" H08_en.38" on page 463
H08.39	2008-28h	Compensation gain of medium- frequency jitter suppression 2	0%–300%	0	%	Immediate ly	" H08_en.39" on page 463
H08.40	2008-29h	Speed observer selection	0-1	0	-	At stop	" H08_en.40" on page 463

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H08.42	2008-2Bh	Model control selection	0-1	0	-	At stop	" H08_en.42" on page 464
H08.43	2008-2Ch	Model gain	0.0-2000.0	40.0	-	Immediate ly	" H08_en.43" on page 464
H08.45	2008-2Eh	Feedforward position	0-1	0	-	Immediate ly	" H08_en.45" on page 464
H08.46	2008-2Fh	Model feedforward	0.0-102.4	95.0	-	Immediate ly	" H08_en.46" on page 464
H08.51	2008-34h	Model filtering time 2	0.00 ms to 20.00 ms	0.00	ms	Immediate ly	" H08_en.51" on page 464
H08.53	2008-36h	Medium- and low- frequency jitter suppression frequency 3	0.0 Hz–600.0 Hz	0.0	Hz	Immediate ly	" H08_en.53" on page 465
H08.54	2008-37h	Medium- and low- frequency jitter suppression compensation 3	0%-200%	0	%	Immediate ly	" H08_en.54" on page 465
H08.56	2008-39h	Medium- and low- frequency jitter suppression phase modulation 3	0-1600	100	-	Immediate ly	" H08_en.56" on page 465
H08.58	2008-3Bh	Er.660 (Vibration too strong) switch	0-2	0	-	Immediate ly	" H08_en.58" on page 465
H08.59	2008-3Ch	Medium- and low- frequency jitter suppression frequency 4	0.0 Hz–600.0 Hz	0.0	Hz	Immediate ly	" H08_en.59" on page 465
H08.60	2008-3Dh	Medium- and low- frequency jitter suppression compensation 4	0%–200%	0	%	Immediate ly	" H08_en.60" on page 466
H08.61	2008-3Eh	Medium- and low- frequency jitter suppression phase modulation 4	0-1600	100	-	Immediate ly	" H08_en.61" on page 466
H08.62	2008-3Fh	Position loop integral time constant	0.15 ms to 512.00 ms	512.00	ms	Immediate ly	" H08_en.62" on page 466
H08.63	2008-40h	2nd position loop integral time constant	0.15 ms to 512.00 ms	512.00	ms	Immediate ly	" H08_en.63" on page 466
H08.64	2008-41h	Speed observer feedback selection	0-1	0	-	Immediate ly	" H08_en.64" on page 466

16.10 Parameter Group H09

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
Н09.00	2009-01h	Auto-adjustment mode	 0: Disabled, manual gain tuning required 1: Enabled, gain parameters generated automatically based on the stiffness level 2: Positioning mode, gain parameters generated automatically based on the stiffness level 3: Interpolation mode+Inertia auto- tuning 4: Standard mode+Inertia auto- tuning 6: Quick positioning mode+Inertia auto-tuning 	0	-	Real-time	" H09_en.00" on page 467
H09.01	2009-02h	Stiffness level selection	0 to 41	15	-	Real-time	" H09_en.01" on page 467
H09.02	2009-03h	Adaptive notch mode	 0: Adaptive notch no longer updated; 1: One adaptive notch activated (3rd notch) 2: Two adaptive notches activated (3rd and 4th notches) 3: Resonance point tested only (displayed in H09.24) 4: Adaptive notch cleared, values of 3rd and 4th notches restored to default 	0	-	Real-time	" H09_en.02" on page 468
H09.03	2009-04h	Online inertia auto-tuning mode	0: Disabled 1: Enabled, changing slowly 2: Enabled, changing normally 3: Enabled, changing quickly	0	-	Real-time	" H09_en.03" on page 468
H09.04	2009-05h	Low-frequency resonance suppression mode	0: Set vibration frequency manually 1: Identify vibration frequency	0	-	Real-time	" H09_en.04" on page 469
H09.05	2009-06h	Offline inertia auto-tuning mode	0: Positive/Negative triangular wave mode 1: JOG mode 2: Bidirectional auto-tuning mode 3: Unidirectional auto-tuning mode	0	-	At stop	" H09_en.05" on page 469
H09.06	2009-07h	Max. speed of inertia auto-tuning	100 RPM to 1000 RPM	500	RPM	At stop	" H09_en.06" on page 469
H09.07	2009-08h	Time constant for accelerating to max. speed during inertia auto-tuning	20ms to 800ms	125	ms	At stop	" H09_en.07" on page 470

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.08	2009-09h	Interval time after an individual inertia auto-tuning	50ms to 10000ms	800	ms	At stop	" H09_en.08" on page 470
H09.09	2009-0Ah	Motor revolutions for an inertia auto- tuning	0.00 to 100.00	1.00	-	Real-time	" H09_en.09" on page 470
H09.11	2009-0Ch	Vibration threshold	0.0% to 100.0%	5.0	%	Real-time	" H09_en.11" on page 470
H09.12	2009-0Dh	Frequency of the 1st notch	50Hz to 4000Hz	4000	Hz	Real-time	" H09_en.12" on page 470
H09.13	2009-0Eh	Width level of the 1st notch	0 to 40	2	-	Real-time	" H09_en.13" on page 471
H09.14	2009-0Fh	Depth level of the 1st notch	0 to 99	0	-	Real-time	" H09_en.14" on page 471
H09.15	2009-10h	Frequency of the 2nd notch	50Hz to 4000Hz	4000	Hz	Real-time	" H09_en.15" on page 471
H09.16	2009-11h	Width level of the 2nd notch	0 to 20	2	-	Real-time	" H09_en.16" on page 471
H09.17	2009-12h	Depth level of the 2nd notch	0 to 99	0	-	Real-time	" H09_en.17" on page 472
H09.18	2009-13h	Frequency of the 3rd notch	50Hz to 4000Hz	4000	Hz	Real-time	" H09_en.18" on page 472
H09.19	2009-14h	Width level of the 3rd notch	0 to 20	2	-	Real-time	" H09_en.19" on page 472
H09.20	2009-15h	Depth level of the 3rd notch	0 to 99	0	-	Real-time	" H09_en.20" on page 472
H09.21	2009-16h	Frequency of the 4th notch	50Hz to 4000Hz	4000	Hz	Real-time	" H09_en.21" on page 472
H09.22	2009-17h	Width level of the 4th notch	0 to 20	2	-	Real-time	" H09_en.22" on page 473
H09.23	2009-18h	Depth level of the 4th notch	0 to 99	0	-	Real-time	" H09_en.23" on page 473
H09.24	2009-19h	Auto-tuned resonance frequency	0 to 2000	0	-	Unchangea ble	" H09_en.24" on page 473
H09.30	2009-1Fh	Torque disturbance compensation gain	-100.0% to 100.0%	0.0	%	Real-time	" H09_en.30" on page 473
H09.31	2009-20h	Filter time constant of torque disturbance observer	0.00ms to 25.00ms	0.50	ms	Real-time	" H09_en.31" on page 473

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.32	2009-21h	Gravity compensation value	0.0 to 50.0	0.0	-	Real-time	" H09_en.32" on page 474
H09.33	2009-22h	Positive friction compensation	-100.0% to 100.0%	0.0	%	Real-time	" H09_en.33" on page 474
H09.34	2009-23h	Negative friction compensation	-100.0% to 100.0%	0.0	%	Real-time	" H09_en.34" on page 474
H09.35	2009-24h	Friction compensation speed threshold	0.1 RPM to 30.0 RPM	2.0	RPM	Real-time	" H09_en.35" on page 474
H09.36	2009-25h	Friction compensation speed	0: Speed reference 1: Model tracking speed 2: Speed feedback	0	-	Real-time	" H09_en.36" on page 474
H09.38	2009-27h	Low-frequency resonance suppression frequency at the mechanical end	1.0Hz to 100.0Hz	100.0	Hz	At stop	" H09_en.38" on page 475
H09.39	2009-28h	Low-frequency resonance suppression at the mechanical end	0 to 3	2	-	At stop	" H09_en.39" on page 475
H09.41	2009-2Ah	Frequency of the 5th notch	50Hz to 8000Hz	4000	Hz	At stop	" H09_en.41" on page 475
H09.42	2009-2Bh	Width level of the 5th notch	0 to 20	2	-	Real-time	" H09_en.42" on page 475
H09.43	2009-2Ch	Depth level of the 5th notch	0 to 99	0	-	Real-time	" H09_en.43" on page 475
H09.44	2009-2Dh	Frequency of low- frequency resonance suppression 1 at mechanical load end	0.0Hz to 200.0Hz	0.0	Hz	Real-time	" H09_en.44" on page 476
H09.45	2009-2Eh	Responsiveness of low-frequency resonance suppression 1 at mechanical load end	0.01 to 10.00	1.00	-	Real-time	" H09_en.45" on page 476
H09.47	2009-30h	Width of low- frequency resonance suppression 1 at mechanical load end	0.00 to 2.00	1.00	-	Real-time	" H09_en.47" on page 476

Param.	Hex	Name	Value	Default	Unit	Change Mode	Page
H09.49	2009-32h	Frequency of low- frequency resonance suppression 2 at mechanical load end	0.0Hz to 200.0Hz	0.0	Hz	Real-time	" H09_en.49" on page 476
H09.50	2009-33h	Responsiveness of low-frequency resonance suppression 2 at mechanical load end	0.01 to 10.00	1.00	-	Real-time	" H09_en.50" on page 476
H09.52	2009-35h	Width of low- frequency resonance suppression 2 at mechanical load end	0.00 to 2.00	1.00	-	Real-time	" H09_en.52" on page 476
H09.57	2009-3Ah	STune resonance suppression switchover frequency	0Hz to 4000Hz	850	Hz	Real-time	" H09_en.57" on page 477
H09.58	2009-3Bh	STune resonance suppression reset selection	0: Disable 1: Enable	0	-	Real-time	" H09_en.58" on page 477

16.11 Parameter Group H0A

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0A.00	200A-01h	Power input phase loss protection	0: Enable phase loss fault and inhibit phase loss warning 1: Enable phase loss fault and warning 2: Disable phase loss fault and warning	0	-	Immediate ly	" H0A_en.00" on page 477
H0A.02	200A-03h	Vibration alarm switch	0: On 1: Off	0	-	Immediate ly	" H0A_en.02" on page 478
H0A.03	200A-04h	Power-off memory	0: Disabled 1: Enabled	0	-	Immediate ly	" H0A_en.03" on page 478
H0A.04	200A-05h	Motor overload protection gain	50%-300%	100	%	At stop	" H0A_en.04" on page 479
H0A.08	200A-09h	Overspeed threshold	0 rpm to 10000 rpm	0	rpm	Immediate ly	" H0A_en.08" on page 479

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0A.09	200A-0Ah	Maximum position pulse frequency	100 kHz-4000 kHz	4000	kHz	At stop	" H0A_en.09" on page 479
H0A.10	200A-0Bh	Threshold of excessive position deviation	1 to 1073741824	27486951	Encoder unit	Immediate ly	" H0A_en.10" on page 480
H0A.12	200A-0Dh	Runaway protection	0: Disabled 1: Enabled	1	-	Immediate ly	" H0A_en.12" on page 480
H0A.16	200A-11h	Threshold of low- frequency resonance position deviation	1-1000	5	-	Immediate ly	" H0A_en.16" on page 480
H0A.17	200A-12h	Reference/Pulse selection	0: Pulse unit 1: Reference unit	0	-	At stop	" H0A_en.17" on page 480
H0A.19	200A-14h	DI8 filter time constant	0-255	80	-	At stop	" H0A_en.19" on page 481
H0A.20	200A-15h	DI9 filter time constant	0-255	80	-	At stop	" H0A_en.20" on page 481
H0A.22	200A-17h	Sigma_Delta filter time	0-3	0	-	At stop	" H0A_en.22" on page 481
H0A.23	200A-18h	Tz signal filter time	0-31	15	-	At stop	" H0A_en.23" on page 481
H0A.24	200A-19h	Filter time constant of low- speed pulse input pin	0-255	30	-	At stop	" H0A_en.24" on page 481
H0A.25	200A-1Ah	Filter time constant of speed feedback display value	0 ms to 5000 ms	200	ms	At stop	" H0A_en.25" on page 482
H0A.26	200A-1Bh	Motor overload detection	0: Show motor overload warning (E909.0) and fault (E620.0) 1: Hide motor overload warning (E909.0) and fault (E620.0) 2: No meaning 3: Enabled for new motors	3	-	At stop	" H0A_en.26" on page 482
H0A.27	200A-1Ch	Speed DO filter time constant	0 ms to 5000 ms	10	ms	At stop	" H0A_en.27" on page 482
H0A.28	200A-1Dh	Quadrature encoder filter time constant	0 ns to 255 ns	30	ns	At stop	" H0A_en.28" on page 483
H0A.30	200A-1Fh	Filter time constant of high- speed pulse input pin	0 ns to 255 ns	2	ns	At stop	" H0A_en.30" on page 483

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0A.32	200A-21h	Motor stall over- temperature protection time window	10 ms to 65535 ms	200	ms	Immediate ly	" H0A_en.32" on page 483
H0A.33	200A-22h	Motor stall over- temperature detection	0: Disabled 1: Enable 2: Enabled for new over-temperature	1	-	Immediate ly	" H0A_en.33" on page 483
H0A.35	200A-24h	Inhibit reading encoder EEPRROM on power-on (for third-party encoders)	0: Allow 1: Inhibit	0	-	Immediate ly	" H0A_en.35" on page 484
H0A.36	200A-25h	Encoder multi-turn overflow fault	0: Not hide 1: Hide	0	-	At stop	" H0A_en.36" on page 484
H0A.38	200A-27h	IGBT over- temperature threshold	0°C to 175°C	135	°C	At stop	" H0A_en.38" on page 484
H0A.39	200A-28h	IGBT over- temperature protection switch	0: Disabled 1: Enabled	0	-	At stop	<i>" H0A_en.39"</i> on page 485
H0A.40	200A-29h	Software limit selection	0: No operation 1: Activated immediately 2: Activated after homing is done	0	-	At stop	" H0A_en.40" on page 485
H0A.41	200A-2Ah	Forward position of software limit	-2147483648-2147483647	214748364 7	-	At stop	" H0A_en.41" on page 485
H0A.43	200A-2Ch	Reverse position of software limit	-2147483648-2147483647	-214748364 8	-	At stop	" H0A_en.43" on page 485
H0A.47	200A-30h	Brake protection	0-1	0	-	Immediate ly	" H0A_en.47" on page 485
H0A.48	200A-31h	Gravity load	0-3000	300	-	Immediate ly	" H0A_en.48" on page 486
H0A.49	200A-32h	Regenerative wafer over-temperature threshold	0°C to 175°C	115	°C	At stop	" H0A_en.49" on page 486
H0A.50	200A-33h	Torque reference display filter time	0 ms to 5000 ms	200	ms	At stop	" H0A_en.50" on page 486
H0A.51	200A-34h	Encoder fault tolerance count	0-31	31	-	Immediate ly	" H0A_en.51" on page 486
H0A.52	200A-35h	Defines the temperature threshold for encoder overtemperature protection.	0° to 175°	105	0	Immediate ly	" H0A_en.52" on page 486

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0A.55	200A-38h	Runaway current threshold	100.0%-400.0%	200.0	%	Immediate ly	" H0A_en.55" on page 487
H0A.57	200A-3Ah	Runaway speed threshold	1 rpm to 1000 rpm	10	rpm	Immediate ly	<i>" H0A_en.57"</i> on page 487
H0A.58	200A-3Bh	Speed feedback filtering time	0.1 ms to 100.0 ms	2.0	ms	Immediate ly	" H0A_en.58" on page 487
H0A.59	200A-3Ch	Runaway protection detection time	10 ms to 1000 ms	30	ms	Immediate ly	" H0A_en.59" on page 487
H0A.61	200A-3Eh	Phase loss detection time threshold	30 ms to 65535 ms	50	ms	Immediate ly	" H0A_en.61" on page 487
H0A.85	200A-56h	Wire breakage detection torque threshold	4.0%-400.0%	5.0	%	At stop	" H0A_en.85" on page 488
H0A.86	200A-57h	Wire breakage detection filter time	5 ms to 1000 ms	30	ms	At stop	" H0A_en.86" on page 488

16.12 Parameter Group H0b

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0b.00	200b-01h	Motor speed actual value	-9999rpm to 9999rpm	0	rpm	Unchangea ble	" H0b_en.00" on page 488
H0b.01	200b-02h	Speed reference	-9999rpm to 9999rpm	0	rpm	Unchangea ble	" H0b_en.01" on page 488
H0b.02	200b-03h	Internal torque reference	-300.0%-300.0%	0.0	%	Unchangea ble	" H0b_en.02" on page 489
H0b.03	200b-04h	Monitored DI status	0-65535	0	-	Unchangea ble	" H0b_en.03" on page 489
H0b.05	200b-06h	Monitored DO status	0-65535	0	-	Unchangea ble	" H0b_en.05" on page 489
H0b.07	200b-08h	Absolute position counter	-2147483648 to 2147483647	0	Refer ence unit	Unchangea ble	" H0b_en.07" on page 490
H0b.09	200b-0Ah	Mechanical angle	0-65535	0	-	Unchangea ble	" H0b_en.09" on page 490
H0b.10	200b-0Bh	Electrical angle	0.0° to 360.0°	0.0	0	Unchangea ble	" H0b_en.10" on page 490

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0b.11	200b-0Ch	Speed corresponding to the input position reference	-9999rpm to 9999rpm	0	rpm	Unchangea ble	" H0b_en.11" on page 491
H0b.12	200b-0Dh	Average load rate	0.0%-6553.5%	0.0	%	Unchangea ble	" H0b_en.12" on page 491
H0b.13	200b-0Eh	Input position reference counter	-2147483648 to 2147483647	0	Refer ence unit	Unchangea ble	" H0b_en.13" on page 491
H0b.15	200b-10h	Encoder position deviation counter	-2147483648 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.15" on page 491
H0b.17	200b-12h	Feedback pulse counter	-2147483648 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.17" on page 491
H0b.19	200b-14h	Total power-on time	0.0s-214748364.7s	0.0	S	Unchangea ble	" H0b_en.19" on page 492
H0b.24	200b-19h	RMS value of phase current	0.00 A to 655.35 A	0.00	A	Unchangea ble	" H0b_en.24" on page 492
H0b.26	200b-1Bh	Bus voltage	0.0 V to 6553.5 V	0.0	V	Unchangea ble	" H0b_en.26" on page 492
H0b.27	200b-1Ch	Module temperature	0°C to 65535°C	0	°C	Unchangea ble	" H0b_en.27" on page 492
H0b.28	200b-1Dh	Absolute encoder fault information given by FPGA	0-65535	0	-	Unchangea ble	" H0b_en.28" on page 493
H0b.29	200b-1Eh	System status information given by FPGA	0-65535	0	-	Unchangea ble	" H0b_en.29" on page 493
H0b.30	200b-1Fh	System fault information given by FPGA	0-65535	0	-	Unchangea ble	" H0b_en.30" on page 493

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0b.33	Parameters 200b-22h	Fault log	0: Present fault 1: Last fault 2: 2nd to last fault 3: 3rd to last fault 4: 4th to last fault 5: 5th to last fault 6: 6th to last fault 7: 7th to last fault 8: 8th to last fault 9: 9th to last fault 10: 10th to last fault 11: 11th to last fault 12: 12th to last fault 13: 13th to last fault 14: 14th to last fault 15: 15th to last fault 16: 16th to last fault 17: 17th to last fault 18: 18th to last fault 19: 19th to last fault 19: 19th to last fault 19: 19th to last fault	0	-	Immediate ly	" H0b_en.33" on page 493
H0b.34	200b-23h	Fault code of the selected fault	0-65535	0	-	Unchangea ble	" H0b_en.34" on page 493
H0b.35	200b-24h	Time stamp upon occurrence of the selected fault	0.0s-214748364.7s	0.0	S	Unchangea ble	" H0b_en.35" on page 494
H0b.37	200b-26h	Motor speed upon occurrence of the selected fault	-32767 rpm to +32767 rpm	0	rpm	Unchangea ble	" H0b_en.37" on page 494
H0b.38	200b-27h	Motor phase U current upon occurrence of the selected fault	-327.67 A to 327.67 A	0.00	A	Unchangea ble	" H0b_en.38" on page 494
H0b.39	200b-28h	Motor phase V current upon occurrence of the selected fault	-327.67 A to 327.67 A	0.00	A	Unchangea ble	" H0b_en.39" on page 494
H0b.40	200b-29h	Bus voltage upon occurrence of the selected fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	" H0b_en.40" on page 494
H0b.41	200b-2Ah	DI status upon occurrence of the selected fault	0-65535	0	-	Unchangea ble	" H0b_en.41" on page 495
H0b.42	200b-2Bh	DO status upon occurrence of the selected fault	0-65535	0	-	Unchangea ble	" H0b_en.42" on page 495
H0b.43	200b-2Ch	Group No. of the abnormal parameter	0–65535	0	-	Unchangea ble	" H0b_en.43" on page 495

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0b.44	200b-2Dh	Offset of the abnormal parameter within the parameter group	0-65535	0	-	Unchangea ble	" H0b_en.44" on page 495
H0b.45	200b-2Eh	Internal fault code	0-65535	0	-	Unchangea ble	" H0b_en.45" on page 495
H0b.46	200b-2Fh	Absolute encoder fault information given by FPGA upon occurrence of the selected fault	0-65535	0	-	Unchangea ble	" H0b_en.46" on page 495
H0b.47	200b-30h	System status information given by FPGA upon occurrence of the selected fault	0-65535	0	-	Unchangea ble	" H0b_en.47" on page 496
H0b.48	200b-31h	System fault information given by FPGA upon occurrence of the selected fault	0-65535	0	-	Unchangea ble	" H0b_en.48" on page 496
H0b.51	200b-34h	Internal fault code upon occurrence of the selected fault	0–65535	0	-	Unchangea ble	" H0b_en.51" on page 496
H0b.52	200b-35h	Timeout fault flat bit given by FPGA upon occurrence of the selected fault	0-65535	0	-	Unchangea ble	" H0b_en.52" on page 496
H0b.53	200b-36h	Position deviation counter	-2147483648 to 2147483647	0	Refer ence unit	Unchangea ble	" H0b_en.53" on page 496
H0b.55	200b-38h	Motor speed actual value	-6000.0rpm to 6000.0rpm	0.0	rpm	Unchangea ble	" H0b_en.55" on page 497
H0b.57	200b-3Ah	Bus voltage of the control circuit	0.0 V to 65535.0 V	0.0	V	Unchangea ble	" H0b_en.57" on page 497
H0b.58	200b-3Bh	Mechanical absolute position (low 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.58" on page 497
H0b.60	200b-3Dh	Mechanical absolute position (high 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.60" on page 497

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0b.63	200b-40h	NotRdy state	 Control circuit error Main circuit power input error Bus undervoltage Soft start failed Encoder initialization undone Short circuit to ground failed Others 	0	-	Unchangea ble	" H0b_en.63" on page 498
H0b.64	200b-41h	Real-time input position reference counter	-2147483648 to 2147483647	0	Refer ence unit	Unchangea ble	"H0b_en.64" on page 497
H0b.66	200b-43h	Encoder temperature	-32768°C to 32767°C	0	°C	Unchangea ble	" H0b_en.66" on page 498
Н0Ь.70	200b-47h	Number of revolutions recorded in the absolute encoder	0 Rev to 65535 Rev	0	Rev	Unchangea ble	" H0b_en.70" on page 498
H0b.71	200b-48h	Single-turn position fed back by the absolute encoder	0 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.71" on page 498
H0b.73	200b-4Ah	Single-turn offset position of absolute encoder	0 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.73" on page 499
H0b.75	200b-4Ch	Load inertia ratio in online inertia auto-tuning	0.00-655.35	0.00	-	Unchangea ble	" H0b_en.75" on page 499
H0b.76	200b-4Dh	External load in online inertia auto- tuning	0.0-6553.5	0.0	-	Unchangea ble	" H0b_en.76" on page 499
H0b.77	200b-4Eh	Absolute position fed back by the absolute encoder (low 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.77" on page 499
H0b.79	200b-50h	Absolute position fed back by the absolute encoder (high 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.79" on page 499
H0b.81	200b-52h	Load position within one turn in absolute position rotation mode (low 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.81" on page 500

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0b.83	200b-54h	Load position within one turn in absolute position rotation mode (high 32 bits)	-2147483647 to 2147483647	0	Encoder unit	Unchangea ble	" H0b_en.83" on page 500
H0b.85	200b-56h	Load position within one turn in absolute position rotation mode	-2147483647 to 2147483647	0	Refer ence unit	Unchangea ble	" H0b_en.85" on page 500

16.13 Parameter Group H0C

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0C.00	200C-01h	Drive axis address	0-247	1	-	Immediate ly	" HOC_en.00" on page 500
H0C.02	200C-03h	Serial baud rate	0: 2400bps 1: 4800bps 2: 9600bps 3: 19200bps 4: 38400bps 5: 57600bps 6: 115200bps	5	-	Immediate ly	" H0C_en.02" on page 500
H0C.03	200C-04h	Modbus data format	0: No parity, 2 stop bits 1: Even parity, 1 stop bit 2: Odd parity, 1 stop bit 3: No parity, 1 stop bit	0	-	Immediate ly	" H0C_en.03" on page 501
H0C.08	200C-09h	CAN communication rate	0: 20K 1: 50K 2: 100K 3: 125K 4: 250K 5: 500K 6: 1M 7: 1M	5	-	Immediate ly	" H0C_en.08" on page 501
H0C.09	200C-0Ah	Communication VDI	0: Disabled 1: Enabled	0	-	At stop	" HOC_en.09" on page 502
H0C.10	200C-0Bh	VDI default value upon power-on	0-65535	0	-	Immediate ly	" HOC_en.10" on page 502
H0C.11	200C-0Ch	Communication VDO	0: Disabled 1: Enabled	0	-	At stop	" HOC_en.11" on page 503

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0C.12	200C-0Dh	Default level of the VDO allocated with function 0	0-65535	0	-	At stop	" H0C_en.12" on page 503
H0C.13	200C-0Eh	Update parameter values written through communication to EEPROM	0: Not update EEPROM 1: Update EEPROM	1	-	Immediate ly	" H0C_en.13" on page 504
H0C.14	200C-0Fh	Modbus error code	0: N/A 1: Illegal parameter (command code) 2: Command code data address 3: Illegal data 4: Slave device fault	2	-	Unchangea ble	" H0C_en.14" on page 504
H0C.16	200C-11h	Update parameter values written through CAN communication to EEPROM	0: Not update EEPROM 1: Update EEPROM	0	-	Immediate ly	" H0C_en.16" on page 505
H0C.25	200C-1Ah	Modbus command response delay	0 ms to 20 ms	0	ms	Immediate ly	" H0C_en.25" on page 505
H0C.26	200C-1Bh	Modbus communication data sequence	0: High 16 bits before low 16 bits 1: Low 16 bits before high 16 bits	1	-	Immediate ly	" H0C_en.26" on page 505
H0C.30	200C-1Fh	Modbus error frame format	0: Old protocol 1: New protocol (standard)	1	-	Immediate ly	" H0C_en.30" on page 505
H0C.31	200C-20h	Modbus receiving selection	0: Receiving interrupt enabled 1: Current loop interrupt inquiry	0	-	Immediate ly	" H0C_en.31" on page 505

16.14 Parameter Group H0d

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0d.00	200d-01h	Software Reset	0: No operation 1: Enable	0	-	At stop	" H0d_en.00" on page 506
H0d.01	200d-02h	Fault Reset	0: No operation 1: Enable	0	-	At stop	" H0d_en.01" on page 506
H0d.02	200d-03h	Inertia auto-tuning selection	0-65	0	-	At stop	" H0d_en.02" on page 507
H0d.03	200d-04h	Initial angle auto- tuning	0: No operation 1: Enabled	0	-	At stop	" H0d_en.03" on page 507

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H0d.04	200d-05h	Read/write in encoder ROM	0: No operation 1: Write ROM 2: Read ROM	0	-	At stop	" H0d_en.04" on page 507
H0d.05	200d-06h	Emergency stop	0: No operation 1: Emergency stop	0	-	Immediate ly	" H0d_en.05" on page 507
H0d.06	200d-07h	Current loop parameter auto- tuning	0: No operation 1: Save parameters 2: Do not save parameters	0	-	At stop	<i>" H0d_en.06"</i> on page 507
H0d.12	200d-0Dh	Phase U/V current balance correction	0-1	0	-	Unchangea ble	" H0d_en.12" on page 508
H0d.17	200d-12h	Forced DI/DO selection	0: No operation 1: Forced DI enabled, forced DO disabled 2: Forced DO enabled, forced DI disabled 3: Forced DI and DO enabled	0	-	Immediate ly	" H0d_en.17" on page 508
H0d.18	200d-13h	Forced DI setting	0-511	511	-	Immediate ly	" H0d_en.18" on page 508
H0d.19	200d-14h	Forced DO setting	0-31	0	-	Immediate ly	" H0d_en.19" on page 509
H0d.20	200d-15h	Multi-turn absolute encoder reset	0: No operation 1 Reset 2: Reset the fault and multi-turn data	0	-	At stop	" H0d_en.20" on page 509

16.15 Parameter Group H11

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H11.00	2011-01h	Multi-position operation mode	 0: Single run (number of displacements selected in H11.01) 1: Cyclic operation (number of displacement selected in H11.01) 2: DI-based operation (selected by DI) 3: Sequential operation 5: Axis-controlled continuous operation 	1	-	At stop	" H11_en.00" on page 510
H11.01	2011-02h	Number of displacement references in multi- position mode	1-16	1	-	At stop	" H11_en.01" on page 513

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H11.02	2011-03h	Starting displacement No. after pause	0: Continue to execute the unexecuted displacements 1: Start from displacement 1	0	-	At stop	" H11_en.02" on page 513
H11.03	2011-04h	Interval time unit	0: ms 1: s	0	-	At stop	" H11_en.03" on page 514
H11.04	2011-05h	Displacement reference type	0: Relative displacement reference 1: Absolute displacement reference	0	-	Immediate ly	" H11_en.04" on page 514
H11.05	2011-06h	Starting displacement No. in sequential operation	0-16	0	-	At stop	" H11_en.05" on page 515
H11.09	2011-0Ah	Deceleration upon axis control OFF	0 ms to 65535 ms	65535	ms	Immediate ly	" H11_en.09" on page 516
H11.10	2011-0Bh	Start speed of the 1st displacement	0 rpm to 6000 rpm	0	rpm	Immediate ly	" H11_en.10" on page 516
H11.11	2011-0Ch	Stop speed of the 1st displacement	0 rpm to 6000 rpm	0	rpm	Immediate ly	" H11_en.11" on page 516
H11.12	2011-0Dh	Displacement 1	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.12" on page 516
H11.14	2011-0Fh	Max. speed of displacement 1	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.14" on page 517
H11.15	2011-10h	Acc/Dec time of displacement 1	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.15" on page 517
H11.16	2011-11h	Interval time after displacement 1	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.16" on page 517
H11.17	2011-12h	Displacement 2	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.17" on page 518
H11.19	2011-14h	Max. speed of displacement 2	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.19" on page 518
H11.20	2011-15h	Acc/Dec time of displacement 2	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.20" on page 518
H11.21	2011-16h	Interval time after displacement 2	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.21" on page 518
H11.22	2011-17h	Displacement 3	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.22" on page 518
H11.24	2011-19h	Max. speed of displacement 3	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.24" on page 518
H11.25	2011-1Ah	Acc/Dec time of displacement 3	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.25" on page 519
H11.26	2011-1Bh	Interval time after displacement 3	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.26" on page 519

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H11.27	2011-1Ch	Displacement 4	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.27" on page 519
H11.29	2011-1Eh	Max. speed of displacement 4	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.29" on page 519
H11.30	2011-1Fh	Acc/Dec time of displacement 4	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.30" on page 519
H11.31	2011-20h	Interval time after displacement 4	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.31" on page 520
H11.32	2011-21h	Displacement 5	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.32" on page 520
H11.34	2011-23h	Max. speed of displacement 5	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.34" on page 520
H11.35	2011-24h	Acc/Dec time of displacement 5	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.35" on page 520
H11.36	2011-25h	Interval time after displacement 5	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.36" on page 520
H11.37	2011-26h	Displacement 6	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.37" on page 521
H11.39	2011-28h	Max. speed of displacement 6	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.39" on page 521
H11.40	2011-29h	Acc/Dec time of displacement 6	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.40" on page 521
H11.41	2011-2Ah	Interval time after displacement 6	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.41" on page 521
H11.42	2011-2Bh	Displacement 7	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.42" on page 521
H11.44	2011-2Dh	Max. speed of displacement 7	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.44" on page 522
H11.45	2011-2Eh	Acc/Dec time of displacement 7	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.45" on page 522
H11.46	2011-2Fh	Interval time after displacement 7	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.46" on page 522
H11.47	2011-30h	Displacement 8	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.47" on page 522
H11.49	2011-32h	Max. speed of displacement 8	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.49" on page 522
H11.50	2011-33h	Acc/Dec time of displacement 8	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.50" on page 523
H11.51	2011-34h	Interval time after displacement 8	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.51" on page 523

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H11.52	2011-35h	Displacement 9	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.52" on page 523
H11.54	2011-37h	Max. speed of displacement 9	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.54" on page 523
H11.55	2011-38h	Acc/Dec time of displacement 9	0 ms to 65535 ms	10	ms	Immediate ly	<i>" H11_en.55"</i> on page 523
H11.56	2011-39h	Interval time after displacement 9	0 ms (s)-10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.56" on page 523
H11.57	2011-3Ah	Displacement 10	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.57" on page 524
H11.59	2011-3Ch	Max. speed of displacement 10	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.59" on page 524
H11.60	2011-3Dh	Acc/Dec time of displacement 10	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.60" on page 524
H11.61	2011-3Eh	Interval time after displacement 10	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.61" on page 524
H11.62	2011-3Fh	Displacement 11	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.62" on page 524
H11.64	2011-41h	Max. speed of displacement 11	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.64" on page 525
H11.65	2011-42h	Acc/Dec time of displacement 11	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.65" on page 525
H11.66	2011-43h	Interval time after displacement 11	0 ms (s)-10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.66" on page 525
H11.67	2011-44h	Displacement 12	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.67" on page 525
H11.69	2011-46h	Max. speed of displacement 12	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.69" on page 525
H11.70	2011-47h	Acc/Dec time of displacement 12	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.70" on page 526
H11.71	2011-48h	Interval time after displacement 12	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.71" on page 526
H11.72	2011-49h	Displacement 13	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.72" on page 526
H11.74	2011-4Bh	Max. speed of displacement 13	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.74" on page 526
H11.75	2011-4Ch	Acc/Dec time of displacement 13	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.75" on page 526
H11.76	2011-4Dh	Interval time after displacement 13	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.76" on page 527

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H11.77	2011-4Eh	Displacement 14	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.77" on page 527
H11.79	2011-50h	Max. speed of displacement 14	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.79" on page 527
H11.80	2011-51h	Acc/Dec time of displacement 14	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.80" on page 527
H11.81	2011-52h	Interval time after displacement 14	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.81" on page 527
H11.82	2011-53h	Displacement 15	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.82" on page 528
H11.84	2011-55h	Max. speed of displacement 15	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.84" on page 528
H11.85	2011-56h	Acc/Dec time of displacement 15	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.85" on page 528
H11.86	2011-57h	Interval time after displacement 15	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.86" on page 528
H11.87	2011-58h	Displacement 16	-1073741824 to 1073741824	10000	Refer ence unit	Immediate ly	" H11_en.87" on page 528
H11.89	2011-5Ah	Max. speed of displacement 16	1 rpm to 6000 rpm	200	rpm	Immediate ly	" H11_en.89" on page 528
H11.90	2011-5Bh	Acc/Dec time of displacement 16	0 ms to 65535 ms	10	ms	Immediate ly	" H11_en.90" on page 529
H11.91	2011-5Ch	Interval time after displacement 16	0 ms (s)–10000 ms (s)	10	ms (s)	Immediate ly	" H11_en.91" on page 529

16.16 Parameter Group H12

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H12.00	2012-01h	Multi-speed operation mode	0: Individual operation (number of speeds selected in H12.01) 1: Cyclic operation (number of speeds selected in H12.01) 2: DI-based operation	1	-	At stop	" H12_en.00" on page 529
H12.01	2012-02h	Number of speed references in multi- speed mode	1–16	16	-	At stop	" H12_en.01" on page 530
H12.02	2012-03h	Operating time unit	0: sec 1: min	0	-	At stop	" H12_en.02" on page 531

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H12.03	2012-04h	Acceleration time 1	0 ms to 65535 ms	10	ms	Immediate ly	" H12_en.03" on page 531
H12.04	2012-05h	Deceleration time	0 ms to 65535 ms	10	ms	Immediate ly	" H12_en.04" on page 531
H12.05	2012-06h	Acceleration time 2	0 ms to 65535 ms	50	ms	Immediate ly	" H12_en.05" on page 532
H12.06	2012-07h	Deceleration time	0 ms to 65535 ms	50	ms	Immediate ly	" H12_en.06" on page 532
H12.07	2012-08h	Acceleration time 3	0 ms to 65535 ms	100	ms	Immediate ly	" H12_en.07" on page 532
H12.08	2012-09h	Deceleration time 3	0 ms to 65535 ms	100	ms	Immediate ly	" H12_en.08" on page 532
H12.09	2012-0Ah	Acceleration time 4	0 ms to 65535 ms	150	ms	Immediate ly	" H12_en.09" on page 532
H12.10	2012-0Bh	Deceleration time 4	0 ms to 65535 ms	150	ms	Immediate ly	" H12_en.10" on page 533
H12.20	2012-15h	Speed reference 1	–6000 rpm to 6000 rpm	0	rpm	Immediate ly	" H12_en.20" on page 533
H12.21	2012-16h	Operating time of speed 1	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.21" on page 533
H12.22	2012-17h	Acceleration/ Deceleration time of speed 1	0: Zero acceleration/deceleration time 1: Acceleration/Deceleration time 1 2: Acceleration/Deceleration time 2 3: Acceleration/Deceleration time 3 4: Acceleration/Deceleration time 4	0	-	Immediate ly	" H12_en.22" on page 533
H12.23	2012-18h	Reference 2	–6000 rpm to 6000 rpm	100	rpm	Immediate ly	" H12_en.23" on page 534
H12.24	2012-19h	Operating time of speed 2	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.24" on page 535
H12.25	2012-1Ah	Acceleration/ Deceleration time of speed 2	See H12.22.	0	-	Immediate ly	" H12_en.25" on page 535
H12.26	2012-1Bh	Reference 3	–6000 rpm to 6000 rpm	300	rpm	Immediate ly	" H12_en.26" on page 535
H12.27	2012-1Ch	Operating time of speed 3	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.27" on page 535
H12.28	2012-1Dh	Acceleration/ Deceleration time of speed 3	See H12.22.	0	-	Immediate ly	" H12_en.28" on page 535

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H12.29	2012-1Eh	Reference 4	–6000 rpm to 6000 rpm	500	rpm	Immediate ly	" H12_en.29" on page 536
H12.30	2012-1Fh	Operating time of speed 4	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.30" on page 536
H12.31	2012-20h	Acceleration/ Deceleration time of speed 4	See H12.22.	0	-	Immediate ly	" H12_en.31" on page 536
H12.32	2012-21h	Reference 5	–6000 rpm to 6000 rpm	700	rpm	Immediate ly	" H12_en.32" on page 536
H12.33	2012-22h	Operating time of speed 5	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.33" on page 536
H12.34	2012-23h	Acceleration/ Deceleration time of speed 5	See H12.22.	0	-	Immediate ly	" H12_en.34" on page 536
H12.35	2012-24h	Reference 6	–6000 rpm to 6000 rpm	900	rpm	Immediate ly	" H12_en.35" on page 537
H12.36	2012-25h	Operating time of speed 6	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.36" on page 537
H12.37	2012-26h	Acc./dec. time of speed 6	See H12.22.	0	-	Immediate ly	" H12_en.37" on page 537
H12.38	2012-27h	Reference 7	–6000 rpm to 6000 rpm	600	rpm	Immediate ly	" H12_en.38" on page 537
H12.39	2012-28h	Operating time of speed 7	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.39" on page 537
H12.40	2012-29h	Acc./dec. time of speed 7	See H12.22.	0	-	Immediate ly	" H12_en.40" on page 538
H12.41	2012-2Ah	Reference 8	–6000 rpm to 6000 rpm	300	rpm	Immediate ly	<i>" H12_en.41"</i> on page 538
H12.42	2012-2Bh	Operating time of speed 8	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.42" on page 538
H12.43	2012-2Ch	Acc./dec. time of speed 8	See H12.22.	0	-	Immediate ly	" H12_en.43" on page 538
H12.44	2012-2Dh	Reference 9	–6000 rpm to 6000 rpm	100	rpm	Immediate ly	" H12_en.44" on page 538
H12.45	2012-2Eh	Operating time of speed 9	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.45" on page 539
H12.46	2012-2Fh	Acc./dec. time of speed 9	See H12.22.	0	-	Immediate ly	" H12_en.46" on page 539
H12.47	2012-30h	Reference 10	–6000 rpm to 6000 rpm	-100	rpm	Immediate ly	" H12_en.47" on page 539

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H12.48	2012-31h	Operating time of speed 10	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.48" on page 539
H12.49	2012-32h	Acc./dec. time of speed 10	See H12.22.	0	-	Immediate ly	" H12_en.49" on page 539
H12.50	2012-33h	Reference 11	–6000 rpm to 6000 rpm	-300	rpm	Immediate ly	" H12_en.50" on page 540
H12.51	2012-34h	Operating time of speed 11	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.51" on page 540
H12.52	2012-35h	Acc./dec. time of speed 11	See H12.22.	0	-	Immediate ly	" H12_en.52" on page 540
H12.53	2012-36h	Reference 12	–6000 rpm to 6000 rpm	-500	rpm	Immediate ly	" H12_en.53" on page 540
H12.54	2012-37h	Operating time of speed 12	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.54" on page 540
H12.55	2012-38h	Acc./dec. time of speed 12	See H12.22.	0	-	Immediate ly	" H12_en.55" on page 541
H12.56	2012-39h	Reference 13	–6000 rpm to 6000 rpm	-700	rpm	Immediate ly	" H12_en.56" on page 541
H12.57	2012-3Ah	Operating time of speed 13	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.57" on page 541
H12.58	2012-3Bh	Acc./dec. time of speed 13	See H12.22.	0	-	Immediate ly	" H12_en.58" on page 541
H12.59	2012-3Ch	Reference 14	–6000 rpm to 6000 rpm	-900	rpm	Immediate ly	" H12_en.59" on page 541
H12.60	2012-3Dh	Operating time of speed 14	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.60" on page 541
H12.61	2012-3Eh	Acc./dec. time of speed 14	See H12.22.	0	-	Immediate ly	" H12_en.61" on page 542
H12.62	2012-3Fh	Reference 15	–6000 rpm to 6000 rpm	-600	rpm	Immediate ly	" H12_en.62" on page 542
H12.63	2012-40h	Operating time of speed 15	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.63" on page 542
H12.64	2012-41h	Acc./dec. time of speed 15	See H12.22.	0	-	Immediate ly	" H12_en.64" on page 542
H12.65	2012-42h	Reference 16	–6000 rpm to 6000 rpm	-300	rpm	Immediate ly	" H12_en.65" on page 542
H12.66	2012-43h	Operating time of speed 16	0.0s(m) to 6553.5s(m)	5.0	s (m)	Immediate ly	" H12_en.66" on page 543
H12.67	2012-44h	Acc./dec. time of speed 16	See H12.22.	0	-	Immediate ly	" H12_en.67" on page 543

16.17 Parameter Group H17

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H17.00	2017-01h	VDI1 function selection	See " H17_en.00" on page 543 for details.	0	-	Immediate ly	" H17_en.00" on page 543
H17.01	2017-02h	VDI1 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.01" on page 544
H17.02	2017-03h	VDI2 function selection	See H17.00.	0	-	Immediate ly	" H17_en.02" on page 545
H17.03	2017-04h	VDI2 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	<i>" H17_en.03"</i> on page 545
H17.04	2017-05h	VDI3 function	See H17.00.	0	-	Immediate ly	" H17_en.04" on page 545
H17.05	2017-06h	VDI3 logic selection	0: Active when the written value is 1 0 - 1: Active when the written value changes from 0 to 1		At stop	" H17_en.05" on page 545	
H17.06	2017-07h	VDI4 function	See H17.00.	0	-	Immediate ly	" H17_en.06" on page 546
H17.07	2017-08h	VDI4 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.07" on page 546
H17.08	2017-09h	VDI5 function selection	See H17.00.	0	-	Immediate ly	" H17_en.08" on page 546
H17.09	2017-0Ah	VDI5 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.09" on page 546
H17.10	2017-0Bh	VDI6 function selection	See H17.00.	0	-	Immediate ly	" H17_en.10" on page 546
H17.11	2017-0Ch	VDI6 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.11" on page 547
H17.12	2017-0Dh	VDI7 function selection	See H17.00.	0	-	Immediate ly	" H17_en.12" on page 547
H17.13	2017-0Eh	VDI7 logic	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.13" on page 547
H17.14	2017-0Fh	VDI8 function	See H17.00.	0	-	Immediate ly	" H17_en.14" on page 547
H17.15	2017-10h	VDI8 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.15" on page 547

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H17.16	2017-11h	VDI9 function	See H17.00.	0	-	Immediate ly	" H17_en.16" on page 548
H17.17	2017-12h	VDI9 logic	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.17" on page 548
H17.18	2017-13h	VDI10 function	See H17.00.	0	-	Immediate ly	" H17_en.18" on page 548
H17.19	2017-14h	VDI10 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.19" on page 548
H17.20	2017-15h	VDI11 function selection	See H17.00.	0	-	Immediate ly	" H17_en.20" on page 549
H17.21	2017-16h	VDI11 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.21" on page 549
H17.22	2017-17h	VDI12 function	See H17.00.	0	-	Immediate ly	" H17_en.22" on page 549
H17.23	2017-18h	VDI12 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.23" on page 549
H17.24	2017-19h	VDI13 function	See H17.00.	0	-	Immediate ly	" H17_en.24" on page 549
H17.25	2017-1Ah	VDI13 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.25" on page 550
H17.26	2017-1Bh	VDI14 function	See H17.00.	0	-	Immediate ly	" H17_en.26" on page 550
H17.27	2017-1Ch	VDI14 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.27" on page 550
H17.28	2017-1Dh	VDI15 function	See H17.00.	0	-	Immediate ly	" H17_en.28" on page 550
H17.29	2017-1Eh	VDI15 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.29" on page 550
H17.30	2017-1Fh	VDI16 function	See H17.00.	0	-	Immediate ly	" H17_en.30" on page 551
H17.31	2017-20h	VDI16 logic selection	0: Active when the written value is 1 1: Active when the written value changes from 0 to 1	0	-	At stop	" H17_en.31" on page 551
H17.32	2017-21h	VDO virtual level	0–65535	0	-	Unchangea ble	" H17_en.32" on page 551

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H17.33	2017-22h	VDO1 function	0: No assignment 1: Servo ready 2: Motor rotation 3: Zero speed 4: Speed matching 5: Positioning completed 6: Proximity 7: Torque limited 8: Speed limited 9: Brake 10: Warning 11: Fault 12: Output 3-bit warning code 13: Output 3-bit warning code 14: Output 3-bit warning code 14: Output 3-bit warning code 15: Interrupt positioning completed 16: Homing completed 17: Electrical homing completed 18: Torque reach 19: Speed reach 22: Internal command allowed 24: Internal motion completed	0		At stop	<i>"</i> H17_en.33" on page 552
H17.34	2017-23h	VDO1 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.34" on page 553
H17.35	2017-24h	VDO2 function selection	See H17.33.	0	-	At stop	" H17_en.35" on page 553
H17.36	2017-25h	VDO2 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.36" on page 554
H17.37	2017-26h	VDO3 function	See H17.33.	0	-	At stop	" H17_en.37" on page 554
H17.38	2017-27h	VDO3 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.38" on page 554
H17.39	2017-28h	VDO4 function	See H17.33.	0	-	At stop	" H17_en.39" on page 554
H17.40	2017-29h	VDO4 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.40" on page 554
H17.41	2017-2Ah	VDO5 function	See H17.33.	0	-	At stop	" H17_en.41" on page 555
H17.42	2017-2Bh	VDO5 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.42" on page 555
H17.43	2017-2Ch	VDO6 function	See H17.33.	0	-	At stop	" H17_en.43" on page 555

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H17.44	2017-2Dh	VDO6 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.44" on page 555
H17.45	2017-2Eh	VDO7 function	See H17.33.	0	-	At stop	" H17_en.45" on page 556
H17.46	2017-2Fh	VDO7 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.46" on page 556
H17.47	2017-30h	VDO8 function	See H17.33.	0	-	At stop	" H17_en.47" on page 556
H17.48	2017-31h	VDO8 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.48" on page 556
H17.49	2017-32h	VDO9 function	See H17.33.	0	-	At stop	" H17_en.49" on page 556
H17.50	2017-33h	VDO9 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.50" on page 557
H17.51	2017-34h	VDO10 function selection	See H17.33.	0	-	At stop	" H17_en.51" on page 557
H17.52	2017-35h	VDO10 logic level	0: Output 1 upon active logic 0 - 1: Output 0 upon active logic		-	At stop	<i>" H17_en.52"</i> on page 557
H17.53	2017-36h	VDO11 function	See H17.33.	0	-	At stop	" H17_en.53" on page 557
H17.54	2017-37h	VDO11 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.54" on page 557
H17.55	2017-38h	VDO12 function	See H17.33.	0	-	At stop	" H17_en.55" on page 558
H17.56	2017-39h	VDO12 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.56" on page 558
H17.57	2017-3Ah	VDO13 function	See H17.33.	0	-	At stop	<i>" H17_en.57"</i> on page 558
H17.58	2017-3Bh	VDO13 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.58" on page 558
H17.59	2017-3Ch	VDO14 function	See H17.33.	0	-	At stop	" H17_en.59" on page 558
H17.60	2017-3Dh	VDO14 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.60" on page 559
H17.61	2017-3Eh	VDO15 function	See H17.33.	0	-	At stop	" H17_en.61" on page 559
H17.62	2017-3Fh	VDO15 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.62" on page 559

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H17.63	2017-40h	VDO16 function	See H17.33.	0	-	At stop	" H17_en.63" on page 559
H17.64	2017-41h	VDO16 logic level	0: Output 1 upon active logic 1: Output 0 upon active logic	0	-	At stop	" H17_en.64" on page 559

16.18 Parameter Group H1B

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H1B.14	201B-0Fh	Bit01 of motor SN code	0-65535	0	-	At stop	" H1B_en.14" on page 560
H1B.15	201B-10h	Bit23 of motor SN code	0–65535	0	-	At stop	<i>" H1B_en.15"</i> on page 560
H1B.16	201B-11h	Bit45 of motor SN code	0–65535	0	-	At stop	<i>" H1B_en.16"</i> on page 560
H1B.17	201B-12h	Bit67 of motor SN code	0-65535	0	-	At stop	<i>" H1B_en.17"</i> on page 560
H1B.18	201B-13h	Bit89 of motor SN code	0–65535	0	-	At stop	<i>" H1B_en.18"</i> on page 560
H1B.19	201B-14h	Bit11 of motor SN code	0-65535	0	-	At stop	" H1B_en.19" on page 561
H1B.20	201B-15h	Bit13 of motor SN code	0-65535	0	-	At stop	" H1B_en.20" on page 561
H1B.21	201B-16h	Bit15 of motor SN code	0–65535	0	-	At stop	" H1B_en.21" on page 561
H1B.47	201B-30h	Motor storage property shield word 1	0-65535	0	-	At stop	" H1B_en.47" on page 561
H1B.48	201B-31h	Motor storage property shield word 2	0–65535	0	-	At stop	" H1B_en.48" on page 561

16.19 Parameter Group H30

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H30.00	2030-01h	Servo status read through communication	0-65535	0	-	Unchangea ble	" H30_en.00" on page 562
H30.01	2030-02h	DO function state 1 read through communication	0-65535	0	-	Unchangea ble	" H30_en.01" on page 562
H30.02	2030-03h	DO function state 2 read through communication	0-65535	0	-	Unchangea ble	" H30_en.02" on page 563
H30.03	2030-04h	Input pulse reference sampling value read through communication	0-65535	0	-	Unchangea ble	" H30_en.03" on page 563
H30.04	2030-05h	DI status read through communication	0-65535	0	-	Unchangea ble	" H30_en.04" on page 563

16.20 Parameter Group H31

Parameter	Hexadeci mal Parameters	Name	Setpoint	Default	Unit	Change Method	Page
H31.00	2031-01h	VDI virtual level set through communication	0–65535	0	-	Immediate ly	" H31_en.00" on page 564
H31.04	2031-05h	DO state set through communication	0-31	0	-	Immediate ly	" H31_en.04" on page 564
H31.09	2031-0Ah	Speed reference set through communication	-6000.000rpm to 6000.000rpm	0.000	rpm	Immediate ly	" H31_en.09" on page 565
H31.11	2031-0Ch	Torque reference set through communication	-100.000%-100.000%	0.000	%	Immediate ly	" H31_en.11" on page 565

17 Troubleshooting

17.1 Fault Levels and Display

Faults and warnings of the servo drive are divided into three levels based on severity: No. 1 > No. 2 > No. 3, as shown below.

- No. 1 non-resettable fault
- No. 1 resettable fault
- No. 2 resettable fault
- No. 3 resettable warning

Note

"Resettable" means the keypad stops displaying the fault/warning once a "Reset signal" is input.

Fault and warning log

The servo drive can record the latest 20^[1] faults and warnings and values of status parameters upon fault/warning. If a repeated fault or warning is present in the latest 5 records, the repeated fault can be logged more than once after being cleared.

A fault/warning will still be saved in the fault log after reset. To remove the fault/warning from the fault log, set H02.31 to 1. The following figure shows the details.

ID	故障码	时间戳	转速	电流び	电流V	母线电压	输入端子	输出端子
1	136.1	311253.5s	Orpm	0.0A	0.0A	0. OV	0x001F	0x0003
2	101.0	303793.4s	Orpm	0. 0A	0.0A	0. OV	0x0000	0x0000
3	101.0	296710.8s	Orpm	0. OA	0.0A	0. OV	0x001F	0x0003
4	740.0	294902.1s	Orpm	0. 0A	0.0A	0. OV	0x001F	0x0002
5	740.2	294902.1s	Orpm	0. OA	0.0A	0. OV	0x001F	0x0002
6	601.4	210654.8s	1001rpm	0. OA	-0.1A	309.1V	0x001F	0x0002
7	601.4	204921.0s	50rpm	0. OA	0.0A	310.4V	0x001F	0x0002
8	601.4	155877.9s	10rpm	0. 0A	0.0A	312.7V	0x001F	0x0002
9	120.8	152588.5s	Orpm	0.0A	0.0A	0.0V	0x001F	0x0003

Read the value of H0b.34 to get the fault/warning code. See examples in the following table.

H0b.34 (hexadecimal)	Description of H0b.34 (hexadecimal)		
0101	0: Fault subcode		
0101	101: Fault Code		

Note

[1]: To show 20 fault records: The MCU software version is required to be 6.3 and above, and the commissioning software must be the latest.

17.2 Troubleshooting During Startup

Position Control Mode

• Troubleshooting

Start Process	Fault	Cause	Troubleshooting			
		1. The voltage of the control circuit power supply is abnormal.	The fault persists though CN1, CN2, CN3, and CN4 are disconnected. Measure the AC voltage between L1C and L2C.			
Turn on the control power (L1C, L2C) Main power supply	The LED neither lights	2. The voltage of the main circuit power supply is abnormal.	 For single-phase 220 V models, measure the AC voltage between L1 and L2. When the DC bus voltage amplitude (voltage between P⊕ and N⊕) is lower than 235V, the keypad displays "nrd". For three-phase 220 V/380 V models, measure the AC voltage among L1, L2, L3/R, S, T. When the DC bus voltage amplitude (voltage between P⊕ and N⊕) is lower than 451V, the keypad displays "nrd". 			
(L1, L2)		3. The programming terminal is shorted.	Check whether the programming terminal is shorted.			
(L1, L2, L3) (R, S, T)		4. The servo drive is faulty.	-			
	The keypad displays "Exxx.x".					
	The keypad displays "rdy	/" after preceding faults	are cleared.			
	The keypad displays "Exxx.x".					
	The servo motor shaft is		Switch the keypad display to the servo status interface and view whether the keypad displays "rdy" instead of "run".			
(S-ON signal switched		1. The S-ON signal is inactive.	 Check parameters in groups H03 or H17 to see whether FunIN.1 (S-ON) is assigned to a DI. If FunIN.1 is assigned, check whether the corresponding DI logic is active. If FunIN.1 is not assigned, assign FunIN.1 to a DI and activate the logic of this DI. For how to assign FunIN.1 to a DI, see <i>"16.4 Parameter Group H03" on page 575</i> and <i>"16.17 Parameter Group H17" on page 612.</i> If the keypad keeps displaying "rdy" even though the S-ON signal has been assigned to a DI through parameters in group H03 or H17 and the corresponding DI logic is active, check whether the DI is connected correctly according to Chapter "Wiring" in SV660P Series Servo Drive Hardware Guide. 			
		2. The control mode is wrong.	Check whether H02.00 (Control mode selection) is set to 1 (Position control mode). If it is set to 2 (Torque control mode), the motor shaft will be in the free running state because the default torque reference is 0.			
	The keypad displays "rui	n" after preceding faults	are cleared.			

Start Process	Fault	Cause	Troubleshooting
Input position reference	The servo motor does not rotate.	The value of the input position reference counter (H0b.13) is 0.	 The high/low-speed pulse input terminal is wired incorrectly. When H05.00 (Position reference source) is set to 0, check whether the high/low-speed pulse input terminal is connected correctly according to section "Description of Terminals" . Additionally, check whether the setting of H05.01 (Pulse reference input terminal selection) is matched. No position reference is inputted. Check whether FunIN.13 (Inhibit, position reference inhibited) or FunIN.37 (PulseInhibit, pulse reference inhibited) is used. When H05.00 (Position reference source) is set to 0 (pulse input), the host controller or other pulse generator does not output pulses. Check whether there are pulses into high/low-speed pulse input terminals with an oscilloscope. See section Terminals for details. When H05.00 (Position reference source) is set to 1 (Step reference), check whether H05.05 (Step reference) is 0. If not, check whether FunIN.20 (PosStep, step reference enabled) is assigned to a DI and whether the logic of this DI is active. When H05.00 (Position reference source) is set to 2 (Multi-position reference), check whether FunIN.28 (PosInSen, internal multi-position enable) is assigned to a DI and whether FunIN.28 (PosInSen, internal multi-position enable) is assigned to a DI and whether H05.29 (Interrupt positioning cancellation) is used.
Input position reference	The servo motor rotates in the reverse direction.		 When H05.00 (Position reference source) is set to 0 (Pulse reference), check whether the setting of H05.15 (Pulse reference form) is consistent with the actual input pulses. If not, H05.15 is set improperly or terminals are wired incorrectly. When H05.00 (Position reference source) is set to 1 (Step reference), check whether the value of H05.05 (Step reference) is positive or negative. When H05.00 (Position reference source) is set to 2 (Multi-position reference), check the sign (+/-) of each displacement reference value in parameter group H11. Check whether FunIN.27 (PosDirSel, position reference direction selection) is assigned to a DI and whether the logic of this DI is active. Check whether H02.02 (Direction of rotation) is set properly.
	The servo motor can rot	ate after preceding fault	is are cleared.
	The motor speed is unstable during low- speed operation.	Gains are set improperly.	See section Adjustments for automatic gain adjustment.
Rotating unstably at low speed	The motor shaft vibrates leftward and rightward.	The load moment of inertia ratio (H08.15) is too high.	If the motor can operate safely, perform inertia auto-tuning and gain auto- tuning according to section "Adjustment".
	The servo motor can rot	ate properly after preced	ding fault are cleared.
Normal running	The positioning is inaccurate.	The position deviation is beyond the permissible range.	Check the position reference counter (H0b.13), feedback pulse counter (H0b.17), and the mechanical stop position according to the following procedure.

• Procedure for checking the causes of inaccurate positioning

•

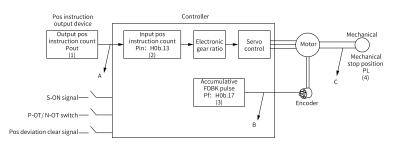


Figure 17-1 Schematic diagram for positioning control

- When inaccurate positioning occurs, check the following four signals in the preceding figure.
 - Output position reference count value (Pout) in the position reference output device (host controller or internal parameters of the servo drive)
 - Input position reference count value (Pin) received by the servo drive, corresponding to H0b.13 (Position reference counter)
 - Accumulative pulse feedback value (Pf) returned by the encoder, corresponding to H0b.17 (Feedback pulse counter)
 - Mechanical stop position (PL)
- The A, B, C shown in the preceding figure represent the three causes that lead to inaccurate positioning.
 - A: A position reference count error occurs due to the noise in the wiring of the host controller and the servo drive.
 - B: The input position reference is interrupted during motor operation.
 Cause: Servo ON signal (S-ON) is set to OFF, the positive/negative limit switch signal (P-OT or N-OT) is ON and the position deviation clearing signal (ClrPosErr) is ON.
 - C: Mechanical position slides between machine and servo motor.
- In an ideal scenario where the position deviation is 0, the following relations exist:
 - Pout = Pin: Output position reference count value = Input position reference count value
 - Pin x Electronic gear ratio = Pf: Input position reference count value x Electronic gear ratio = Accumulative pulse feedback
 - Pf x \triangle L = PL: Accumulative pulse feedback x Load displacement per position reference = Mechanical stop position
- When inaccurate positioning occurs, check the causes based on the following steps:
 - Pout \neq Pin
 - Fault cause: A

To rectify cause A, do as follows:

- 1. Check if twisted pair shielded cables are connected to pulse input terminals (For low or high speed pulse input terminals, see section "Description of Terminals").
- 2. If the open-collector input mode for low-speed pulse input terminals is used, change to the differential input mode.
- 3. Route pulse input terminals and the main circuit terminals (L1, L2/R, S, T/U, V, W) through different routes.

- 4. If low-speed pulse input terminals are used, increase the filter time constant of low-speed pulse input pins (H0A.24). If high-speed pulse input terminals are used, increase the filter time constant of the high-speed pulse input pins (H0A.30).
- Pin x Electronic gear ratio ≠ Pf: Fault cause: B

To rectify cause A, do as follows:

- 1. Check whether a fault occurs during operation, causing the servo drive to stop before executing all the commands.
- 2. If the fault is caused by an active position deviation clear signal (ClrPosErr), check whether the position deviation clear mode (H05.16) is proper.
- Pf x △L ≠ PL:
 Fault cause: C

To rectify cause C, check mechanical connections and find the sliding position.

Speed Control Mode

Start Process	Fault	Cause	Troubleshooting	
		1. The voltage of the control circuit power supply is abnormal.	The fault persists though CN1, CN2, CN3, and CN4 are disconnected. Measure the AC voltage between L1C and L2C.	
Turn on the control power (L1C, L2C) Main power	The LED neither lights up nor displays "rdy".	2. The input voltage is abnormal.	 For single-phase 220 V models, measure the AC voltage between L1 and L2. When the DC bus voltage amplitude (voltage between P⊕ and N⊕) is lower than 235V, the keypad displays "nrd". For three-phase 220 V/380 V models, measure the AC voltage among L1, L2, L3/R, S, T. When the DC bus voltage amplitude (voltage between P⊕ and N⊕) is lower than 451V, the keypad displays "nrd". 	
supply (L1, L2)		3. The programming terminal is shorted.	Check whether the programming terminal is shorted.	
(L1, L2, L3) (R, S, T)		4. The servo drive is faulty.	-	
	The keypad displays "Exxx.x".	according to " <i>Solutions to Warnings</i> " on page 627 and "17.5.1 <i>Solutions</i> 88.		
	he keypad displays "rdy" after preceding faults are cleared.			
	The keypad displays "Exxx.x".	Rectify the fault causes according to " Solutions to Warnings" on page 627 and "17.5.1 Solutions to Faults" on page 638.		
Switching on the S-ON signal (S-ON signal switched on)	The servo motor shaft is in the free running state.	1. The S-ON signal is inactive.	Switch the keypad display to the servo status interface and view whether the keypad displays "rdy" instead of "run". • Check parameters in groups H03 or H17 to see whether FunIN.1 (S-ON) is assigned to a DI. If FunIN.1 is assigned, check whether the corresponding DI logic is active. If FunIN.1 is not assigned, assign FunIN.1 to a DI and activate the logic of this DI. For how to assign FunIN.1 to a DI, see <i>"16.4 Parameter Group H03"</i> on page 575 and <i>"16.17 Parameter Group H17"</i> on page 612. • If the keypad keeps displaying "rdy" even though the S-ON signal has been assigned to a DI through parameters in group H03 or H17 and the corresponding DI logic is active, check whether the DI is connected correctly according to section Description of Terminals.	
		2. The control mode is wrong.	Check whether H02.00 (Control mode selection) is set to 0 (Position control mode). If it is set to 2 (Torque control mode), the motor shaft will be in the free running state because the default torque reference is 0.	
	The keypad displays "rur	n" after preceding faults	are cleared.	

Start Process	Fault	Cause	Troubleshooting
Inputting speed references	The servo motor does not rotate or the motor speed is incorrect.	The speed reference (H0b.01) is 0.	 The speed reference selected is wrong. Check whether H06.02 (Speed reference selection) is set correctly. No speed reference is inputted or the speed reference is abnormal. When the speed reference is set through the keypad, check whether H06.03 (Speed reference set through keypad) is set correctly. When the speed reference is set through multi-speed references, check whether parameters in group H12 are set correctly. When the speed reference is set through communication, check whether H31.09 (Speed reference set through communication) is set correctly. When the speed reference is set through jog speed references, check whether H06.04 (Jog speed) is set correctly and whether FunIN.18 (JOGCMD+, forward jog) and FunIN.19 (JOGCMD, reverse jog) are assigned to DIs and whether the DI logics are active. Check whether H06.05 (Acceleration time constant of speed reference) and H06.06 (Deceleration time constant of speed reference) are set correctly. Check whether the FunIN.12 (ZCLAMP, zero clamp) is mis-assigned and whether the active logic of the corresponding DI is correct.
Inputting speed references	The servo motor rotates in the reverse direction.		 When the speed reference is set through the keypad, check whether the value of H06.03 (Speed reference set through keypad) is lower than 0. When the speed reference is set through multi-speed references, check the sign (+/-) of each speed reference value in group H12. When the speed reference is set through communication, check whether the value of H31.09 (Speed reference set through communication) is lower than 0. When the speed reference is set through g speed references, check the the value of H31.09 (Speed reference set through communication) is lower than 0. When the speed reference is set through jog speed references, check whether the value of H06.04 (Jog speed) and the active logics of FunIN.18 (JOGCMD+, forward jog) and FunIN.19 (JOGCMD reverse jog) match the desired direction of rotation. Check whether FunIN.26 (SpdDirSel, speed reference direction selection) is assigned to a DI and whether the logic of the DI is active. Check whether H02.02 (Direction of rotation) is set properly.
	The servo motor can rota	te after preceding fault	s are cleared.
Rotating unstably at low speed	The motor speed is unstable during low- speed operation.	Gains are set improperly.	See section Adjustments for automatic gain adjustment.
	The motor shaft vibrates leftward and rightward.	The load moment of inertia ratio (H08-15) is too high.	If the motor can operate safely, perform inertia auto-tuning again according to section Adjustment. See section Adjustments for automatic gain adjustment.

Torque control mode

Start Process	Fault	Cause	Troubleshooting		
		1. The voltage of the control circuit power supply is abnormal.	The fault persists though CN1, CN2, CN3, and CN4 are disconnected. Measure the AC voltage between L1C and L2C.		
Switch on the control power supply (L1C, L2C) Main power supply	The LED neither	2. The voltage of the main circuit power supply is abnormal.	 For single-phase 220 V models, measure the AC voltage between L1 and L2. When the DC bus voltage amplitude (voltage between P⊕ and N⊕) is lower than 235V, the keypad displays "nrd". For three-phase 220 V/380 V models, measure the AC voltage among L1, L2, L3/R, S, T. When the DC bus voltage amplitude (voltage between P⊕ and N⊕) is lower than 451V, the keypad displays "nrd". 		
(L1, L2) (L1, L2, L3)		3. The programming terminal is shorted.	Check whether the programming terminal is shorted.		
(R, S, T)		4. The servo drive is faulty.	-		
	The keypad displays "Exxx.x".	Rectify the fault causes <i>Faults" on page 638</i> .	according to " Solutions to Warnings" on page 627 and "17.5.1 Solutions to		
	The keypad display	vs "rdy" after preceding	faults are cleared.		
	The keypad displays "Exxx.x".	Rectify the fault causes <i>Faults" on page 638</i> .	Rectify the fault causes according to " Solutions to Warnings" on page 627 and "17.5.1 Solutions to Faults" on page 638.		
Switching on the S- ON signal (S-ON signal switched on)	The servo motor shaft is in the free running state.	The S-ON signal is inactive.	 Switch the keypad display to the servo status interface and view whether the keypad displays "rdy" instead of "run". Check parameters in groups H03 or H17 to see whether FunIN.1 (S-ON) is assigned to a DI. If FunIN.1 is assigned, check whether the corresponding DI logic is active. If FunIN.1 is not assigned, assign FunIN.1 to a DI and activate the logic of this DI. For how to assign FunIN.1 to a DI, see <i>"16.4 Parameter Group H03"</i> on page 575 and <i>"16.17 Parameter Group H17"</i> on page 612. If the keypad keeps displaying "rdy" even though the S-ON signal has been assigned to a DI through parameters in group H03 or H17 and the corresponding DI logic is active, check whether the DI is connected correctly according to section Description of Terminals. 		
	The keypad display	vs "run" after preceding	faults are cleared.		
Input torque	The servo motor does not rotate.	The internal torque reference (H0b.02) is 0.	The torque reference selected is wrong. Check whether H07.02 (Torque reference source) is set correctly. No torque reference is inputted. • When the torque reference is set through the keypad, check whether H07.03 (Torque reference set through keypad) is set to 0. • When the torque reference is set through communication, check whether H31.11 (Torque reference set through communication) is set to 0.		
reference	The servo motor rotates in the reverse direction.	The value of the internal torque reference (H0b.02) is a negative number. In rotate after preceding	 When the speed reference is set through the keypad, check whether the value of H07.03 (Speed reference set through keypad) is lower than 0. When the torque reference is set through communication, check whether the value of H31.11 (Torque reference set through communication) is lower than 0. Check whether FunIN.25 (ToqDirSel, speed reference direction selection) is assigned and whether the corresponding DI logic is active. Check whether H02.02 (Direction of rotation) is set properly. 		

Start Process	Fault	Cause	Troubleshooting
Rotating unstably at	•	Gains are set improperly.	Perform gain auto-tuning.
	vibrates leftward	inertia ratio (H08.15) is	If the servo motor can operate safely, perform inertia auto-tuning again. Perform gain auto-tuning.

17.3 Reset Method After Troubleshooting

Faults and warnings of the servo drive are divided into three levels based on severity: No. 1 > No. 2 > No. 3, as shown below.

- No. 1 non-resettable fault
- No. 1 resettable fault
- No. 2 resettable fault
- No. 3 resettable warning

Note

"Resettable" means the keypad stops displaying the fault/warning once a "Reset signal" is input.

Operating procedure:

- To stop the keypad from displaying the fault/warning, set H0d.01 (Fault reset) to 1 or activate the DI terminal assigned with DI function 2 (FunIN.2: ALM- RST, fault and warning reset).
- To reset No. 1 and No. 2 faults, switch off the S-ON signal, and then set H0d.01 to 1 or activate the DI terminal allocated with DI function 2.
- To reset No. 3 warnings, set H0d.01 to 1 or activate the DI terminal allocated with DI function 2.

Note

- Some faults and warnings can be reset only after the fault causes are rectified by modifying the settings. However, a reset operation does not necessarily activate the modifications to settings.
- For modifications activated at next power-on (R, S, T/L1C, L2C powered on again), perform a power cycle.
- For modifications activated after stop, switch off the S-ON signal. The servo drive can operate normally only after modifications are activated.

☆Related function No.

Start Process	Fault Symptom	Cause	Check method
FunIN.2	ALM-RST	Fault/Warning reset signal	The servo drive may, depending on the warning types, continue running after warning reset. When FunIN.2 is assigned to a low-speed DI, the effective level change of this DI must be kept for more than 3 ms. Otherwise, fault reset will be inactive. Do not assign FunIN.2 to a high-speed DI. Otherwise, fault/warning reset will be inactive. • Inactive: Not resetting the fault/warning • Active: Resetting the fault/warning

17.4 Description of Warning Codes

• E108.0: Parameter write error

Description:

Parameter values cannot be written to EEPROM.

Cause	Troubleshooting	Solution
An error occurs during parameter- writing.	Modify a certain parameter, power off and on the servo drive again and check whether the modification is saved.	If the modification is not saved and the fault persists after the servo drive is powered off and on repeatedly, replace the servo drive.

• E108.1: Parameter read error

Description:

Parameter values cannot be read from EEPROM.

Cause	Troubleshooting	Solution
The parameter-read operation is abnormal, and the system indicates an EEPROM read failure.	Modify a certain parameter, power off and on the servo drive again and check whether the modification is saved.	If the modification is not saved and the fault persists after the servo drive is powered off and on repeatedly, replace the servo drive.

• E108.2: EEPROM write check error

Description:

The check on the data written in EEPROM failed.

Cause	Troubleshooting	Solution
An error occurs during parameter- writing.	Modify a certain parameter, power off and on the servo drive again and check whether the modification is saved.	If the modification is not saved and the fault persists after the servo drive is powered off and on repeatedly, replace the servo drive.

• E108.3: EEPROM read check error

Description:

The check on the data read in EEPROM failed.

Cause	Troubleshooting	Solution
An error occurs during parameter- reading.	Modify a certain parameter, power off and on the servo drive again and check whether the modification is saved.	If the modification is not saved and the fault persists after the servo drive is powered off and on repeatedly, replace the servo drive.

• E108.4: Single data stored too many times Description:

Single data is stored too frequently.

Cause	Troubleshooting	Solution
That may damage EEPROM over time.	 1 Check H0b.90 and H0b.91. H0b.90 shows the parameter in question or object dictionaries (in hexadecimal). If H0b.91=15, H0b.90 shows internal variables of software. 2 Check "Func Test 1" through the oscilloscope channel. Be sure to display it in hexadecimal. This channel displays the address that EEPROM is storing. 3 Check the storage count through the oscilloscope channel "Func Test 2". 	1 If the alarm is caused by manually modifying a certain parameter or object dictionary, there will be no frequent storage of a certain data during operation, and you can reset the fault. 2 Check the abnormal parameter through H0b. 90 or oscilloscope channel, and find out the cause. For example, if the host controller program frequently writes parameters through SDO, you can modify the program to stop it.

• E110.0: Frequency-division pulse output setting error Description:

The number of frequency divisions (quadrupled) exceeds the motor revolutions

Cause	Troubleshooting	Solution
The number of frequency divisions (quadrupled) exceeds the motor revolutions	Check the setpoint of H05.17.	Adjust the value of H05.17 on the basis of the motor revolutions.

• E121.0: Invalid S-ON command Description:

A redundant S-ON signal is sent when some auxiliary functions are used.

Cause	Troubleshooting	Solution
The Communication S-ON signal is active when servo drive is enabled internally.	Check whether the following auxiliary functions are used: Check whether DI functions (H0d.02, H0d.03, and H0d.12) are used and whether FunIN.1 (S-ON signal) is active.	Deactivate the DI assigned with FunIN.1 (both hardware DI and virtual DI).

• E122.0: Multi-turn absolute encoder setting error Description:

The motor does not match the absolute position mode or the motor code is set improperly.

Cause	Troubleshooting	Solution
The motor does not match the absolute position mode or the motor code is set incorrectly.	 Check the motor nameplate to see whether the motor is configured with a multi-turn absolute encoder. Check whether H00.00 (motor code) is set properly. 	Reset H00.00 (motor code) according to the motor nameplate or use a suitable motor.

• E510.0: Frequency division pulse output overspeed Description:

Cause	Troubleshooting	Solution
	When H05.38 is set to 0 (Encoder frequency-division output), check whether the output pulse frequency corresponding to the motor speed upon fault exceeds the limit. Output pulse frequency (Hz) = Motor speed (rpm)/60 x H05.17	Decrease the value of H05.17 (encoder frequency-division pulses) to allow the output pulse frequency, within the speed range required by the machine, to drop below the frequency upper limit allowed by the hardware.
The MCU detects excessive pulse increment fed back by FPGA.	The input pulse frequency exceeds 2 MHz or interference exists in the pulse input pins when H05.38 is set to 1 (Reference pulse synchronous output). • High-speed pulse input pins:• open-collector input terminals: PULLHI, PULSE+, PULSE-, SIGN +, SIGN-; single-channel maximum pulse frequency: 200 kpps. • High-speed pulse input pins: differential input terminals: HPULSE+, HPULSE-, HSIGN+, HSIGN-; single-channel maximum pulse frequency: 4 Mpps.	Decrease the input pulse frequency to a value within the frequency upper limit allowed by hardware. Note: In this case, if you do not modify the electronic gear ratio, the motor speed will decrease. If the input pulse frequency is high but is still within the frequency upper limit allowed by the hardware, take anti-interference measures (use STP cable for pulse input and set pin filter parameter H0A.24 or H0A.30). This is to prevent false warnings caused by interference pulses superimposed to actual pulse references.

The single-channel output pulse frequency exceeds the frequency upper limit allowed by the hardware (4 MHz) when pulse output is used (H05.38 = 0/1/2).

• E600.0: Inertia auto-tuning failure Description:

Vibration cannot be suppressed. You can set notch parameters (H09.12...H09.23) manually to suppress vibration.

The auto-tuned values fluctuate dramatically. Increase the maximum operating speed, reduce the acceleration/deceleration time, and shorten the stroke of the lead screw during ETune operation.

Mechanical couplings of the load are loose or eccentric. Rectify the mechanical faults.

A warning occurs during auto-tuning and causes interruption. Rectify the fault causes and perform inertia auto-tuning again.

The vibration cannot be suppressed if the load carries large inertia. In this case, increase the acceleration/deceleration time to ensure the motor current is unsaturated.

Cause	Troubleshooting	Solution
 Continuous vibration occurs during auto-tuning. The auto-tuned values fluctuate dramatically. Mechanical couplings of the load are loose or eccentric. A warning occurs during auto- tuning and causes interruption. The vibration cannot be suppressed if the load carries a large inertia. In this case, increase the acceleration/deceleration time first to ensure the motor current is unsaturated. 	 Perform internal inspection to check whether the torque jitters upon stop (not FFT). Check whether 3 times more than the last auto-tuned value for variation less than 5 times; 0.5 times more than last auto-tuned value for variation above 5 times. 	 Rectify the fault and perform inertia auto-tuning again. For vibration that cannot be suppressed, enable vibration suppression. Ensure mechanical couplings are connected securely. Increase the maximum operating speed, reduce the acceleration/ deceleration time, and shorten the stroke of the lead screw during ETune operation.

• E601.0: Homing warning

Description:

The homing time exceeds the time set by H05.35.

Cause	Troubleshooting	Solution
1. The home switch is faulty.	There is only high-speed searching but no low-speed searching during homing. After high-speed searching, low-speed searching in the reverse direction applies.	If a hardware DI is used, check whether the corresponding DI function is allocated to a certain DI in group H03 and check the wiring of this DI. Change the DI logic manually and observe the value of H0b.03 (monitored DI status) to monitor whether the servo drive receives corresponding DI level changes. If the home signal is Z signal but it cannot be found, check the condition of the Z signal.
2. The homing time limit is too short.	Check whether the value of H05.35 (Time limit for homing) is too small.	Increase the value of H05.35.
3. The speed in high-speed searching for the home switch signal is too low.	Check the distance between the start position of homing and the home switch. Then check whether the setpoint of 6099-01h is too low, resulting in a long homing process.	Increase the value of 6099-01h.

• E601.1: Homing switch error Description:

The homing switch is set improperly.

Cause	Troubleshooting	Solution
The home switch is set improperly.	Check whether the limit signals at both sides are activated.	
	Check whether the limit signal and the deceleration point signal/home signal are both activated.	Set the position of the physical switch properly.
	Check whether the positive and negative position limits are activated successively.	

• E601.2: Homing mode setting error Description:

The homing method value is too large.

Cause	Troubleshooting	Solution
The homing method value is too large.	Check if the homing method value exceeds the existent homing mode (technology segment homing, H22.70).	Change the value of H22.70.

• E730.0: Encoder battery warning

Description:

The voltage of the absolute encoder battery is lower than 3.0 V.

Cause	Troubleshooting	Solution
The voltage of the absolute encoder battery is lower than 3.0 V.	Measure the battery voltage.	Use a new battery with the matching voltage.

Note

E731.0 and E733.0 can trigger E730.0. See E731.0 and E733.0 for other solutions.

• E731.0: Encoder battery failure Description:

The voltage of the absolute encoder battery is lower than 2.9V.

Cause	Troubleshooting	Solution
1. The battery is not connected during power-off.	Check whether the battery is connected during power-off.	Set H0d.20 to 1 to clear the fault.
2. The encoder battery voltage is too low.	Measure the battery voltage.	Use a new battery with the matching voltage.

Note

- 1. Use H05.31 to first select the homing method, and then perform homing. The warning is automatically cleared after homing is completed.
- 2. Set H05.30 = 6 to use the current position as the home, and the warning will be cleared immediately.
- 3. Use DI to configure function 41 (with the current position as the home), and then trigger DI to be active, and the warning is cleared immediately.

• E831.1: All zero offset too large

Description:

All zero offset too large.

Cause	Troubleshooting	Solution
1. The wiring is incorrect or interference exists.	Check the wiring according to the correct wiring diagram.	Use shielded twisted pairs and shorten the circuit length. Increase Al1 input filter time.
2. The servo drive is faulty.	Disconnect Al1 and measure whether the actual terminal voltage exceeds 0.5 V.	If not, replace the servo drive.

• E834.1: All overvoltage Description:

All overvoltage.

Cause	Troubleshooting	Solution
1. The wiring is incorrect or interference exists.	Check the wiring according to the correct wiring diagram	Use shielded twisted pairs and shorten the circuit length. Increase Al1 input filter time.
2. The input voltage is too high.	Measure whether the actual terminal voltage exceeds 11.5 V.	Adjust the input voltage to a value lower than 11.5 V.

• E900.0: Emergency braking Description:

The logic of the DI terminal (including the hardware DI and virtual DI) allocated with DI function 34 (FunIN.34) is effective.

Cause	Troubleshooting	Solution
The DI function 34 (EmergencyStop) is triggered.	Check whether the logic of the DI allocated with DI function 34 (FunIN.34: Emergency stop) is valid.	Check the operation mode and clear the active DI braking signal without affecting the safety performance.

• E902.0: DI setting invalid Description:

DI function parameters are set to invalid values.

Cause	Troubleshooting	Solution
	H0b.45=0x 0902, Check whether	
DI1–DI8 function selections are	H03.02, H03.04, H03.06, H03.08,	Set DI function parameters to valid
invalid.	H03.10, H03.12, H03.14, and H03.16	values.
	are set to invalid values.	

• E902.1: DO setting invalid

Description:

DO function parameters are set to invalid values.

Cause	Troubleshooting	Solution
DO1–DO5 function selections are invalid.	H0b.45= 0x 1902. Check whether H04.00, H04.02, H04.04, H04.06 and H04.08 are set to invalid values.	Set DO function parameters to valid values.

• E902.2: Invalid setting for torque reach

Description:

The DO parameters set for torque reach in the torque control mode are invalid.

Cause	Troubleshooting	Solution
The DO parameters set for torque reach in the torque control mode are invalid.	Check whether the value of H07.22 is lower than or equal to the value of H07.23 (unit: 0.1%).	Set H07.22 to a value higher than that of H07.23.

• E908.0: Model identification failure

Description:

Model identification check code error.

Cause	Troubleshooting	Solution
1. The model identification check word store in EEPROM is incorrect.	Check whether the warning persists after restart.	Set H01-72 to 1 to disable model
2. The model parameters are not written in the drive before delivery.	Check whether parameters can be saved to EEPROM.	identification temporarily.

• E909.0: Motor overload warning

Description:

Accumulative motor heat exceeds the overload protective warning threshold.

Cause	Troubleshooting	Solution
1. The motor cables and encoder cable are connected improperly or	Check the wiring among the servo drive, servo motor and the encoder	Connect the cables according to the wiring diagram.
		It is recommended to use the cables provided by Inovance.
in poor contact.	according to the correct wiring diagram.	When customized cables are used, prepare and connect the customized cables according to the wiring instructions.
2. The load is so heavy that the effective torque outputted by the	Confirm the overload characteristics of the servo drive or motor.	Use a servo drive of higher capacity and a matching servo motor.
motor keeps exceeding the rated torque.	Check whether the average load rate (H0b.12) keeps exceeding 100.0%.	Reduce the load and increase the acceleration/deceleration time.
3. Acceleration/Deceleration is too frequent or the load inertia is too large.	Check the mechanical inertia ratio or perform inertia auto-tuning. View the value of H08.15 (load moment of inertia ratio). Confirm the individual operation cycle when the servo motor operates cyclically.	Increase the acceleration/ deceleration time.
4. Gains are improper or the stiffness level is too high.	Check whether the motor vibrates and generates unusual noise during operation.	Readjust the gain.
5. The servo drive model or motor model is set improperly.	View the model of the motor equipped with a serial-type encoder in H00.05 and the servo drive model in H01.10.	Read the servo drive nameplate and set the servo drive model (H01.10) and motor model properly.

Cause	Troubleshooting	Solution
	Check the running reference and motor speed (H0b.00) through Inovance servo commissioning software or keypad:	
6. The motor is stalled due to mechanical factors, resulting in overload during operation.	 References in the position control mode: H0b.13 (Input position reference counter) References in the speed control mode: H0b.01 (Speed reference) References in the torque control mode: H0b.02 (Internal torque reference) Check whether the reference value is not 0 or is very large but the motor speed is 0 RPM in the corresponding mode. 	Rectify the mechanical-related problem.
7. The servo drive is faulty.	Power off and on the servo drive.	Replace the servo drive.

• E910.0: Control circuit overvoltage Description:

Overvoltage occurred on the control circuit of the drive.

Cause	Troubleshooting	Solution
Overvoltage occurred on the control circuit of the drive.	1 Measure whether the input voltage in the control circuit cable is within the following range:220 V servo drive:Value range: 220 V to 240 V Allowable deviation: -10% to +10% (198 V to 264 V)380V servo drive:Value range: 380V to 440VAllowable deviation: -10% to +10% (342 V to 484 V) 2 Check whether control circuit cables are connected properly and whether the voltage of control circuit cables (L1C, L2C) is within the specified range.	Re-connect or replace the cables.

• E920.0: Regenerative resistor overload Description:

The accumulative heat of the regenerative resistor exceeds the set value.

Cause	Troubleshooting	Solution
1. The external regenerative resistor is connected improperly or disconnected. Remove the external regenerative resistor and measure whether its resistance is " ∞ " (infinite). Measure whether the resistance between terminals P \oplus and C is " ∞ "	Replace with a new external regenerative resistor. After confirming the resistance measured is the same as the nominal value, connect it between terminals P⊕ and C. Connect the external regenerative	
	(infinite).	resistor between terminals $P \oplus$ and C with a proper cable.
 The jumper between terminals P⊕ and D is shorted or disconnected when the built-in regenerative resistor is used. 	Measure whether the resistance between terminals P⊕ and D is "∞" (infinite).	Ensure terminals P⊕ and D are jumpered.
3. H02.25 (Regenerative resistor	 Check the setpoint of H02.25. Measure the resistance of the 	Set H02.25 correctly.
type) is set improperly when an	external regenerative resistor	H02.25 = 1 (external, naturally ventilated)
external regenerative resistor is used.	 connected between P⊕ and C. Check whether the resistance measured is too large by comparing it with the value listed in Table "Specifications of the regenerative resistor". Check whether the value of H02.27 is larger than the resistance of the external regenerative resistor connected between terminals P⊕ and C. 	H02.25 = 2 (external, forced-air cooling)
4. The resistance of the external regenerative resistor is too large.		Select a proper braking resistor according to "2.2.1 Electrical Specifications" on page 33.
5. The setpoint of H02.27 (Resistance of external regenerative resistor) is higher than the resistance of the external regenerative resistor used.		Set H02.27 according to the resistance of the external regenerative resistor used.
6. The input voltage of the main circuit is beyond the specified range.	Check whether the input voltage of the main circuit cable on the drive side is within the following range:	
	• 220 V servo drive:• Value range: 220 V to 240 V• Allowable deviation: -10% to +10% (198 V to 264 V) • 380V servo drive:• Value range: 380V to 440V• Allowable deviation: -10% to +10% (342V to 484V)	Replace or adjust the power supply according to the specified range.

Cause	Troubleshooting	Solution
7. The load moment of inertia ratio is too large.	Perform moment of inertia auto- tuning according to section Inertia Auto-tuning or calculate the total mechanical inertia based on mechanical parameters. Check whether the actual load inertia ratio exceeds 30.	• Select an external regenerative resistor with large capacity and set H02.26 to a value consistent with the
8. The motor speed is excessively high and deceleration is not done within the set time. The motor is in the continuous deceleration status during cyclic operation.	View the motor speed curve in cycle running and check whether the motor is in deceleration status for a long period.	 actual power. Select a larger servo drive. Reduce the load if allowed. Increase the acceleration/ deceleration time if allowed. Increase the motor operation cycle if allowed.
9. The capacity of the servo drive or the regenerative resistor is insufficient.	View the motor's single cycle speed curve and calculate whether maximum braking energy can be absorbed completely.	
10. The servo drive is faulty.	-	Replace the servo drive.

• E922.0: Resistance of the external regenerative resistor too small Description:

The value of H02.27 (resistance of external regenerative resistor) is lower than the value of H02.21 (permissible min. resistance of external regenerative resistor).

Cause	Troubleshooting	Solution
When an external regenerative resistor is used (H02.25 = 1 or 2), the resistance of this resistor is lower than the minimum resistance allowed by the servo drive.	Measure whether the resistance of the external regenerative resistor between terminals P⊕ and C is lower than the value of H02.21 (Permissible minimum resistance of regenerative resistor).	 If yes, replace with an external regenerative resistor that matches the servo drive, then set H02.27 according to the resistance of the resistor used. Finally, connect the new resistor between P⊕ and C. If not, set H02.27 to a value consistent with the resistance of the external regenerative resistor used.

• E924.0: Regenerative transistor overtemperature Description:

The estimated temperature of the regenerative transistor is higher than H0A.18 (IGBT overtemperature threshold).

Cause	Troubleshooting	Solution
 The junction temperature of the braking is too high. The regenerative transistor will be turned off automatically after overload occurs. 	The regenerative transistor temperature exceeds the threshold defined by H0A.49.	Control the working conditions and usage of the regenerative transistor.

• E941.0: Parameter modifications activated at next power-on Description:

The parameters modified are those whose "Effective time" is "Next power-on".

Cause	Troubleshooting	Solution
The parameters modified are those whose "Effective time" is "Next power-on".	Check whether parameters you modified are those whose "Effective Time" is "Next power- on".	Power off and on the servo drive again.

• E942.0: Parameter saved frequently Description:

The number of parameters modified at a time exceeds 200.

Cause	Troubleshooting	Solution
Too many parameters are modified and saved to EEPROM (H0C.13 = 1) at a brief interval.	modified through the host	Check the operation mode. For parameters that need not be saved to EEPROM, set H0C.13 to 0.

• E950.0: Forward overtravel warning Description:

The logic of the DI terminal allocated with DI function 14 (FunIN.14: P-OT, positive limit switch) is effective.

Cause	Troubleshooting	Solution
1. The logic of the DI assigned with FunIN.14 (P-OT function 14, positive limit switch) is effective.	 Check whether a certain DI in group H03 is assigned with FunIN.14. Check whether the logic of DI corresponding to the bit of H0b.03 (Monitored DI status) is effective. 	Check the running mode. On the prerequisite of safety, send a reverse command or rotate the motor to deactivate the logic of the DI terminal allocated with DI function 14.
2. The servo position feedback reaches the positive software position limit.	Check whether the position feedback (H0b.17) is close to the value of H0A.41. Check whether the software position limit is set in H0A.40.	Check if the motor stroke needs to exceed the forward soft limit. If so, adjust the forward soft limit value; If not, adjust the motor stroke.

• E952.0: Reverse overtravel warning Description:

The logic of the DI terminal allocated with DI function 15 (FunIN.15: N-OT, negative limit switch) is effective.

Cause	Troubleshooting	Solution
1. The logic of the DI assigned with FunIN.15 is effective.	 Check whether a certain DI in group H03 is assigned with FunIN.15. Check whether the logic of DI corresponding to the bit of H0b.03 (Monitored DI status) is effective. 	Check the operation mode. On the prerequisite of ensuring safety, send a forward run command or rotate the motor to deactivate the logic of DI assigned with FunIN.15.
2. The servo position feedback reaches the negative software position limit.	Check whether the position feedback (H0b.17) is close to the value of H0A.43. Check whether the software position limit is set in H0A.40.	Check if the motor stroke needs to exceed the reverse soft limit. If so, adjust the reverse soft limit value; If not, adjust the motor stroke.

• E980.0: Encoder algorithm error Description: An encoder algorithm error occurs.

Cause	Troubleshooting	Solution
An encoder algorithm error occurs	1 Check the wiring 2 If the servo drive is powered off and on several times but the warning is still reported, it indicates that the encoder is faulty.	Replace the servo motor.

• E990.1: Pulse input overspeed warning Description:

Pulse input overspeed warning.

Cause	Troubleshooting	Solution
Pulse input overspeed warning	Check if the input pulse frequency is too high.	Reduce the frequency below 4M.

• EA41.0: Torque fluctuation compensation failure Description:

The torque compensation fails.

Cause	Troubleshooting	Solution
Auto-tuning torque fluctuation compensation failure	-	Turn off the torque fluctuation compensation function.

17.5 Description of Fault Codes

17.5.1 Solutions to Faults

• E101.0: Abnormal parameters in groups H02 and above Cause:

The total number of parameters changes, which generally occurs after software update.

Values of parameters in groups H02 and above exceed the limit, which generally occurs after software update.

Cause	Troubleshooting	Solution
	1. Check whether the control circuit (L1C, L2C) is in the process of power-off or instantaneous power failure occurs.	Restore system parameters to default settings (H02.31 = 1) and write parameters again.
1. The voltage of the control	2. Measure whether the input voltage of the control circuit cable on the non-drive side is within the following range:	
circuit power supply drops	220 V servo drive:	Increase the power supply capacity or replace with a power supply of
instantaneously.	Value range: 220 V to 240 V	higher capacity. Restore system
	Allowable deviation: –10% to +10% (198 V to 264 V)	parameters to default settings (H02.31 = 1), and write parameters
	380V servo drive:	again.
	Value range: 380V to 440V	
	Allowable deviation: –10% to +10% (342 V to 484 V)	
2. Instantaneous power failure occurs when saving parameters.	Check whether instantaneous power failure occurs when saving parameters.	Power on the system again, restore system parameters to default settings (H02.31 = 1), and write parameters again.
3. The number of write operations within a certain period of time exceeds the limit.	 Check whether instantaneous power failure occurs when saving parameters. Check whether parameters are updated frequently through the host controller. 	 Power on the system, restore default settings (H02-31 = 1) and write parameters again. Change the parameter writing method and write parameters again. If the servo drive is faulty, replace it.
4. The software is updated.	Check whether parameter values in group H02 and above exceed the upper/lower limit due to software update.	Reset the servo drive model and servo motor model, and restore system parameters to default settings (H02.31 = 1).
5. The servo drive is faulty.	If the fault persists though parameters are restored to default settings and the servo drive is powered off and on repeatedly, the servo drive is faulty.	Replace the servo drive.

• E101.1: parameter error in group H00/H01 Cause:

The total number of parameters changes, which generally occurs after software update.

Values of parameters in groups H00 or H01 exceed the limit, which generally occurs after software update.

Cause	Troubleshooting	Solution
The servo drive detects whether parameter values in groups H00 and H01 exceed the upper/lower limit during initialization upon power-on.	Check groups H00 and H01 to find the parameter whose value exceeds the limit. Confirm whether this parameter range is abnormal.	Set the servo drive model (H01.10) to a wrong value first and perform a power cycle, and then set the servo drive model to the correct value and perform a power cycle.

• E101.2: Address error in read/write operation after the number of parameters changes Cause:

Address error in read/write operation after the number of parameters changes.

Cause	Troubleshooting	Solution
Address error in read/write operation after the number of parameters changes.	Read H0b.90 and H0b.91 and obtain the abnormal parameter group number.	Rectify the wrong values value or restore the factory settings.

• E101.9: Parameter attribute initialization check error

Cause:

Parameter attribute initialization check error.

Cause	Troubleshooting	Solution
Parameter attribute initialization check error	Check that H0A.99 = AA5C.	If the problems persists after the servo drive is powered off and on several times, replace the servo drive.

• E102.0: FPGA communication establishment error

Cause:

The communication between MCU and FPGA cannot be established.

Cause	Troubleshooting	Solution
The communication between MCU and FPGA cannot be established.	The fault persists after the servo drive is powered off and on repeatedly.	Replace the servo drive.

• E102.1: FPGA initialization start error

Cause:

FPGA failed.

Cause	Troubleshooting	Solution
FPGA cannot start.	The fault persists after the servo drive is powered off and on repeatedly.	Replace the servo drive.

• E102.8: FPGA and MCU version mismatch

Cause:

FPGA and MCU version mismatch.

Cause	Troubleshooting	Solution
FPGA and MCU version mismatch	 Check whether the MCU version (H01.00) is 9xx.x (the fourth digit displayed on the keypad is 9). Check whether the FPGA version (H01.01) is 9xx.x (the fourth digit displayed on the keypad is 9). 	Contact Inovance for technical support. Update the FPGA or MCU software.

• E104.1: MCU running timeout (MCU break down)

Cause:

MCU Access timeout (MCU break down).

Cause	Troubleshooting	Solution
1. The MCU failed.	The fault persists after the servo	
2. Real-time communication error between MCU and FPGA.	drive is powered off and on repeatedly.	Replace the servo drive.

• E104.2: FPGA running timeout (FPGA break down)

Cause:

FPGA running timeout (FPGA break down).

Cause	Troubleshooting	Solution
1.FPGA failure	The fault persists after the servo	
2. FPGA and MCU communication handshaking error	drive is powered off and on repeatedly.	Replace the servo drive.

• E104.4: MCU command update timeout

Cause:

Take the moment when interrupt starts as the starting time, if the time when commands are written to MCU is larger than the time when position and speed regulators are started by FPGA, a warning will be reported.

Cause	Troubleshooting	Solution
The system reports that the encoder communication time is set improperly or the command calculation time is too long.	The fault persists after the servo drive is powered off and on repeatedly.	1 Hide unnecessary functions. 2 Replace the servo drive.

• E120.0: Unknown encoder model

Cause:

The servo drive detects the encoder model during initialization upon power-on. If the encoder model does not comply with the requirement, E120.0 occurs.

Cause	Troubleshooting	Solution
1. The product (motor or servo drive) code does not exist.	Read the nameplates of the servo drive and motor to check whether SV630P series servo drive and 18- bit servo motor are used. Meanwhile, check whether H00.00 (motor code) is set to 14101.	If the motor code is unknown, set H00.00 to 14101 when the SV630P series servo drive and 18-bit servo motor are used.
	Check the servo drive code (H01.02) to see whether this servo drive code exists.	If the drive code is absent, set the servo drive model correctly according to the nameplate.
2. The power rating of the motor does not match that of the servo drive.	Check whether the servo drive code (H01.02) matches the serial- type motor code (H00.05).	Replace the unmatched products.
The encoder is not matched.	Check whether the encoder model is correct.	Rectify the motor code.

• E120.1: Unknown motor model

Cause:

The servo drive detects the motor model defined by H00.00 during initialization upon power-on. If the motor model does not exist, E120.1 occurs.

Cause	Troubleshooting	Solution
The motor model (H00.00) is set improperly.	Check whether the value of H00.00 matches the used motor.	Rectify the value of H00.00.

• E120.2: Unknown drive model

Cause:

The servo drive detects the servo drive model defined by H01.10 during initialization upon poweron. If the servo drive model does not exist, E120.2 occurs.

Cause	Troubleshooting	Solution
The servo drive model (H01.10) is set improperly.	Check the value of H01.10.	Disable servo drive model auto detection and set H01.10 to a proper value manually

• E120.5: Motor and drive current mismatch

Cause:

The rated output of the servo drive is far higher than the rated current of the motor. You must use a servo drive of lower rated output or a motor with higher rated current.

Cause	Troubleshooting	Solution
The internal scale value is abnormal.	Check whether the servo drive model is correct. If the set current sampling coefficient is too large, calculation overflow will occur.	Replace the servo drive.

• E120.6: FPGA and motor model mismatch

Cause:

- The motor model is set improperly, causing mismatch and malfunction of the servo drive.
- The motor model is set properly, but the motor encoder is not supported by the servo drive.

Cause	Troubleshooting	Solution
FPGA software version and H00.00 mismatch	Check whether the FPGA software version (H01.01) supports the motor model set by H00.00.	Update the FPGA software to support the motor model motor.

• E120.7: Model check error

Cause:

The servo drive model parameter cannot be identified.

Cause	Troubleshooting	Solution
Model parameter CRC check failed	Check that the model parameter is present.	Write the model parameter again.

• E120.8: Junction temperature parameter check error

Cause:

The junction temperature parameter is identified incorrectly.

Cause	Troubleshooting	Solution
Junction temperature parameter CRC check failed	Check that the junction temperature parameter is present	Rewrite the junction temperature parameter.

• E122.1: Different DIs assigned with the same function Cause:

The same function is assigned to different DIs.

The DI function No. exceeds the maximum number allowed for DI functions.

Cause	Troubleshooting	Solution
1. Multiple DIs are assigned with the same function.	Check whether DI function numbers set in group H03 are repetitive.	Change any repetitive number.
2. The DI function No. exceeds the maximum number allowed for DI functions	Check whether the MCU program is updated.	Restore system parameters to default values (H02.31 = 1) and restart the servo drive.

• E122.2: Different DOs assigned with the same function Cause:

The DO function No. exceeds the maximum number allowed for DO functions.

Cause	Troubleshooting	Solution
The DO function No. exceeds the	Check the DO function numbers	
maximum number allowed for DO	defined by H04.00, H04.02 and	Set the correct DO function No.
functions	H04.04.	

• E122.3: Upper limit in the rotation mode invalid

Cause:

The upper limit (reference range) of the mechanical single-turn position exceeds 2³¹ in the absolute position rotation mode.

Cause	Troubleshooting	Solution
The upper limit of the mechanical single-turn position exceeds 231.	Check the setting of the mechanical gear ratio, the upper limit of mechanical single-turn position and the electronic gear ratio when the servo drive runs in the absolute rotation mode (H02.01 = 2).	Reset the mechanical gear ratio, the upper limit of mechanical single-turn position and the electronic gear ratio to ensure the upper limit of the mechanical single-turn position (reference range) does not exceed 2 ³¹ .

• E122.4: Different VDIs assigned with the same function Cause:

The same function is assigned to different VDIs. The VDI function No. exceeds the maximum number allowed for VDI functions.

Cause	Troubleshooting	Solution
1. Two or more VDIs are assigned with the same function No.	Check whether DI function numbers set in group H17 are repetitive.	Change any repetitive number.
2. The VDI function No. exceeds the maximum number allowed for VDI functions.	Check whether the MCU program is updated.	Restore system parameters to default values (H02.31 = 1) and restart the servo drive.

• E122.5: DI and VDI assigned with the same function

Cause:

The same function is assigned to different VDIs. The VDI function No. exceeds the maximum number allowed for VDI functions.

Cause	Troubleshooting	Solution
1. Two or more DIs and VDIs are assigned with the same function No.	Check whether DI function numbers set in groups H03 and H17 are repetitive.	Assign different DI function numbers to parameters in groups H03 or H17, and then restart the control circuit to activate the assignment, or switch off the S-ON signal and send a "RESET" signal to activate the assignment.

• E136.0: Encoder ROM motor parameter check error

Cause:

When reading parameters in the encoder ROM, the servo drive detects that no parameters are saved there or parameter values are inconsistent with the setpoints.

Cause	Troubleshooting	Solution
1. The servo Servo drive model does not match the motor model.	View the servo drive and servo motor nameplates to check whether the SV630P series servo drive and servo motor are used.	Replace the servo drive and motor.
2. A parameter check error occurs or no parameter is saved in the ROM of the serial incremental encoder.	 Check whether the encoder cable provided by Inovance is used. For cable specifications, see "Matching Cables". The cable must be connected securely without scratching, breaking or poor contact. Measure signals PS+, PS-, +5V and GND on both ends of the encoder cable and observe whether signals at both ends are consistent. For signal assignment, see Chapter "Wiring" in SV680P Series Servo Drive Hardware Guide. 	1 Use the encoder cable provided by Inovance. Ensure motor terminals are connected securely and servo drive screws are tightened properly. Use a new encoder cable if necessary. 2 Route encoder cables and power cables (R/S/T, U/V/W) through different routes.
3. The servo drive is faulty.	The fault persists after the servo drive is restarted.	Replace the servo drive.

- E136.1: Encoder ROM motor parameter read error Cause:
 - The encoder cable is not connected properly.
 - A communication error occurs on the encoder due to interference.

Cause	Troubleshooting	Solution
1. The encoder cable connections are incorrect or loosened.	Check the encoder cable connection. Check whether ambient vibration is too large, which loosens the encoder cable and even damages the encoder.	Connect the cables again according to the correct wiring diagram. Connect the cables again and ensure encoder terminals are connected securely.
2. The servo drive is faulty.	The fault persists after the servo drive is restarted.	Replace the servo drive.

• E150.0: STO safety state applied

Cause:

The STO input protection applies (safety state).

Cause	Troubleshooting	Solution
Two 24 V inputs are disconnected	1. Check whether the STO function is activated.	There is no need to take any corrective actions. After the STO terminal is back to normal, clear the fault using the fault reset function.
simultaneously, triggering the STO function.	2. Check whether the STO power supply is normal.	Check whether the 24 V power supply for the STO is stable. Tighten the cables that are loose or disconnected.
	3. The fault persists after preceding causes are rectified.	Replace the servo drive.

• E150.1: STO input state abnormal

Cause:

The single-channel input of STO is ineffective.

Cause	Troubleshooting	Solution
1. The STO power supply is abnormal.	Check whether the STO power supply is normal.	Check whether the 24 V power supply for the STO is stable. Tighten the cables that are loose or disconnected.
2. The STO input resistor is abnormal.	After STO is triggered, only one STO signal is sent to MCU after the 24 V power supply is cut off due to input resistor drift.	Replace the servo drive.
3. STO is ineffective	The fault persists after preceding causes are rectified.	Replace the servo drive.

• E150.2: Buffer 5 V voltage detection error

Cause:

The MCU monitors the 5 V power supply of the PWM Buffer to detect whether overvoltage or undervoltage occurs. If the voltage is abnormal, E150.2 occurs.

Cause	Troubleshooting	Solution
The 5 V voltage supplied to the STO Buffer is abnormal due to undervoltage or overvoltage.	Check whether the fault can be removed by a restart. If not, the 5V voltage supplied to the Buffer is abnormal.	Replace the servo drive.

• E150.3: STO input circuit hardware diagnosis failure

Cause:

Short circuit occurs on the optocoupler of the upstream hardware circuit of STO.

Cause	Troubleshooting	Solution
The upstream optocoupler of STO1 or STO2 failed.	The fault persists when the 24 V power supply is powered off and on again. The drive displays E150.3.	Replace the servo drive.

• E150.4: PWM buffer hardware diagnosis failure Cause:

An error occurs on the PWM Buffer integrated circuit during initialization detection upon power-on (the PWM signal cannot be blocked).

Cause	Troubleshooting	Solution
STO Buffer power-on test error	The fault persists when the 24 V power supply is powered off and on again. The drive displays E150.4.	Replace the servo drive.

• E201.0: Phase-P overcurrent

Cause:

An excessively high current flows through the positive pole of the DC-AC circuit.

Cause	Troubleshooting	Solution
1. Gains are set improperly, leading to motor oscillation.	Check whether vibration or sharp noise occurs during start and operation of the motor, or view "Current feedback" in the software tool.	 Motor parameters are set improperly, modify motor parameter values. Current loop parameters are set improperly, modify current loop parameter values. Speed loop parameters are set improperly, leading to motor oscillation. Servo drive operates improperly. Replace it.
2. The encoder cable is aged or corroded, or connected incorrectly or loosely.	1 Check whether the encoder cable provided by Inovance is used and whether the cable is aging, corroded, or connected loosely. 2 Switch off the S-ON signal and rotate the motor shaft manually. Check whether the value of H0b.17 (Electrical angle) changes as motor shaft rotates.	Re-solder, tighten or replace the encoder cable.
3. Overcurrent occurs on the regenerative resistor.	Check whether resistance of the external regenerative resistor is too small or the regenerative resistor is short-circuited (between terminals P, C).	Use a regenerative resistor of matching resistance. Perform wiring again.
4. The servo drive is faulty.	Disconnect the motor cable but the fault persists after the servo drive is powered off and on again.	Replace the servo drive.

• E201.1: Phase-U overcurrent

Cause:

A current higher than the threshold is collected in the phase-U current.

Cause	Troubleshooting	Solution
1. Motor cables are in poor contact.	Check whether the servo drive power cables and motor cables on the U, V, and W sides of the servo drive are loose.	Tighten the cables that are loose or disconnected.
2. The motor cables are grounded.	After confirming the servo drive power cables and motor cables are connected properly, measure whether the insulation resistance between the servo drive U/V/W side and the PE cable is at MΩ level.	Replace the motor in case of poor insulation.

Cause	Troubleshooting	Solution
3. U/V/W cables of the motor are short-circuited.	Disconnect the motor cables and check whether short circuit occurs among U, V, and W phases and whether burrs exist in the wiring.	Connect the motor cables correctly.
4. The motor is damaged.	1 Disconnect motor cables and check whether short circuit occurs among motor U/V/W cables and whether burrs exist in the wiring. 2 Disconnect the motor cables and measure whether the resistance among UVW phases of motor cables is balanced.	1 Connect the motor cables correctly. 2 Replace the motor if the resistance is unbalanced.

• E201.2: Phase-V overcurrent

Cause:

A current higher than the threshold is collected in the phase-V current.

Cause	Troubleshooting	Solution
1. Motor cables are in poor contact.	Check whether the servo drive power cables and motor cables on the U, V, and W sides of the servo drive are loose.	Tighten the cables that are loose or disconnected.
2. The motor cables are grounded.	After confirming the servo drive power cables and motor cables are connected properly, measure whether the insulation resistance between the servo drive U/V/W side and the PE cable is at MΩ level.	Replace the motor in case of poor insulation.
3. U/V/W cables of the motor are short-circuited.	Disconnect the motor cables and check whether short circuit occurs among U, V, and W phases and whether burrs exist in the wiring.	Connect the motor cables correctly.
4. The motor is damaged.	1 Disconnect motor cables and check whether short circuit occurs among motor U/V/W cables and whether burrs exist in the wiring. 2 Disconnect the motor cables and measure whether the resistance among UVW phases of motor cables is balanced.	1 Connect the motor cables correctly. 2 Replace the motor if the resistance is unbalanced.

• E201.4: Phase-N overcurrent Cause:

An excessively high current flows through the negative pole of the DC-AC circuit.

Cause	Troubleshooting	Solution
1. Gains are set improperly, leading to motor oscillation.	Check whether vibration or sharp noise occurs during start and operation of the motor, or view "Current feedback" in the software tool.	Adjust the gains.
2. The encoder cable is aged or corroded, or connected incorrectly or loosely.	Check whether the encoder cable provided by Inovance is used and whether the cable is aging, corroded, or connected loosely.	Re-solder, tighten or replace the encoder cable.
3. Overcurrent occurs on the regenerative resistor.	Check whether resistance of the external regenerative resistor is too small or the regenerative resistor is short-circuited (between terminals $P\oplus$ and C).	Replace with a regenerative resistor of matching resistance. Perform wiring again.
4. Overcurrent is caused by the superposition of the braking current and phase current.	Check if the drive accelerates abruptly during braking. Check if the voltage feedback exceeds the release threshold through the Inovance drive commissioning platform, and if the torque command increases abruptly.	Increase the acceleration/ deceleration time.
5. The servo drive is faulty.	Switch off the S-ON signal and rotate the motor shaft manually. Check whether the value of H0b.17 (Electrical angle) changes as motor shaft rotates. Disconnect the motor cable but the fault persists after the servo drive is powered off and on again.	Replace the servo drive.

• E208.2: Encoder communication timeout Cause:

The servo drive fails to receive the data fed back by the encoder in three consecutive cycles.

Cause	Troubleshooting	Solution
The servo drive fails to receive the data fed back by the encoder in three consecutive cycles.	 Check bit12 of H0b.30. The encoder cable is connected improperly. The encoder cable is connected loosely. The encoder cable is too long. The encoder communication is being disturbed. The encoder is faulty. 	 Check whether the motor model is correct. Check whether the encoder cable is proper. Check whether the encoder version (H00.04) is set properly. The servo drive operates improperly. Replace it.

• E208.4: FPGA current loop operation timeout

Cause:

The operating time of the current loop exceeds the interval threshold.

Cause	Troubleshooting	Solution
FPGA operation timeout	Internal fault code H0b.45 = 4208: Current loop operation timeout	Disable some unnecessary functions to reduce the operating load of the current loop.

• E210.0: Output short-circuited to ground Cause:

An abnormal motor phase current or bus voltage is detected during power-on self-testing.

- The DC bus voltage exceeds the braking threshold.
- The U-phase current of SIZE C/D/E is greater than the setpoint.
- Overcurrent occurs on phase-P and phase-N of servo drives in SIZE A and B.

Cause	Troubleshooting	Solution
1. The servo drive power cables (U/ V/W) are short-circuited to ground.	Disconnect the motor cables and measure whether the servo drive power cables (U/V/W) are short- circuited to ground (PE).	Connect the cables again or replace the servo drive power cables.
2. The motor is short-circuited to ground.	After confirming the servo drive power cables and motor cables are connected properly, measure whether the insulation resistance between the servo drive U/V/W side and the PE cable is at MΩ level.	Replace the motor.
3. The servo drive is faulty.	Disconnect the power cables from the servo drive, but the fault persists after the servo drive is powered off and on repeatedly.	Replace the servo drive.
4. The motor speed is too high during phase-to-ground detection.	Check whether the motor is in the generating status during power-on.	Reduce the motor speed.

• E234.0: Runaway

Cause:

The torque reference direction is in reverse to the speed feedback direction in the torque control mode.

The speed feedback direction is in reverse to the speed reference direction in the position or speed control mode.

Cause	Troubleshooting	Solution
1. The phase sequence of the U, V, and W cables is incorrect.	Check whether the servo drive power cables are connected in the correct sequence at both ends.	Connect the U, V, and W cables according to correct phase sequence.
The interference signal causes an error in the initial phase detection of the motor rotor upon power-on.	The U/V/W phase sequence is correct, but E234.0 occurs when the servo drive is enabled.	Power off and on the servo drive again.
3. The encoder model is wrong or the encoder is wired improperly.	View the servo drive and servo motor nameplates to check whether the devices used are Inovance SV630P series servo drive and 18-bit servo motor.	Replace with a mutually-matching servo drive and servo motor. For use of of SV630P series servo drive and 18-bit servo motor, set H00.00 to 14101. Check the motor model, encoder type, and encoder cable connection again.

Cause	Troubleshooting	Solution
4. The encoder cable is aged or corroded, or connected incorrectly or loosely.	1 Check whether the encoder cable provided by Inovance is used and whether the cable is aging, corroded, or connected loosely. 2 Switch off the S-ON signal and rotate the motor shaft manually. Check whether the value of H0b.10 (Electrical angle) changes as motor shaft rotates.	Re-solder, tighten or replace the encoder cable.
5. Improper parameter settings lead to excessive vibration.	The stiffness level is set to an excessively high value, leading to excessive vibration.	Set a proper stiffness level to avoid excessive vibration.
6. The gravity load in vertical axis applications is too large.	Check whether the load of the vertical shaft is too large. Adjust brake parameters H02.09H02.12 and check whether the fault is cleared.	Reduce the load of the vertical axis, increase the stiffness level, or hide this fault without affecting the safety performance and normal use.

• E320.0: Regenerative resistor overload Cause:

The regenerative resistor is overloaded.

Cause	Troubleshooting	Solution
The accumulative heat of the regenerative resistor exceeds the maximum thermal capacity of the regenerative resistor.	Check whether the value of H0b.67 exceeds 100%.	 Check if large regenerative current is present due to high bus voltage. Ensure that the motor cannot be driven reversely. Replace the servo drive.

In applications where the motor drives a vertical axis or is driven by the load, set H0A.12 to 0 to hide the runaway fault.

• E400.0: Main circuit overvoltage Cause:

The DC bus voltage between $P\oplus$ and $N\Theta$ exceeds the overvoltage threshold.

220 V servo drive: Normal value: 310 V Overvoltage threshold: 420 V

380 V servo drive: Normal value: 540 V Undervoltage threshold: 760 V

Cause	Troubleshooting	Solution
1. The voltage input to the main circuit is too high.	Check the power input specifications of the servo drive and measure whether the voltage input to main circuit cables (R/S/T) on the drive side is within the following range: 220 V servo drive: Effective value: 220 V to 240 V Allowable deviation: -10% to +10% (198 V to 264 V) 380V servo drive: Value range: 380 V to 440 V Allowable deviation: -10% to +10% (342 V to 484 V)	Replace or adjust the power supply according to the specified range.
The power supply is unstable or affected by lightning.	Check whether the power supply is unstable, affected by lightning, or complies with the preceding range.	Connect a surge protection device (SPD) and switch on the power supplies of the control circuit and the main circuit. If the fault persists, replace the servo drive.
3. The regenerative resistor fails.	If the built-in regenerative resistor is used (H02.25 = 0), check whether terminals $P \oplus$ and D are jumpered. If yes, measure the resistance between terminals C and D. If an external regenerative resistor is used (H02.25 = 1 or 2), measure the resistance of the external regenerative resistor connected between terminals $P \oplus$ and C. For the specification of the braking resistor, see "2.2.1 Electrical Specifications" on page 33.	1 If the resistance is "∞" (infinite), the regenerative resistor is disconnected internally. 2 If a built-in regenerative resistor is used, change to use an external regenerative resistor (H02.25 = 1 or 2) and remove the jumper between terminals P ⊕ and D. Select an external regenerative resistor of the same resistance and equal or higher power than the built-in one. 3 If an external regenerative resistor is used, replace with a new one and connect it between terminals P⊕ and C. 4 Set H02.26 (Power of external regenerative resistor) and H02.27 (Resistance of external regenerative resistor) to values consistent with the specifications of the external regenerative resistor used.
4. The resistance of the external regenerative resistor is too large, resulting in insufficient energy absorption during braking.	Measure the resistance of the external regenerative resistor connected between terminals P⊕ and C, and compare the measured value with the recommended value.	 Replace with an external regenerative resistor of recommended resistance, and connect it between terminals P⊕ and C. Set H02.26 (Power of external regenerative resistor) and H02.27 (Resistance of external regenerative resistor) to values consistent with the specifications of the external regenerative resistor used.

Cause	Troubleshooting	Solution
5. The motor is in abrupt acceleration/deceleration status and the maximum braking energy exceeds the energy absorption value.	Confirm the acceleration/ deceleration time during operation and measure whether the DC bus voltage between terminals P⊕ and N⊖ exceeds the overvoltage threshold during deceleration.	After confirming the input voltage of the main circuit is within the specified range, increase the acceleration/deceleration time if the operating conditions allow.
6. The bus voltage sampling value deviates greatly from the measured value.	Check whether H0b.26 (Bus voltage) is within the following range: 220 V servo drive: H0b.26 > 420 V 380V servo drive: H0b.26 > 760V Measure whether the DC bus voltage detected between terminals P \oplus and N \ominus is lower than the value of H0b.26.	Contact Inovance for technical support.
7. The servo drive is faulty.	The fault persists after the main circuit is powered off and on repeatedly.	Replace the servo drive.

• E410.0: Main circuit undervoltage Cause:

The DC bus voltage between terminals $P \oplus$ and $N \ominus$ is lower than the undervoltage threshold.

220 V servo drive: Normal value: 310 V Undervoltage threshold: 200 V (180 V for S5R5 models)

380 V servo drive: Normal value: 540 V Undervoltage threshold: 380 V

Cause	Troubleshooting	Solution
The power supply of the main circuit is unstable or power failure occurs.	Check the power input specifications of the servo drive and measure whether the input	
	voltage at the power supply side of the main circuit cables and R/S/T on the drive side is within the following range:	
Instantaneous power failure	220 V servo drive:	
occurs.	Value range: 220 V to 240 V	Increase the capacity of the power
	Allowable deviation: –10% to +10% (198 V to 264 V)	supply.
	Measure the voltages of all the three phases.	
The power voltage drops during running.	Monitor the power supply voltage and check whether the main circuit power supply is applied to other devices, resulting in insufficient power capacity and voltage drop.	
4. A three-phase servo drive is	Check whether the main circuit is	Replace the cables and wire the
connected to a single-phase power supply, leading to phase loss.	wired correctly and whether phase loss detection (H0A.00) is hidden.	power cables correctly
	Check whether H0b.26 (Bus voltage) is within the following range:	Three-phase: R, S, T
T The serve drive is faulty	220 V servo drive: H0b.26 < 200 V	Replace the servo drive.
5. The servo drive is faulty.	380V servo drive: H0b.26 < 380V	Replace the servo unve.
	The fault persists after the main circuit is powered off and on repeatedly.	

• E410.1: Main circuit de-energized Cause:

Phase loss occurs on the three-phase servo drive.

Cause	Troubleshooting	Solution
	Check the power input specifications of the servo drive and measure whether the input voltage at the power supply side of the main circuit cables and R/S/T on the drive side is within the following range: 220 V servo drive:	
	Value range: 220 V to 240 V	Increase the capacity of the power
	Allowable deviation: –10% to +10% (198 V to 264 V)	supply.
	Measure the voltages of all the three phases.	
The power supply is disconnected during operation.	Monitor the power supply voltage and check whether the main circuit power supply is applied to other devices, resulting in insufficient power capacity and voltage drop.	
	Check whether the main circuit is wired correctly and whether phase loss detection (H0A.00) is hidden.	Replace the cables and wire the power cables correctly
		Three-phase: R, S, T
	Check whether H0b.26 (Bus voltage) is within the following range:	
	220 V servo drive: H0b.26 < 200 V	Replace the servo drive.
	380V servo drive: H0b.26 < 380V	
	The fault persists after the main circuit is powered off and on repeatedly.	

• E420.0: Main circuit phase loss Cause:

Main circuit PL signal detection error.

Cause	Troubleshooting	Solution
1. The three-phase input cables are connected improperly.	Check whether the cables between the power supply side and R/S/T terminals of the servo drive are connected properly.	Replace the cables and wire the power cables correctly
2. A single-phase power supply is used for a three-phase servo drive.	Check the specifications of the power supply and measure whether the voltage input to the main circuit is within the following range:	Servo drives of 0.75 kW (H01.02 = 5) can be supplied by single-phase
	220 V servo drive: Effective value: 220 V to 240 V	power supplies.
3. The three-phase power supply is unbalanced or the voltages of the three phases are too low.	Allowable deviation: -10% to +10% (198 V to 264 V)	If the input voltage is within the specified range, set H0A.00 to 2 (Inhibit power input phase loss fault and warning). If it exceeds the specified range, replace or adjust the power supply according to the specified range.
	380V servo drive: Value range: 380 V to 440 V	
	Allowable deviation: –10% to +10% (342V to 484V)	
	Measure the voltages of all the three phases.	
4. The servo drive is faulty.	The fault persists after the main circuit (R/S/T) is powered off and on repeatedly.	Replace the servo drive.

• E500.0: motor overspeed Cause:

The actual speed of the motor exceeds the overspeed threshold.

Cause	Troubleshooting	Solution
1. The phase sequence of motor cables is wrong.	Check whether the servo drive power cables are connected in the correct sequence at both ends.	Connect the U, V, and W cables according to correct phase sequence.
2. H0A.08 is set improperly.	Check whether the overspeed threshold is lower than the maximum speed. Overspeed threshold = 1.2 x Maximum motor speed (H0A.08 = 0) Overspeed threshold = H0A.08 (when H0A.08 \neq 0, and H0A-08 < 1.2 x maximum motor speed).	Re-set the overspeed threshold according to the mechanical requirements.

Cause	Troubleshooting	Solution
The input reference exceeds the overspeed threshold.	Check whether the motor speed corresponding to the input reference exceeds the overspeed threshold. • Position control mode:• In CSP mode, check the gear ratio 6091.01h/6091.02h to determine the position reference increment for an individual synchronization period and convert it to the speed information. • In PP mode, check the gear ratio 6091.01h/6091.02h and determine the 6081h (Profile velocity).• In HM mode, check the gear ratio 6091.01h/ 6091.02h, and determine 6099.01h and 6099.02h. • Speed control mode:• Check the gear ratio (6091h), target velocity (60FFh), speed limits (H06.06 to H06.09), and the maximum profile velocity (607Fh). • Torque control mode:• View the speed limit defined by H07.17 and check the corresponding speed limit.	 Position control mode:. CSP: Decrease the position reference increment per synchronization period. The host controller should cover the position ramp when generating references PP: Decrease the value 6081h or increase the acceleration/ deceleration ramp (6083h, 6084h) HM: Decrease 6099.01h and 6099.02h or increase the acceleration/deceleration ramp (609Ah) Decrease the gear ratio according to actual conditions. Speed mode:. Decrease the target velocity, speed limit, and gear ratio. In PV mode, increase the speed ramp (6083h and 6084h). In CSV mode, the host controller should cover the speed ramp. Torque control mode:. Set the speed limit to a value lower than the overspeed threshold.
The motor speed overshoots.	Check whether the speed feedback exceeds the overspeed threshold by using Inovance servo commissioning software.	Adjust the gain or mechanical running conditions.
5. The servo drive is faulty.	The fault persists after the servo drive is powered off and on again.	Replace the servo drive.

• E500.1: Speed feedback overflow Cause:

The FPGA speed measurement overflows.

Cause	Troubleshooting	Solution
1. FPGA internal speed overflows.	Check whether the servo drive power cables are connected in the correct sequence at both ends.	Connect the U, V, and W cables according to correct phase sequence.
2. The motor speed overshoots.	Check whether the speed feedback exceeds the overspeed threshold by using Inovance servo commissioning software.	Adjust the gain or mechanical running conditions.
3. FPGA speed measurement is abnormal.	Check whether bit9 of H0b.30 is 1.	 The speed feedback is abnormal, check whether the encoder version (H00.04) is set properly. The encoder cable is abnormal, replace the encoder cable. The encoder cable is being disturbed. Re-connect the grounding cable and the shielded cable or install a magnetic ring.

• E500.2: FPGA position feedback pulse overspeed Cause:

The FPGA speed feedback overflows.

Cause	Troubleshooting	Solution
Communication error occurred between boards of the drive.	The alarm persists in spite of repeated power off and on.	Replace the servo drive.

• E602.2: U/V/W phase sequence reversed

Cause:

A wrong U/V/W phase sequence is detected during angle auto-tuning.

Cause	Troubleshooting	Solution
Incorrect UVW is detected during angle auto-tuning.	Check whether U/V/W phases are wired correctly.	Exchange cables of any two phases among U/V/W and perform auto- tuning again.

• E605.0: Motor speed too high upon S-ON

Cause:

The motor speed exceeds the rated speed when the servo drive in size A/B is switched on.

Cause	Troubleshooting	Solution
The motor speed exceeds the motor rated speed when the servo drive is switched on.	Check if the drive is enabled when the motor has been driven.	Switch on the drive when the motor is standstill.

• E620.0: Motor overload

Cause:

The accumulative heat of the motor reaches the fault threshold.

Cause	Troubleshooting	Solution
		Connect the cables according to the wiring diagram.
1. The motor and encoder cables are connected incorrectly or in	Check the wiring between the servo drive, servo motor and the	It is recommended to use the cables provided by Inovance.
poor contact.	encoder according to the correct "wiring diagram".	When customized cables are used, prepare and connect the customized cables according to the wiring instructions.
2. The load is so heavy that the effective torque outputted by the motor keeps exceeding the rated torque.	Check the overload characteristics of the servo drive or servo motor. Check whether the average load rate (H0b.12) of the servo drive keeps exceeding 100.0%.	Use a servo drive of higher capacity and a matching servo motor, or reduce the load and increase the acceleration/deceleration time.
3. Acceleration/deceleration is too frequent or the load inertia is too large.	Calculate the mechanical inertia ratio or perform inertia auto- tuning. Check the value of H08.00 (Load inertia ratio).	Increase the acceleration/ deceleration time during single- cycle running.
laige.	Confirm the individual operation cycle when the servo motor operates cyclically.	cycle running.
4. The gain adjustment is improper or the stiffness is too high.	Check whether the motor vibrates and generates unusual noise during operation.	Readjust the gain.
5. The servo drive model or motor model is set improperly.	Check the motor model (H00.05) and drive model (H01.10) stored in the bus encoder.	Read the servo drive nameplate and set the servo drive model (H01.10) and motor model properly.
	Check the reference and motor speed (H0b.00) through the software tool or keypad.	
6. The motor is stalled due to mechanical factors, resulting in overload during operation.	 References in the position control mode: H0b.13 (Input position reference counter) References in the speed control mode: H0b.01 (Speed reference) References in the torque control mode: H0b.02 (Internal torque reference) Check whether the reference value is not 0 but the motor speed is 0 rpm in the corresponding mode. 	Rectify the mechanical-related problem.
7. The servo drive is faulty.	The fault persists after the servo drive is powered off and on again.	Replace the servo drive.

Note

When E620.0 occurs, stop the servo drive for at least 30s before further operations.

• E625.0: Brake abnormality enabled Cause:

The brake fails when it is released.

	Cause	Troubleshooting	Solution
т	he brake fails when it is released.	Check if the motor shaft end is held by the brake when the brake release signal is active.	1 Check the brake wiring. 2 Replace the Brake motor.

• E626.0: Brake abnormality enabled

Cause:

The brake fails when it is released.

Cause	Troubleshooting	Solution
The brake fails when it closes.	Check if the motor shaft end is not held tightly by the brake when the braking signal is active.	1 Check the brake wiring. 2 Replace the Brake motor.

• E630.0: motor rotor locked over-temperature

Cause:

The actual motor speed is lower than 10rpm but the torque reference reaches the limit, and such status lasts for the time defined by H0A.32.

Cause	Troubleshooting	Solution
1. U/V/W output phase loss, wire breakage or incorrect phase sequence occurs on the servo drive.	Perform motor trial run without load and check cable connections and the phase sequence.	Re-connect the cables according to the wiring diagram or replace the cables.
2. The motor parameters (especially the number of pole pairs) are set improperly and motor angle auto-tuning is not performed.	View parameters in group H00 to check whether the number of pole pairs are set properly. Perform angle auto-tuning on the motor several times and check whether the value of H00.28 is consistent during angle auto- tuning.	Modify the motor parameter values.
3. The communication commands are being disturbed.	Check whether jitter occurs on the commands sent from the host controller and whether EtherCAT communication is being disturbed.	Check whether the communication line between the host controller and the servo drive is being disturbed.
4. The motor is stalled due to mechanical factors.	Check the reference and motor speed (H0b.00) through the software tool or keypad. • References in the position control mode: H0b.13 (Input position reference counter) • References in the speed control mode: H0b.01 (Speed reference) • References in the torque control mode: H0b.02 (Internal torque reference) Check whether the reference value is not 0 but the motor speed is 0 rpm in the corresponding mode. Check the current feedback (torque reference) waveform.	Check whether any mechanical part gets stuck or eccentric.

Note

When E620.0 occurs, stop the servo drive for at least 30s before further operations.

• E640.0: IGBT over-temperature

Cause:

The IGBT junction temperature reaches the fault threshold defined by H0A.18.

Cause	Troubleshooting	Solution
1. The ambient temperature is too high.	Measure the ambient temperature.	Improve the cooling conditions of the servo drive to lower down the ambient temperature.
2. The servo drive is restarted repeatedly to reset the overload fault.	Check the fault records (set H0b.33 and check H0b.34) for any overload fault/warning (E620.0, E630.0, E650.0, E909.0, E920.0, E922.0).	Change the fault reset method. After overload occurs, wait for 30s before reset. Increase the capacities of the servo drive and servo motor. Increase the acceleration/deceleration time and reduce the load.
3. The fan is damaged.	Check whether the fan works properly during operation.	Replace the servo drive.
4. The servo drive is installed in a wrong direction and the clearance between servo drives is improper.	Check whether the servo drive is installed properly.	Install the servo drive according to the installation requirements.
5. The servo drive is faulty.	The fault persists even though the servo drive is restarted five minutes after power-off.	Replace the servo drive.

Note

When E620.0 occurs, stop the servo drive for at least 30s before further operations.

• E640.1: Flywheel diode overtemperature

Cause:

The temperature of the flywheel diode reaches the fault threshold defined by H0A.18.

Cause	Troubleshooting	Solution
1. The ambient temperature is too high.	Measure the ambient temperature.	Improve the cooling conditions of the servo drive to lower down the ambient temperature.
2. The servo drive is restarted repeatedly to reset the overload fault.	Check the fault records (set H0b.33 and check H0b.34) for any overload fault/warning (E620.0, E630.0, E650.0, E909.0, E920.0, E922.0).	Change the fault reset method. After overload occurs, wait for 30s before reset. Increase the capacities of the servo drive and servo motor. Increase the acceleration/deceleration time and reduce the load.
3. The fan is damaged.	Check whether the fan works properly during operation.	Replace the servo drive.

Cause	Troubleshooting	Solution
4. The servo drive is installed in a wrong direction and the clearance between servo drives is improper.	Check whether the servo drive is installed properly.	Install the servo drive according to the installation requirements.
5. The servo drive is faulty.	The fault persists even though the servo drive is restarted five minutes after power-off.	Replace the servo drive.

Note

When E620.0 occurs, stop the servo drive for at least 30s before further operations.

• E650.0: Heatsink overtemperature Cause:

The temperature of the servo drive power module is higher than the overtemperature threshold.

Cause	Troubleshooting	Solution
1. The ambient temperature is too high.	Measure the ambient temperature.	Improve the cooling conditions of the servo drive to lower down the ambient temperature.
2. The servo drive is restarted repeatedly to reset the overload fault.	Check the fault records (set H0b.33 and check H0b.34) for any overload fault/warning (E620.0, E630.0, E650.0, E909.0, E920.0, E922.0).	Change the fault reset method. After overload occurs, wait for 30s before reset. Increase the capacities of the servo drive and servo motor. Increase the acceleration/deceleration time and reduce the load.
3. The fan is damaged.	Check whether the fan works properly during operation.	Replace the servo drive.
4. The servo drive is installed in a wrong direction and the clearance between servo drives is improper.	Check whether the servo drive is installed properly.	Install the servo drive according to the installation requirements.
5. The servo drive is faulty.	The fault persists even though the servo drive is restarted five minutes after power-off.	Replace the servo drive.

Note

When E620.0 occurs, stop the servo drive for at least 30s before further operations.

• E660.0: Motor overtemperature

Cause:

The temperature of the air-cooled motor is too high.

Cause	Troubleshooting	Solution
•	Measure whether the temperature of the air-cooled motor is too high.	Cool the motor down.

• E661.0: STune failure

Cause:

During ETune operation, the gain drops to the lower limit.

Cause	Troubleshooting	Solution
1.During STune operation, the gain drops to the lower limit, stiffness <= 10.	Check if vibration resonance is properly suppressed in the system. The torque vibration amplitude exceeds the setpoint of H09.11.	Set the notch manually when vibration cannot be suppressed automatically. Modify the electronic gear ratio to improve the command resolution, or increase the command filter time constant in the "Parameter configuration" interface. Check the machine for cyclic fluctuation.
Check whether resonance that occurred during ITune operation cannot be suppressed.	Check whether there is abnormal noise or torque fluctuation during operation.	 Set the notch manually. Modify the electronic gear ratio to improve the command resolution, increase the command filter time constant in the parameter configuration interface. Check whether the machine suffers from periodic fluctuation. Set H09.58 to 1 to clear resonance suppression parameters, and perform STune again.

• E662.0: ETune failure

Cause:

Check whether resonance that occurred during ETune operation cannot be suppressed.

Cause	Troubleshooting	Solution
1. During ETune operation, the gain drops to the lower limit: Position loop gain < 5 Speed loop gain < 5 Model loop gain < 10	Check if vibration resonance is properly suppressed in the system. The torque vibration amplitude exceeds the setpoint of H09.11.	 Set the notch manually when vibration cannot be suppressed automatically. Modify the electronic gear ratio to improve the command resolution, increase the command filter time constant or in the parameter configuration interface. Increase the value of H09.11 as appropriate. Check whether the machine suffers from periodic fluctuation. Check whether the positioning threshold is too low. Increase the reference acceleration/ deceleration time.
Check whether resonance that occurred during ETune operation cannot be suppressed.	Check whether there is abnormal noise or torque fluctuation during operation.	 Set the notch manually. Modify the electronic gear ratio to improve the command resolution, increase the command filter time constant in the parameter configuration interface. Check whether the current of the machine fluctuates periodically.

[•] E663.0: ITune failure

Cause:

Check whether resonance that occurred during ITune operation cannot be suppressed.

Cause	Troubleshooting	Solution
Check whether resonance that occurred during ITune operation cannot be suppressed.	Check if vibration resonance is properly suppressed in the system. The torque vibration amplitude exceeds the setpoint of H09.11.	 Set the notch manually when vibration cannot be suppressed automatically. Modify the electronic gear ratio to improve the command resolution, increase the command filter time constant or in the parameter configuration interface. Check whether the machine suffers from periodic fluctuation. Increase the value of H09.11 as appropriate.

• E664.0: Resonance too strong

Cause:

Resonance occurs on the servo system and the torque fluctuation amplitude is higher than the value of H09.54.

Cause	Troubleshooting	Solution
Resonance occurs on the servo system and the torque fluctuation amplitude is higher than the value of H09.54.	 Check whether the torque fluctuation range is greater than the setpoint of H09.54. Check whether there is abnormal noise or torque fluctuation during operation. 	 Check whether the inertia ratio or loop gain parameters are set properly. Check whether resonance parameters are set properly. Increase the value of H09.54 or set H09.54 to 0 to disable this function.

• E731.0: Encoder battery failure

Cause:

The voltage of the absolute encoder battery is lower than 2.9V.

Cause	Troubleshooting	Solution
1. The battery is not connected during power-off.	Check whether the battery is connected during power-off.	Set H0d.20 to 1 to clear the fault.
2. The encoder battery voltage is too low.	Measure the battery voltage.	Use a new battery with the matching voltage.

• E733.0: Encoder multi-turn counting error

Cause:

An encoder multi-turn counting error occurs.

Cause	Troubleshooting	Solution
The encoder is faulty.	Set H0d.20 to 2 to clear the fault, but E733.0 persists after restart.	Replace the motor.

• E735.0: Encoder multi-turn counting overflow

Cause:

A multi-turn counting overflow occurs on the absolute encoder.

Cause	Troubleshooting	Solution
The number of forward revolutions exceeds 32767 or the number of reverse revolutions exceeds 32768.	Check whether the value of H0b.70 (Number of absolute encoder revolutions) reach 32767 or 32768 when the servo drive works in the absolute linear mode (H02.01 = 1).	 This fault can be hidden in cases where no multi-turn absolute position is needed but the absolute position during running needs to be recorded. The rotation mode applies to occasions where only single-turn absolute position needs to be recorded. Set H0d.20 to 2 to power on again. Perform homing if necessary.

• E740.0: Encoder communication timeout Cause:

Communication timeout occurs on the absolute encoder.

Cause	Troubleshooting	Solution
The encoder cable is not connected reliably. The communication between the servo drive and the encoder times out.	Check the wiring of the encoder and power on the servo drive again.	 Check the encoder cable connections. Check whether vibration on site is too strong, which loosens the encoder cable and even damages the encoder. Replace with a new encoder cable. If the fault no longer occurs after cable replacement, the original encoder cable is damaged. Check whether the encoder version (H00.04) is set properly. Check whether the servo drive software version (H01.00). Replace the servo motor.

• E740.2: Absolute encoder communication error Cause:

A communication error occurs on the RX side of the encoder.

Cause	Troubleshooting	Solution
1. The encoder is wired improperly.	Check the wiring of the encoder.	Connect the encoder cables according to the correct wiring diagram.
The encoder cable connections become loose.	Check whether vibration on site is too strong, which loosens the encoder cable and even damages the encoder.	Re-connect encoder cables and ensure encoder terminals are connected securely.

Cause	Troubleshooting	Solution
3. The encoder Z signal is being disturbed.	Check the field cable layout: Check whether ambient devices are generating disturbance and whether multiple disturbance sources such as variable-frequency devices are present inside the cabinet. Make servo drive stay in "Rdy" status and rotate motor shaft counterclockwise (CCW) manually and observer whether H0b.17 increases/decreases smoothly. Turning one circle corresponds to five 0–360° (for Z series motors). For X series motors, turning one circle corresponds to four 0–360°. If H0b.17 changes abnormally during motor rotating, the encoder is faulty. If no alarm is reported during motor shaft rotating but an alarm is reported during servo drive running, interference may exist.	It is recommended to use the cables provided by Inovance. For use of customized cables, check whether the customized cable complies with specifications and whether it is a shielded twisted pair cable. Route the motor cables and encoder cables through different routes. Ensure the servo motor and servo drive are grounded properly. Check whether the connectors at both ends of the encoder are in good contact and whether any pin retracts.
4. The encoder is faulty.	Replace with a new encoder cable. If the fault no longer occurs after cable replacement, it indicates the original encoder cable is damaged. Keep the motor in a certain position, power on the system several times and observe the change of H0b.17 (Electrical angle). The electrical angle deviation should be within $\pm 30^\circ$ when the motor position does not change.	Use a new encoder cable. If the fault persists after encoder cables are replaced, the encoder may be faulty. In this case, replace the servo motor.
5. An error occurs on the communication between the servo drive and the encoder.	Check whether the value of H0b.28 is not 0.	 Check whether H00.00 (Motor code) is set properly. Check whether the encoder cable is connected properly. Check whether the servo drive and motor are grounded properly. You can wind a magnetic ring on the encoder cable to reduce interference.

• E740.3: Absolute encoder single-turn calculation error Cause:

The encoder is faulty.

Cause	Troubleshooting	Solution
An internal fault occurs on the encoder.	Replace with a new encoder cable. If the fault no longer occurs after cable replacement, it indicates the original encoder cable is damaged. Keep the motor in a certain position, power on the system several times and observe the change of H0b.17 (Electrical angle). The electrical angle deviation should be within ±30° when the motor position does not change.	 Check whether the encoder version (H00.04) is proper. Check whether the encoder cable is proper. Replace the motor.

• E740.6: Encoder data write error

Cause:

The attempt to write the encoder data fails.

Cause	Troubleshooting	Solution
An error occurs when writing the position offset after angle auto- tuning.	Replace with a new encoder cable. If the fault no longer occurs after cable replacement, it indicates the original encoder cable is damaged. Keep the motor in a certain position, power on the system several times and observe the change of H0b.17 (Electrical angle). The electrical angle deviation should be within $\pm 30^{\circ}$ when the motor position does not change.	Use a new encoder cable. If the fault persists after the encoder cable is replaced, the encoder may be faulty. In this case, replace the servo motor.

• E760.0: Encoder overtemperature

Cause:

The temperature of the absolute encoder is too high.

Cause	Troubleshooting	Solution
The temperature of the absolute encoder is too high.		Switch off the S-ON signal to wait for the encoder to cool down.

• E765.0: Nikon encoder over-temperature or overspeed Cause:

The temperature of the absolute encoder is too high.

Cause	Troubleshooting	Solution
The temperature of the absolute	Measure the encoder or motor	Switch off the S-ON signal to wait
encoder is too high.	temperature.	for the encoder to cool down.

• E939.0: Motor power cable failure

Cause:

Motor three phase cable breakage.

Cause	Troubleshooting	Solution
Motor power cables are broken or not connected.	Check the wiring of U/V/W power cables.	 Check whether the power cables are disconnected or in poor contact. Re-connect the power cables. Replace the servo motor.

• E994.0: Station number conflict

Cause	Troubleshooting	Solution
CANlink station No. conflict	Check the setpoint of H0E.00.	Rectify the value of H0E.00.

• EA33.0: Encoder read/write check error

Cause:

Internal parameters of the encoder are abnormal.

Cause	Troubleshooting	Solution
1. The serial incremental encoder cable is disconnected or loose.	Check the wiring.	Check whether the encoder cables are connected incorrectly, disconnected, or in poor contact. If the motor cables and encoder cables are bundled together, separate them.
2. An error occurs when reading/ writing the serial incremental encoder parameters.	If the fault persists after the servo drive is powered off and on repeatedly, the encoder is faulty.	Replace the servo motor.

• EB00.0: Position deviation too large

Cause:

The position deviation in the position control mode is larger than the setpoint of 6065h (Threshold of excessive position deviation).

Cause	Troubleshooting	Solution
1. U/V/W output phase loss or incorrect phase sequence occurs on the servo drive.	Perform a no-load trial run on the motor and check the wiring.	Re-connect the cables according to the wiring diagram or replace the cables.
2. The servo drive U/V/W cables or the encoder cable is disconnected.	Check the wiring.	Connect the cables again. The servo drive power cables must be connected in the correct order at both ends. If necessary, replace all cables and ensure a reliable connection.

Cause	Troubleshooting	Solution
	Check the reference and motor speed (H0b.00) through the software tool or keypad.	
3. The motor is stalled due to mechanical factors.	 References in the position control mode: H0b.13 (Input position reference counter) References in the speed control mode: H0b.01 (Speed reference) References in the torque control mode: H0b.02 (Internal torque reference) Check whether the reference value is not 0 but the motor speed is 0 rpm in the corresponding mode. 	Rectify the mechanical-related problem.
The servo drive gain is too low.	Check the position loop gain and speed loop gain of the servo drive. 1st gain set: H08.00H08.02 2nd gain set: H08.03H08.05	Adjust the gain values manually or perform gain auto-tuning.
5. The position reference increment is too large.	Position control mode: • In CSP mode, check the gear ratio 6091.01h/6091.02h to determine the position reference increment for an individual synchronization period and convert it to the speed information. • In PP mode, check the gear ratio 6091.01h/6091.02h and determine the 6081h (Profile velocity). • In HM mode, check the gear ratio 6091.01h/6091.02h, and determine 6099.01h and 6099.02h.	 CSP: Decrease the position reference increment per synchronization period. The host controller should cover the position ramp when generating references. PP: Decrease the value 6081h or increase the acceleration/ deceleration ramp (6083h, 6084h). HM: Decrease 6099.01h and 6099.02h or increase the acceleration/deceleration ramp (609Ah). Decrease the gear ratio according to actual conditions.
6. The value of 6065h (H0A.10) is insufficient for the operating conditions.	Check the value of 6065h.	Increase the setpoint of 6065h.
7. The servo drive/motor is faulty.	Monitor the operating waveform using the oscilloscope function of Inovance commissioning software and check whether the operating waveform includes the following information: position reference, position feedback, speed reference, torque reference	If the position reference is not 0 but the position feedback is always 0, replace the servo drive or motor.

• EB00.1: Position deviation overflow

Cause:

The position deviation is too large.

Cause	Troubleshooting	Solution
1. U/V/W output phase loss or incorrect phase sequence occurs on the servo drive.	Perform a no-load trial run on the motor and check the wiring.	Re-connect the cables according to the wiring diagram or replace the cables.
2. The servo drive U/V/W cables or the encoder cable is disconnected.	Check the wiring.	Connect the cables again. The servo drive power cables must be connected in the correct order at both ends. If necessary, replace all cables and ensure a reliable connection.
	Check the reference and motor speed (H0b.00) through the software tool or keypad.	
3. The motor is stalled due to mechanical factors.	 References in the position control mode: H0b.13 (Input position reference counter) References in the speed control mode: H0b.01 (Speed reference) References in the torque control mode: H0b.02 (Internal torque reference) Check whether the reference value is not 0 but the motor speed is 0 rpm in the corresponding mode. 	Rectify the mechanical-related problem.
The servo drive gain is too low.	Check the position loop gain and speed loop gain of the servo drive. • 1st gain set: H08.00H08.02 • 2nd gain set: H08.03H08.05	Adjust the gain values manually or perform gain auto-tuning.
5. The position reference increment is too large.	Position control mode: In CSP mode, check the gear ratio 6091.01h/6091.02h to determine the position reference increment for an individual synchronization period and convert it to the speed information. In PP mode, check the gear ratio 6091.01h/6091.02h and determine the 6081h (Profile velocity). In HM mode, check the gear ratio 6091.01h/6091.02h, and determine 6099.01h and 6099.02h.	 CSP: Decrease the position reference increment per synchronization period. The host controller should cover the position ramp when generating references. PP: Decrease the value 6081h or increase the acceleration/ deceleration ramp (6083h, 6084h). HM: Decrease 6099.01h and 6099.02h or increase the acceleration/deceleration ramp (609Ah). Decrease the gear ratio according to actual conditions.
6. The value of 6065h (H0A.10) is insufficient for the operating conditions.	Check the value of 6065h.	Increase the setpoint of 6065h.
7. The servo drive/motor is faulty.	Monitor the operation waveform through the oscilloscope function in the software tool: position references, position feedback, speed references, and torque references.	If the position reference is not 0 but the position feedback is always 0, replace the servo drive or motor.

• EB01.0: Position reference increment too large Cause:

The pulse reference increment exceeds the excessive reference threshold three times consecutively.

Cause	Troubleshooting	Solution
The pulse reference increment exceeds the excessive reference threshold three times consecutively.	Check whether the baud rate of pulse reference input exceeds H0A.09.	1 Increase the value of H0A.09. 2 Reduce the baud rate of pulse input.

• EB01.1: Individual position reference increment too large Cause:

The target position increment is too large.

Cause	Troubleshooting	Solution
The target position increment is too large.	Check the variation between two adjacent target positions using the software tool.	 Check whether the maximum speed of the motor fulfills the application requirement. If yes, reduce the target position reference increment, which is to lower the profile reference speed. If not, replace the servo motor. Before switching the mode or enabling the servo drive, check whether the target position is aligned with current position feedback. The communication sequence of the host controller is abnormal, leading to slave data error. Check the communication sequence of the host controller.

• EB01.3: Command overflow

Cause:

The target position is still in the process of transmission when the servo limit or software position limit signal is activated and the 32-bit upper/lower limit is reached.

Cause	Troubleshooting	Solution
The target position is still in the process of transmission when the servo limit or software position limit signal is activated and the 32- bit upper/lower limit is reached.	Check whether the host controller continues sending commands after overtravel warning is reported by the servo drive.	 Detect the servo limit signal (bit0 and bit1 of 60FD is recommended) through the host controller. Stop sending limit direction commands when an active servo limit signal is detected by the host controller.

• EB03.0: Electronic gear ratio beyond the limit-H05.02 Cause:

The electronic gear ratio exceeds the limit: (0.001–4000 x Encoder resolution/10000).

Cause	Troubleshooting	Solution
by converted exceeds the	Check if the electronic gear ratio is within the range of $0.001-4000 \times$ Encoder resolution/10000.	Change the value of H05.02.

• EB03.1: Electronic gear ratio beyond the limit-Electronic gear ratio 1 Cause:

The electronic gear ratio exceeds the limit: $(0.001-4000 \times \text{Encoder resolution}/10000)$.

Cause	Troubleshooting	Solution
The group 1 electronic gear ratio exceeds the maximum gear ratio or is less than the minimum gear ratio.	Check if the electronic gear ratio is within the range of $0.001-4000 \times$ Encoder resolution/10000.	Change the values of H05.07/ H05.09.

• EB03.2: Electronic gear ratio beyond the limit-Electronic gear ratio 2

Cause:

The group 2 electronic gear ratio exceeds the limit: $(0.001-4000 \times \text{Encoder resolution}/10000)$.

Cause	Troubleshooting	Solution
The group 2 electronic gear ratio exceeds the maximum gear ratio or is less than the minimum gear ratio.	Check if the group 2 electronic gear ratio is within the range of $0.001-4000 \times$ Encoder resolution/10000.	Change the values of H05.11/ H05.13.

• ED02.0: Modbus communication timeout

Cause:

Modbus communication timeout.

Cause	Troubleshooting	Solution
Modbus communication timeout	Increase the value of H0E.83.	Determine the Modbus access cycle by frame grab.

• ED03.0: CANLink communication failure

Cause:

The master is offline.

Cause	Troubleshooting	Solution
The master is offline.	 Increase the heartbeat threshold of the master station. Check the wiring. 	Capture frames to ensure that the master station is online.

• ED04.0: CANopen communication timeout

Cause:

The slave reaches the time configured by the consumer or the node guarding time.

Cause	Troubleshooting	Solution
The slave reaches the time configured by the consumer or the node guarding time.	Check whether the heartbeat frame cycle of the host controller is normal by frame grab.	Check whether all CAN nodes are online, or check the CANopen configuration, reset the node or communication.

• ED05.0: CANopen communication initialized Cause:

Cause	Troubleshooting	Solution
		Reset the NMT node. When changing the NMT, disable the output stage.
After the motor is enabled, errors such as slave offline, heartbeat abnormal, load ratio too high, data frame loss, and false master reset occurred when NMT changes to the initialization state.	Check whether the reset frame is received during operation by capturing frames.	 Use shielded cables to prevent interference. Ground the servo drive properly. Ensure the load rate is proper. If asynchronous transmission is configured, ensure the suppression time is set properly. Ensure no false reset frame is triggered by the host controller. Ensure the termination resistor is installed.

After the motor is enabled, errors such as slave offline, heartbeat abnormal, load ratio too high, data frame loss, and false master reset occurred when NMT changes to the initialization state.

• ED08.0: CANopen bus PDO transmission length error Cause:

The length of the content transmitted by PDO is inconsistent with the configured mapping length.

Cause	Troubleshooting	Solution
The length of the content transmitted by PDO is inconsistent with the configured mapping length.	Check whether the PDO transmission length is consistent with the configuration by capturing frames.	Re-configure the PDO and reset the node or communication.

• ED11.0: CANopen sync period error too large

Cause:

The SYNC period error exceeds the setpoint.

Cause	Troubleshooting	Solution
The SYNC period error exceeds the setpoint	Collect the synchronization signal using the software tool and calculate whether the cycle is higher than the fault threshold.	Check the settings of 60C2.01h and 60C2.02h and ensure the synchronization period is set properly. Ensure the synchronization period of the host controller is set correctly and consistent with the setting of 60C2h. Check the wiring between the slave
		and the master.

17.5.2 Internal Faults

When any one of the following fault occurs, contact Inovance for technical support.

- E602.0: Angle auto-tuning failure
- E220.0: Phase sequence incorrect
- EA40.0: Parameter auto-tuning failure
- E111.0: Internal parameter error

17.6 List of Alarm Codes

Fault Code	Fault subcode	Name	Fault level	Resettable
	E108.0	Storage parameter write error	NO.3	Yes
	E108.1	Storage parameter read error	NO.3	Yes
E108	E108.2	Invalid check on data written in EEPROM	NO.3	Yes
	E108.3	Invalid check on data read in EEPROM	NO.3	Yes
	E108.4	Single data is stored too many times	NO.3	Yes
E110	E110.0	Frequency-division pulse output setting error	NO.3	Yes
E121	E121.0	Invalid S-ON command	NO.3	Yes
E122	E122.0	Multi-turn absolute encoder setting error	NO.3	Yes
E510	E510.0	Frequency division pulse output overspeed	NO.3	Yes
E600	E600.0	Inertia auto-tuning failure	NO.3	Yes
	E601.0	Homing warning	NO.3	Yes
E601	E601.1	Homing switch error	NO.3	Yes
	E601.2	Homing mode setting error	NO.3	Yes
E730	E730.0	Encoder battery warning	NO.3	Yes
E731	E731.0	Encoder battery failure	NO.3	Yes
E831	E831.1	Al1 zero offset too large	NO.3	Yes
E834	E834.1	AI1 overvoltage	NO.3	Yes
E900	E900.0	DI emergency braking	NO.3	Yes
	E902.0	DI setting invalid	NO.3	Yes
E902	E902.1	DO setting invalid	NO.3	Yes
	E902.2	Torque reach setting invalid	NO.3	Yes
E908	E908.0	Model identification check code error	NO.3	Yes
E909	E909.0	Motor overload	NO.3	Yes
E910	E910.0	Control circuit overvoltage	NO.3	Yes
E920	E920.0	Braking resistor overload	NO.3	Yes
E922	E922.0	Resistance of the external regenerative resistor too small	NO.3	Yes
E924	E924.0	Regenerative transistor over-temperature	NO.3	Yes
E941	E941.0	Modified parameters activated at next power- on	NO.3	Yes
E942	E942.0	Parameter storage too frequent	NO.3	Yes
E950	E950.0	Positive limit switch warning	NO.3	Yes
E952	E952.0	Negative limit switch warning	NO.3	Yes
E980	E980.0	Encoder algorithm error	NO.3	Yes

Fault Code	Fault subcode	Name	Fault level	Resettable
E990	E990.1	Pulse input overspeed warning	NO.3	Yes
EA41	EA41.0	Torque fluctuation compensation failure	NO.3	Yes

17.7 List of Fault Codes

No. 1 non-resettable faults:

Table 17–2 List of No. 1 non-resettable faults	
Table 17–2 List of No. 1 Hom-resettable faults	

Fault Code	Fault subcode	Fault Name	Fault level	Resettable
Fault Code	Fault Subcode		rault level	Resettable
	E101.0	Abnormal parameters in groups H02 and above	NO.1	No
5101	E101.1	Parameter error in group H00/H01	NO.1	No
E101	E101.2	Address error in read/write operation after the number of parameters changes	NO.1	No
	E101.9	Parameter attribute initialization check error	NO.1	No
	E102.0	FPGA communication establishment error	NO.1	No
E102	E102.1	FPGA initialization start error	NO.1	No
	E102.8	FPGA and MCU version mismatch	NO.1	No
	E104.1	MCU running timeout (MCU break down)	NO.1	No
E104	E104.2	FPGA running timeout (FPGA break down)	NO.1	No
	E104.4	MCU command update timeout	NO.1	No
	E120.0	Unknown encoder model	NO.1	No
	E120.1	Unknown motor model	NO.1	No
	E120.2	Unknown drive model	NO.1	No
E120	E120.5	Motor and drive current mismatch	NO.1	No
	E120.6	FPGA and motor model mismatch	NO.1	No
	E120.7	Model check error	NO.1	No
	E120.8	Junction temperature parameter check error	NO.1	No
	E136.0	Encoder ROM motor parameter check error	NO.1	No
E136	E136.1	Encoder ROM motor parameter read error	NO.1	No
	E201.0	Phase-P overcurrent	NO.1	No
F (2)	E201.1	Phase-U overcurrent	NO.1	No
E201	E201.2	Phase-V overcurrent	NO.1	No
	E201.4	Phase-N overcurrent	NO.1	No
E210	E210.0	Output short-circuited to ground	NO.1	No
E234	E234.0	Runaway	NO.1	No

Fault Code	Fault subcode	Fault Name	Fault level	Resettable
	E740.0	Encoder communication timeout	NO.1	No
	E740.2	Absolute encoder error	NO.1	No
E740	E740.3	Absolute encoder single-turn calculation error	NO.1	No
	E740.6	Encoder write error	NO.1	No
E765	E765.0	Nikon encoder over-temperature or overspeed	NO.1	No
EA33	EA33.0	Encoder read/write check error	NO.1	No

No. 1 resettable faults

Table 17–3 List of No. 1 resettable faults

Fault Code	Fault subcode	Fault Name	Fault level	Resettable
	E150.0	STO safety state applied	NO.1	Yes
	E150.1	STO input state abnormal	NO.1	Yes
E150	E150.2	Buffer 5 V voltage detection error	NO.1	Yes
	E150.3	STO input circuit hardware diagnosis failure	NO.1	Yes
	E150.4	PWM Buffer hardware diagnosis failure	NO.1	Yes
	E208.2	Encoder communication timeout	NO.1	Yes
E208	E208.4	FPGA current loop operation timeout	NO.1	Yes
E320	E320.0	Braking resistor overload	NO.1	Yes
E400	E400.0	Main circuit overvoltage	NO.1	Yes
	E410.0	Main circuit undervoltage	NO.1	Yes
E410	E410.1	Main circuit de-energized	NO.1	Yes
	E500.0	Motor overspeed	NO.1	Yes
E500	E500.1	Speed feedback overflow	NO.1	Yes
	E500.2	FPGA position feedback pulse overspeed	NO.1	Yes
	E602.0	Angle auto-tuning failure	NO.1	Yes
E602	E602.2	U/V/W phase sequence reversed	NO.1	Yes
E605	E605.0	Speed too fast upon S-ON	NO.1	Yes
E620	E620.0	Motor overload	NO.1	Yes
E625	E625.0	Brake abnormality enabled	NO.1	Yes
E626	E626.0	Brake abnormality disabled	NO.1	Yes
E630	E630.0	Motor stall over-temperature protection	NO.1	Yes
50.00	E640.0	High IGBT junction overtemperature	NO.1	Yes
E640	E640.1	Flywheel diode overtemperature	NO.1	Yes
E650	E650.0	Heatsink overtemperature	NO.1	Yes
E660	E660.0	Motor overtemperature	NO.1	Yes
E939	E939.0	Motor power cables disconnected	NO.1	Yes

No. 2 resettable faults

Fault Code	Fault subcode	Fault Name	Fault level	Resettable
	E122.1	DI function allocation error	No. 2	Yes
	E122.2	DO function allocation error	No. 2	Yes
E122	E122.3	Upper limit in the rotation mode too high	No. 2	Yes
	E122.4	VDI function allocation error	No. 2	Yes
	E122.5	DI and VDI assigned with the same function	No. 2	Yes
E420	E420.0	Main circuit phase loss	No. 2	Yes
E661	E661.0	STune failure	No. 2	Yes
E662	E662.0	ETune failure	No. 2	Yes
E663	E663.0	ITune failure	No. 2	Yes
E664	E664.0	Resonance too strong	No. 2	Yes
E731	E731.0	Encoder battery failure	No. 2	Yes
E733	E733.0	Encoder multi-turn counting error	No. 2	Yes
E735	E735.0	Encoder multi-turn counting overflow	No. 2	Yes
E760	E760.0	Encoder over-temperature	No. 2	Yes
E994	E994.0	Station numbers conflict.	No. 2	Yes
	EB00.0	Excessive position deviation	No. 2	Yes
EB00 EB00.1	EB00.1	Position deviation overflow	No. 2	Yes
	EB01.0	The position reference increment is too large.	No. 2	Yes
EB01	EB01.1	Individual position reference increment too large	No. 2	Yes
	EB01.3	Reference overflow	No. 2	Yes
	EB03.0	Electronic gear ratio setpoint beyond the limit - H05.02	No. 2	Yes
EB03	EB03.1	Electronic gear ratio beyond the limit - Electronic gear ratio 1	No. 2	Yes
	EB03.2	Electronic gear ratio beyond the limit -Electronic gear ratio 2	No. 2	Yes
ED02	ED02.0	Modbus communication timeout	No. 2	Yes
ED03	ED03.0	CANLink communication failure	No. 2	Yes
ED04	ED04.0	CANopen communication timeout	No. 2	Yes
ED05	ED05.0	CANopen communication initialized	No. 2	Yes
ED08	ED08.0	CANopen bus PDO transmission length error	No. 2	Yes
ED11	ED11.0	CANopen sync period error too large	No. 2	Yes

Table 17-4 List of No. 2 resettable faults

18 Maintenance

18.1 Routine Maintenance

Standard operating conditions:

Average annual ambient temperature: 30°C Average load rate: < 80% Daily operating time: < 20 h

18.1.1 Routine Checklist

Check the following items during routine inspection.

No.	Routine Checklist	Checked
1	The ambient temperature and humidity are normal. There is no dust or unwanted objects in the servo drive.	
2	There is no abnormal vibration or noise.	
3	The voltage of the power supply is normal.	
4	There is no strange smell.	
5	There are no fibers adhered to the air inlet.	
6	There is no intrusion of unwanted object on the load end.	

18.1.2 Routine Cleaning List

Check the following items during routine cleaning.

Table 18–2	Routine c	leaning list
	Noutine c	icumig list

No.	Routine Cleaning List	Checked
1	Clean the dust on the equipment surface, especially the metallic dust.	
2	Keep the front end of the servo drive and the connectors clean.	

Note

- Cut off the power supply before cleaning. Clean the equipment with an air gun or a piece of dry cloth.
- Do not use the gasoline, diluent, alcohol, acidic or alkaline detergent during cleaning to prevent enclosure discoloration or damage.

18.2 Periodic Maintenance

18.2.1 Periodic Checklist

Table 18–3	Periodic	checklist
	i chioare	encentior

No.	Item	Checked
1	The screws used to fix the couplings between devices are in place.	
2	There is no sign of overheating.	
3	Terminal blocks are in good condition without any sign of damage.	
4	The clamping units of terminal blocks are in place.	

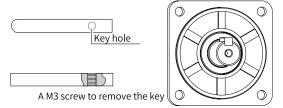
18.2.2 Periodic Maintenance List

The electrical and electronic parts inside the servo drive may be mechanically worn out and degraded. To keep the servo drive and servo motor in good condition, perform parts replacement based on the replacement cycles listed in the following table. Contact Inovance or Inovance agent before replacement to double check whether the part needs to be replaced.

Equipment	Components	Standard Replacement Interval	Remarks	
Servo drive	Bus filter capacitor	About five years		
	Cooling fan	2 to 3 years (10000 h to 30000 h)		
	Aluminum electrolytic capacitor on the PCB	About five years	The standard replacement interval is for reference only. If any device/component works improperly within the replacement interval, replace it immediately.	
	Pre-charge relay	100,000 operations (depending on the operating conditions)		
	Pre-charge resistor	20,000 operations (depending on the operating conditions)		
Motor	Bearing	3 to 5 years (20,000 h to 30,000 h)		
	Oil seal	5000 h		
	Encoder	3 to 5 years (20,000 h to 30,000 h)		
		Depends on the operating condition.		
	Absolute encoder battery	See the operation instructions for the encoder battery for details.		

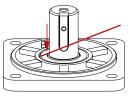
18.3 Parts Replacement

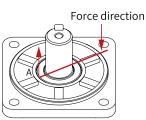
18.3.1 Replacing the Motor Flat Key


Caution

- Observe all the requirements presented in this chapter. Failure to comply may result in equipment fault or damage.
- Violent disassembly is not allowed. Take enough care during disassembly to prevent personal injury.

Standard MS1 series motors in flange sizes 60, 80, and 130 adopt C-type flat key that carries the disassembly hole. To disassemble the flat key, select a proper disassembly bolt (inner hexagon bolt recommended) based on the following table.


Specification of the key disassembly bolt					
Motor Size	Dimensions of the Flat Key	Specifications of the Disassembly Bolt (Inner Hexagon Bolt)			
Size 40	Type-A flat key—A3×3×14	No disassembly hole			
Size 60	Type-C flat key—C5×5×16.5	M3 x 10 and above			
Size 80	Type-C flat key—C6×6×25	M3 x 15 and above			
Size 100	Type-C flat key—C8×7×35	M3 x 20 and above			
Size 130	Type-C flat key—C8×7×35	M3 x 20 and above			
Size 180	Type-C flat key—C10×8×64	M3 x 20 and above			


- Tool needed: an Allen wrench
- Disassembly procedure:
 - 1. Select a proper disassembly bolt (inner hexagon bolt recommended) based on the motor model.
 - 2. Use an Allen wrench to screw down the screw until the A-A end of the flat key is detached from the keyway, as shown below. See the following figure.

18.3.2 Removing the Motor Oil Seal

- Tools needed: a pair of needle-nose pliers, a pair of slip-proof gloves, and a piece of cotton cloth.
- Disassembly procedure:
 - 1. Put the cotton cloth onto the supporting point B to avoid the end cover from being scratched during disassembly.
 - 2. Secure the motor and use the needle-nose pliers to hold point A of the oil seal lip.
 - 3. Pry the oil seal out gradually against the supporting point B.

(Support point B is at the step of the extension)

(Support point A is at the outer lip of the oil seal)

19 Appendix

19.1 Compliance Requirements

Certification	Directive		Standard
CE Certification	EMC Directive	2014/30/EU	EN IEC 61800-3
	LVD Directive	2014/35/EU	EN 61800-5-1 EN 60034
	RoHS Directive	2011/65/EU	EN 50581

Table 19–1 Compliance list

Note

The product meets the requirements of the latest version of instructions and standards of the CE certification.

19.1.1 CE Certifications

Figure 19-1 CE mark

- The CE mark indicates compliance with the Low Voltage Directive (LVD), Electromagnetic Compatibility (EMC), and Restriction of Hazardous Substances (RoHS) directives.
- The CE mark is required for engaging in commercial business (production, importation, and distribution) in Europe.
- The drive complies with LVD, EMC, and RoHS directives and carries the CE mark.
- Machines and devices integrated with this drive must also comply with CE requirements for distribution in Europe.
- The integrator who integrates this drive into other products and attaches CE mark to the final assembly has the responsibility of ensuring compliance with CE certification.

19.1.1.1 Requirement for Compliance with EMC Directive

The SV660P series servo drive, which is applicable to the first environment and second environment, complies with EMC Directive 2014/30/EU and standard EN IEC 61800-3.

As required by EMC Directive 2014/30/EU and standard EN IEC 61800-3, install an EMC filter on the input side of the drive and use shielded cables on the output side. Ensure the filter is grounded properly and the shield of the output cable is grounded 360 degrees.

• When applied in the first environment, the drive may generate radio interference. In addition to the CE compliance requirements described in this chapter, take additional measures, if necessary, to prevent the radio interference generated by the drive.

Introduction to EMC standards

Electromagnetic compatibility (EMC) describes the ability of electrical and electronic devices to work properly in the electromagnetic environment without introducing electromagnetic interferences that disturb the operation of other local devices or systems. In other words, EMC includes two aspects: 1) The electromagnetic interference generated by a device during normal operation cannot exceed a certain limit. 2) The device must have sufficient immunity to the electromagnetic interference in the environment.

EN IEC 61800-3 defines the following two types of environments.

- First environment: Environment that includes domestic premises, and establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for domestic purposes
- Second environment: Environment that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes

Drives are divided into the following four categories based on the intended application environment.

- Category C1 drive: Power drive system (PDS) with rated voltage less than 1000 V, intended for use in the first environment
- Category C2 drive: PDS with rated voltage less than 1000 V, which is neither a plug-in device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by professionals
- Category C3 drive: PDS with rated voltage less than 1000 V, intended for use in the second environment and not intended for use in the first environment
- Category C4 drive: PDS with rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment

19.1.1.2 Requirements for Compliance with LVD

The drive has been tested in accordance with EN61800-5-1 to determine compliance with LVD. Observe the following requirements to enable machines and devices integrated with this drive to comply with LVD.

Installation location

Install the drive in a place with overvoltage category III and pollution degree 1 or 2 as specified by IEC 606641-1.

Installation Environment

For requirements of the installation environment, see "5.1.2 Installation Environment" on page 105.

Protection

The drive must be installed in a fireproof cabinet with doors that provide effective electrical and mechanical protection. The installation must conform to local and regional laws and regulations and relevant IEC standards.

Drives (IP20) intended to be installed inside the cabinet must be installed in a structure that prevents intrusion of unwanted objects from the top and the front.

Main Circuit Cable Requirements

For wiring requirements of main circuit terminals, see *"8.2.2 Main Circuit Wiring Requirements" on page 127*.

Requirements of protective devices

To comply with EN 61800-5-1, install a fuse/circuit breaker on the input side of the drive to prevent accidents caused by short circuit in the internal circuit.

19.2 Solutions to Common EMC Problems

19.2.1 Malfunction of the Residual Current Device (RCD)

If an RCD is needed, select the RCD according to the following requirements:

- The drive may generate DC leakage current in the protective conductor, a B-type RCD therefore must be used.
- The drive may generate high-frequency leakage current during operation. To prevent malfunction of the RCD, install an RCD with tripping current not lower than 100 mA for each servo drive.
- When multiple drives connected in parallel share one RCD, select an RCD with tripping current not lower than 300 mA.
- Recommended RCD manufacturers are Siemens and Schneider.

When malfunction occurs on the RCD, take the following measures.

Symptom	Possible Cause	Measure	
	The anti-interference performance of the RCD is weak.		
The RCD trips at the moment of power-on.	The tripping current of the RCD is too low.	It is recommended to use Siemens or Schneider RCDs. It is recommended to use an BCD with a higher	
	An unbalanced load is connected to the rear end of the RCD.	 It is recommended to use an RCD with a higher tripping current. Move the unbalanced load to the front end of the RCD. 	
	The capacitance of the front end of the servo drive against the ground is too high.		
	The anti-interference performance of the RCD is weak.	 It is recommended to use Siemens or Schneider RCDs. It is recommended to use an RCD with a higher 	
The RCD trips during operation.	The tripping current of the RCD is too low.	 tripping current. Install a simple filter on the input side of the servo drive and wind magnetic rings on the LN and RST cables near the RCD, as shown in <i>"Figure 19–2 Magnetic ring on the input side" on page 684</i>. 	
	An unbalanced load is connected to the rear end of the RCD.		
	The distributed capacitance of the motor cable or motor against the ground is too high.	 Reduce the carrier frequency without compromising the performance. Reduce the length of motor cables. 	

Table 19–2 Measures against lea	kage curre	ent

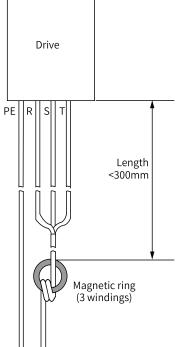


Figure 19-2 Magnetic ring on the input side

19.2.2 Harmonic Suppression

To suppress harmonics and improve the power factor to allow the drive to fulfill the standards, install an AC input reactor on the input side of the drive. For the reactor model and installation mode, see *"5.2.2 Instructions for Installing the AC Input Reactor" on page 113.*

19.2.3 Control Circuit Interference

19.2.3.1 High-speed Pulse Interference

Take the measures listed in the following table to suppress interference.

No.	Step
1	Used shielded twisted pair cables with both ends of the cable grounded (see " <i>l</i> / <i>O signal cable selection</i> " <i>on page 146</i>).
2	Connect the motor enclosure to the PE terminal of the drive.
3	Connect the PE terminal of the drive to the PE terminal of the mains power supply.
4	Add an equipotential bonding grounding cable between the host controller and drive (see <i>"Figure 8–20 Recommended wiring for the control cabinet system" on page 146</i>).
5	Separate signal cables from power cables with a distance of at least 30 cm.
6	Install the ferrite clamp or wind the magnetic ring on the signal cable by one or two turns. (see <i>"5.2.4 Installation of the Magnetic Ring and Ferrite Clamp" on page 113</i>).
7	Install the magnetic ring on the output side (UVW) of the drive by two to four turns (see <i>"5.2.4 Installation of the Magnetic Ring and Ferrite Clamp" on page 113</i>).
8	Use shielded power cables and ground the shield properly.

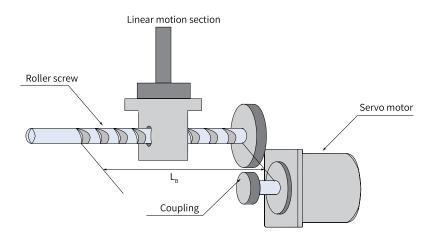
19.2.3.2 Common I/O Signal Interference

The drive generates strong interference during operation. Although EMC measures are taken, interference may still exist due to improper wiring or grounding during use. When the drive disturbs or is disturbed by other devices, adopt the following measures.

Step	Measure		
1	Use shielded cables as the I/O signal cables and connect the shield to the PE terminal. For details, see <i>"I/O signal cable selection" on page 146</i> .		
2	Reliably connect the PE terminal of the motor to the PE terminal of the set drive, and connect the PE terminal of the servo drive to the PE terminal of the grid.		
3	Add an equipotential bonding grounding cable between the host controller and drive (see <i>"Figure 8–20 Recommended wiring for the control</i> <i>cabinet system" on page 146</i>).		
4	Install the magnetic ring on the output side (UVW) of the drive by two to four turns (see <i>"5.2.4 Installation of the Magnetic Ring and Ferrite Clamp" on page 113</i>).		
5	Increase the filter capacitance for low-speed DIs. A capacitance up to 0.1 μ F is recommended, as shown in <i>"Figure 19–3 I/O signal cables with capacitance increased" on page 686</i> .		

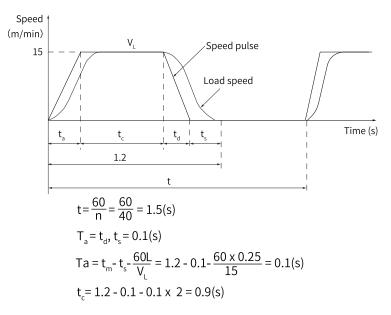
Step	Measure			
6	Increase the filter capacitance between AI and GND. A capacitance up to 0.22 μF is recommended.			
7	Install a ferrite clamp or wind a magnetic ring on the signal cable by one or two turns. (see <i>"5.2.4 Installation of the Magnetic Ring and Ferrite Clamp" on page 113</i>).			
8	Use shielded power cables and ground the shield properly.			

Figure 19-3 I/O signal cables with capacitance increased


19.2.4 RS485&CAN Communication Interference

Take the measures listed in the following table to suppress interference.

Step	Measure	
1	Install a 120 Ω termination resistor on each end of the bus.	
2	Replace with multi-conductor shielded twisted pair cables and ground both ends of the shield.	
3	Separate communication cables from power cables with a distance of at least 30 cm.	
4	Adopt daisy chain mode for multi-node communication layout.	
5	Add an equipotential bonding grounding cable between nodes during multi- node communication (See <i>"Figure 8–20 Recommended wiring for the</i> <i>control cabinet system" on page 146</i>).	
6	Install ferrite clamps on both sides of the communication cable or wind the magnetic ring by one or two turns (see <i>"Figure 5–15" on page 114</i>).	
7	Install the magnetic ring on the output side (UVW) of the drive by two to four turns (see "Figure $5-14$ " on page 113).	
8	Use shielded power cables and ground the shield properly.	


19.3 Capacity Selection Example for Servo Motor

19.3.1 Capacity Selection Example for Position Control

Load speed (V_L): 15 m/min Mass of the rectilinear motion part (m): 80 kg Roller screw length (L_B) = 0.8 m Roller screw diameter (d_B) = 0.016 m Roller screw pitch (P_B) = 0.005 m Mass of the coupling (m_c): 0.3 kg Outer diameter of the coupling (d_c) = 0.03 m Times of feeding (n): 40/min Length of feeding (L): 0.25 m Feeding time (t_m) < 1.2s Electrical stopping precision (δ) = ±0.01 mm Friction coefficient (μ): 0.2 Mechanical efficiency (η) = 0.9 (90%)

1. Speed diagram

2. Speed

• Rotational speed of the load shaft

$$n_{L} = \frac{V_{L}}{P_{B}} = \frac{15}{0.005} = 3000 \text{ (rpm)}$$

• Rotational speed of the motor shaft As the coupling is directly connected, the gear ratio (1/R) is 1:1.

3. Load torque

$$T_{L} = \frac{9.8 \,\mu \,x \,m \,x \,P_{B}}{2 \pi R \,x \,n} = \frac{9.8 \,x \,0.2 \,x \,80 \,x \,0.005}{2 \pi \,x \,1 \,x \,0.9} = 0.139 \,(N \cdot m)$$

4. Load Moment of Inertia

• Rectilinear motion part

$$J_{\mu} = m \times \left(\frac{P_{B}}{2\pi R}\right)^{2} = 80 \times \left(\frac{0.005}{2\pi \times 1}\right)^{2} = 0.507 \times 10^{-4} (kg \cdot m^{2})$$

- Roller screw $J_{B} = \frac{\pi}{32} P \times L_{B} \times d_{B}^{4} = \frac{\pi}{32} \times 7.87 \times 10^{3} \times 0.8 \times (0.016)^{4} = 0.405 \times 10^{-4} (\text{kg} \cdot \text{m}^{2})$
- Coupling

$$J_{c} = \frac{1}{8} m_{c} x d_{c}^{4} = \frac{1}{8} x 0.3 x (0.03)^{2} = 0.338 x 10^{-4} (kg \cdot m^{2})$$

5. Load moving power

$$P_{O} = \frac{2\pi \times n_{M} \times T_{L}}{60} = \frac{2\pi \times 3000 \times 0.139}{60} = 43.7 \text{ (W)}$$

6. Load acceleration power

$$P_{a} = \left(\frac{2\pi}{60} \times n_{m}\right)^{2} \frac{J_{L}}{t_{a}} = \left(\frac{2\pi}{60} \times n_{m}\right)^{2} \times \frac{J_{LI} + J_{B} + J_{C}}{t_{a}}$$
$$= \left(\frac{2\pi}{60} \times 3000\right)^{2} \times \frac{1.25 \times 10^{-4}}{0.1} = 123.4 \text{ (W)}$$

7. Temporary settings of the servo motor

- Selection condition
 - $T_{\,L}\!\leqslant$ Rated torque of the motor

P_a+P_o=(1 to 2) x Rated output of the motor

 $n_{\,\text{M}} \! \leqslant \! \text{Rated}$ speed of the motor

 $J_{L} \leq Allowable load moment of inertia of the servo unit$

Perform the following provisional selections according to preceding conditions:

Servo motor: MS1H1-20B30CB-T331Z

Servo drive: SV630CS2R8I

• Specifications of the servo motor and servo drive

Rated output: 200 (W)

Rated speed: 3000 (RPM)

Rated torque: 0.637 $(N \cdot m)$

Maximum instantaneous torque: 1.91 (N \cdot m)

Rotor moment of inertia: 0.158 x 10⁻⁴ (kg · m²)

Allowable load moment of inertia: $3.69 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$

Number of encoder pulses: 262144 (P/R)

8. Confirmation of the servo motor selected temporarily

Confirm the startup torque required

$$T_{p} = \frac{2\pi \times n_{M} \times (J_{M}+J_{L})}{60 \times t_{a}} + T_{L} = \frac{2\pi \times 3000 \times (0.158 + 1.25) \times 10^{-4}}{60 \times 0.1} + 0.139$$
$$= 0.581(N \cdot m) < Max. \text{ instantaneous torque} \text{ Satisfactory}$$

Confirm the brake torque required

$$T_{s} = \frac{2\pi \times n_{M} \times (J_{M} + J_{L})}{60 \times t_{a}} - T_{L} = \frac{2\pi \times 3000 \times (0.158 + 1.25) \times 10^{-4}}{60 \times 0.1} - 0.139$$

= $0.303(N \cdot m) < Max.$ instantaneous torque Satisfactory

Confirm the effective torque value

$$T_{rms} = \sqrt{\frac{T_{p}^{2} \times t_{a} + T_{L}^{2} \times t_{c} + T_{s}^{2} \times t_{d}}{t}}$$
$$= \sqrt{\frac{(0.581)^{2} \times 0.1 + (0.139)^{2} \times 0.9 + (0.303)^{2} \times 0.1}{1.5}}$$
$$= 0.2 (N \cdot m) < \text{Rated torque Satisfactory}$$

The capacities of the servo motor and servo drive selected temporarily based on preceding steps are available for use. The position control analysis is as follows.

9. Electronic gear ratio (B/A)

The electrical stopping precision (δ) is \pm 0.01 mm, so the position detection unit (\triangle L) is 0.01 mm/ pulse.

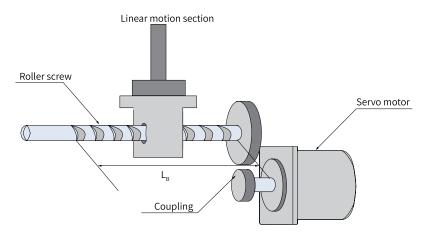
$$\frac{P_{B}}{\Delta L} \times \frac{B}{A} = \frac{5}{0.01} \times \frac{B}{A} = 262144$$
$$\frac{B}{A} = \frac{262144 \times 0.01}{5} = \frac{262144}{500}$$

10. Reference pulse frequency

$$v_{s} = \frac{1000 \times V_{L}}{60 \times \Delta L} = \frac{1000 \times 15}{60 \times 0.01} = 25000 \text{ (pps)}$$

11. Offset counter droop pulse

• Set the position loop gain (K_p) to 30 (l/s).


$$\varepsilon = \frac{V_s}{K_p} = \frac{25000}{30} = 833 \text{ (pulse)}$$

• Electrical stop precision

$$\pm \Delta \varepsilon = \pm \frac{\varepsilon}{(\text{Servo drive control range}) \times \frac{n_{\text{M}}}{n_{\text{R}}}} = \pm \frac{833}{5000 \times \frac{3000}{3000}}$$
$$= \pm 0.17 < \pm 1 \text{ (pulse)} \pm 0.01 \text{ (mm/pulse)}$$

By observing preceding steps, the servo motor and servo drive selected temporarily for position control are available for use.

19.3.2 Capacity Selection Example for Speed Control

Load speed (V L): 15 m/min

Mass of the rectilinear motion part (m): 80 kg

Roller screw length (L_B) = 0.8 m

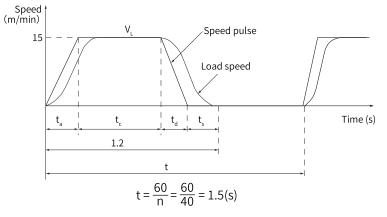
Roller screw diameter (d $_B$) = 0.04 m

Roller screw pitch (P_B) = 0.01 m

Mass of the coupling (m_c): 1 kg

Outer diameter of the coupling (d $_{c}$) = 0.06 m

Times of feeding (n): 40/min


Length of feeding (L): 0.25 m

Feeding time (t _m) < 1.2s

Friction coefficient (µ): 0.2

Mechanical efficiency (η) = 0.9 (90%)

1. Speed diagram

Set t_a to the same value as t_d .

$$t_a = t_m - t_s - \frac{60 \times L}{V_L} = 1.2 - 0.1 - \frac{60 \times 0.25}{15} = 0.1(s)$$

$$t_c = 1.2 - 0.1 - 0.1 \times 2 = 0.9(s)$$

2. Speed

• Rotational speed of the load shaft

$$n_{L} = \frac{V_{L}}{P_{B}} = \frac{15}{0.01} = 1500 \text{ (rpm)}$$

• Rotational speed of the motor shaft As the coupling is directly connected, the gear ratio (1/R) is 1:1.

n_M = n_Lx R = 1500 x 1 = 1500 (RPM)

3. Load torque

$$\Gamma_{L} = \frac{9.8 \,\mu \,x \,m \,x \,P_{B}}{2 \pi \,x \,R \,x \,\eta} = \frac{9.8 \,x \,0.2 \,x \,80 \,x \,0.01}{2 \pi \,x \,1 \,x \,0.9} = 0.277 \,(\text{N} \cdot \text{m})$$

4. Load Moment of Inertia

• Rectilinear motion part

$$J_{\mu} = m x \left(\frac{P_{B}}{2\pi R}\right)^{2} = 80 x \left(\frac{0.01}{2\pi \times 1}\right)^{2} = 2.02 \times 10^{-4} (kg \cdot m^{2})$$

• Roller screw

$$J_{B} = \frac{\pi}{32} P \times L_{B} \times d_{B}^{4} = \frac{\pi}{32} \times 7.87 \times 10^{3} \times 1.4 \times (0.04)^{4} = 27.7 \times 10^{-4} (\text{kg} \cdot \text{m}^{2})$$

• Coupling

$$J_{c} = \frac{1}{8} m_{c} x d_{c}^{4} = \frac{1}{8} x 1 x (0.06)^{2} = 4.5 x 10^{-4} (kg \cdot m^{2})$$

5. Load moving power

$$P_{o} = \frac{2\pi \times n_{M} \times T_{L}}{60} = \frac{2\pi \times 1500 \times 0.277}{60} = 43.6 \text{ (W)}$$

6. Load acceleration power

$$P_{a} = \left(\frac{2\pi}{60} \times n_{m}\right)^{2} \times \frac{J_{L}}{t_{a}} = \left(\frac{2\pi}{60} \times n_{m}\right)^{2} \times \frac{J_{c} + J_{B} + J_{L}}{t_{a}}$$
$$= \left(\frac{2\pi}{60} \times 1500\right)^{2} \times \frac{34.22 \times 10^{-4}}{0.1} = 844 \text{ (W)}$$

7. Temporary settings of the servo motor

• Selection condition

 $T_{\,L}\!\leqslant\!$ Rated torque of the motor

 P_a + P_o = (1 to 2) \times Rated output of the motor

 $n_{\,\text{M}} \leqslant \text{Rated}$ speed of the motor

 $J_{L} \leqslant$ Allowable load moment of inertia of the servo unit

Perform the following provisional selections according to preceding conditions:

Servo motor: MS1H3-85B15CD-T331Z

Servo drive: SV630CT5R4I

• Specifications of the servo motor and servo drive Rated output: 850 (W)

Rated speed: 1500 (RPM)

Rated torque: 5.39 (N·m)

Maximum instantaneous torque: 13.8 (N·m)

Rotor moment of inertia: $13.0 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$

Allowable load moment of inertia: 69.58 x 10⁻⁴ (kg · m²)

8. Confirmation of the servo motor selected temporarily

Confirm the startup torque required

$$T_{p} = \frac{2\pi \times n_{M} \times (J_{M} + J_{L})}{60 \times t_{a}} + T_{L} = \frac{2\pi \times 1500 \times (13 + 34.22) \times 10^{-4}}{60 \times 0.1} + 0.277$$

= 7.69(N \cdot m) < Max. instantaneous torque Satisfactory

Confirm the brake torque required

$$\begin{split} \mathsf{T}_{s} &= \frac{2\pi \times \mathsf{n}_{M} \times (\mathsf{J}_{M} + \mathsf{J}_{L})}{60 \times \mathsf{t}_{a}} - \mathsf{T}_{L} = \frac{2\pi \times 1500 \times (13 + 34.22) \times 10^{-4}}{60 \times 0.1} - 0.277 \\ &= 7.14 (\mathsf{N} \cdot \mathsf{m}) < \mathsf{Max.} \text{ instantaneous torque} \ \text{Satisfactory} \end{split}$$

Confirm the effective torque value

$$\Gamma_{\rm rms} = \sqrt{\frac{{\rm T}_{\rm p}^{\ 2} \times {\rm t}_{\rm a} + {\rm T}_{\rm L}^{\ 2} \times {\rm t}_{\rm c} + {\rm T}_{\rm s}^{\ 2} \times {\rm t}_{\rm d}}{{\rm t}}}$$
$$= \sqrt{\frac{(7.69)^2 \times 0.1 + (0.277)^2 \times 0.9 + (7.14)^2 \times 0.1}{1.5}}$$

= $2.71(N \cdot m)$ < Rated torque Satisfactory

9. Selection result

The servo motor and servo drive selected temporarily according to preceding steps are available for use. The torque diagram is as follows.

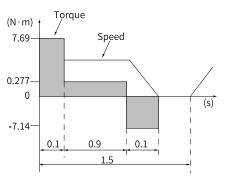


Figure 19-4 Torque diagram

19.4 CANlink Enhanced Axis Control Parameters

Table 19–3 List of default parameters for enhanced axis control

Param.	Description	Default	
H11.00	Multi-position running mode	5: Axis-controlled continuous operation	
H11.04	Displacement reference type	1: Absolute displacement reference	
H11.05	Starting displacement No. in sequential operation	1	
H11.16	Interval time after displacement 1	0	
H05.00	Primary position reference source	2: Multi-position reference	
H05.02	Pulses per revolution	10000	
H05.30	Homing enable selection	1: Homing enabled by signal input from DI	
H05.31	Homing mode	1: Reverse homing, home switch as the deceleration point and the home	
H05.32	Speed in high-speed searching for the home switch signal	200 RPM	
H05.33	Speed in low-speed searching for the home switch signal	20 RPM	
H05.35	Home search time limit	30000 ms	
H05.40	Mechanical home offset and action upon overtravel	3: H05.36 (Mechanical home offset) used as the relative offset after homing, reverse homing applied automatically upon overtravel	
H09.00	Auto-adjustment mode	1: Standard stiffness level mode	
H09.02	Adaptive notch mode	1: Only one adaptive notch (3rd notch) activated	
H0C.09	Communication VDI	1: Enable	
H0C.11	Communication VDO	1: Enable	
H04.00	DO1 function selection	0: No assignment	
H04.02	DO2 function selection	0: No assignment	
H04.04	DO3 function selection	9: Brake	
H04.06	DO4 function selection	0: No assignment	
H04.08	DO5 function selection	0: No assignment	
H03.06	DI3 function selection	0: No assignment	
H03.08	DI4 function selection	0: No assignment	
H03.10	DI5 function selection	0: No assignment	
H17.00	VDI1 function selection	1: Servo ON	
H17.02	VDI2 function selection	18: Forward jog	
H17.04	VDI3 function selection	19: Reverse jog	
H17.06	VDI4 function selection	28: Multi-position reference selection	
H17.08	VDI5 function selection	32: Homing enable	
H17.10	VDI6 function selection	34: Emergency stop	
H17.12	VDI7 function selection	2: Fault and warning reset signal	
H17.14	VDI8 function selection	38: Command-write interrupted	
H17.15	VDI8 logic selection	1: Active when the written value changes from 0 to 1	
H17.16	VDI9 function selection	Active: Command-write not interrupted	
H17.17	VDI9 logic selection	1: Active when the written value changes from 0 to 1	
H17.18	VDI10 function selection	40: Positioning and reference completed signal cleared	

Note

See the following for how to use CANlink enhanced axis control function:

- 1. Set H02.31 to 1 to restore parameters to default values.
- 2. Set H11.00 to 5. If the previous value of H11-00 is not 5, setting it to 5 enables enhanced axis control function. Parameter involved will be correlated automatically. See the detailed setpoints in the preceding table.
- 3. If the previous value of H11.00 is 5, setting it to a value other than 5 restores all the parameters listed in the preceding table to default values.

19.5 DIDO Function Assignment

Code	Parameter Name	Function Name	Description	Remarks
		Desc	ription of DI Signals	
FunIN.1	S-ON	Servo ON	Disabled: Servo motor disabled Enabled: Servo motor enabled	The corresponding terminal logic must be level-triggered. The change of the corresponding DI/VDI or terminal logic is activated at next power-on.
FunIN.2	ALM-RST	Fault and warning reset	Inactive: Disabled Active: Enabled	Edge-triggered will be applied even if level-triggered is selected. To reset No. 1 and NO.2 resettable faults, switch off the S-ON signal first. The servo drive may, depending on the alarm type, continue running after reset.
FunIN.3	GAIN-SEL	Gain Switchover	 H08.09 = 1: Inactive: Speed control loop being PI control Active: Speed control loop being P control H08.09 = 2: Inactive: Fixed to the 1st group of gains Active: Fixed to the 2nd group of gains 	The corresponding terminal logic is recommended to be level-triggered.
FunIN.4	CMD-SEL	Main/Auxiliary reference switchover	Inactive: Current reference being A Active: Current reference being B	The corresponding terminal logic is recommended to be level-triggered.
FunIN.5	DIR-SEL	Direction switchover through DI in multi-speed mode	Inactive: Reference direction by default Active: Reverse to reference direction.	The corresponding terminal logic is recommended to be level-triggered.
FunIN.6	CMD1	Multi-reference switchover 1	Used to select a reference from 16 references.	The corresponding terminal logic is recommended to be level-triggered.
FunIN.7	CMD2	Multi-reference switchover 2	Used to select a reference from 16 references.	The corresponding terminal logic is recommended to be level-triggered.
FunIN.8	CMD3	Multi-reference switchover 3	Used to select a reference from 16 references.	The corresponding terminal logic is recommended to be level-triggered.
FunIN.9	CMD4	Multi-reference switchover 4	Used to select a reference from 16 references.	The corresponding terminal logic is recommended to be level-triggered.

Code	Parameter Name	Function Name	Description	Remarks
FunIN.10	M1-SEL	Mode switchover 1	Used to perform switchover between speed control, position control, and torque control based on the selected control mode (values 3, 4, 5 of H02-00).	The corresponding terminal logic is recommended to be level-triggered.
FunIN.11	M2-SEL	Mode switchover 2	Used to perform switchover between speed control, position control, and torque control based on the selected control mode (value 6 of H02-00).	The corresponding terminal logic is recommended to be level-triggered.
FunIN.12	ZCLAMP	Zero speed clamp	Active: Zero clamp enabled Inactive: Zero clamp disabled	The corresponding terminal logic is recommended to be level-triggered.
FunIN.13	INHIBIT	Position reference inhibited	Active: Pulse reference input inhibited Inactive: Pulse reference input allowed	It is originally pulse inhibit. The position references include internal and external position references. The corresponding terminal logic must be level-triggered.
FunIN.14	P-OT	Positive limit switch	Enabled: Forward drive inhibited Disabled: Forward drive permitted	Overtravel prevention applies when the machine moves beyond the limit. It is recommended that the corresponding terminal logic is level-triggered.
FunIN.15	N-OT	Negative limit switch	Overtravel prevention applies when the load moves beyond the limit. Active: Reverse drive inhibited Inactive: Reverse drive allowed	The corresponding terminal logic is recommended to be level-triggered.
FunIN.16	P-CL	Positive external torque limit	The torque limit source is switched based on H07.07 (Torque limit source). H07.07 = 1: Active: Positive external torque limit activated Inactive: Positive internal torque limit activated	The corresponding terminal logic is recommended to be level-triggered.
FunIN.17	N-CL	Negative external torque limit	The torque limit source is switched based on H07.07 (Torque limit source). H07.07 = 1: Active: Negative external torque limit activated Inactive: Negative internal torque limit activated	The corresponding terminal logic is recommended to be level-triggered.
FunIN.18	JOGCMD+	Forward jog	Active: Input based on command Inactive: Command input stopped	The corresponding terminal logic is recommended to be level-triggered.
FunIN.19	JOGCMD-	Reverse jog	Active: Input in reverse to the command Inactive: Command input stopped	The corresponding terminal logic is recommended to be level-triggered.

Code	Parameter Name	Function Name	Description	Remarks
FunIN.20	POSSTEP	Step reference	Active: Execute step reference set in H05-05, servo motor running Inactive: Servo motor in locked state	The corresponding terminal logic is recommended to be level-triggered.
FunIN.21	HX1	Hand wheel override signal 1	HX1 active, HX2 inactive: X10.	The corresponding terminal logic is
FunIN.22	HX2	Hand wheel override signal 2	HX1 inactive, HX2 active: x 100. Other: X1.	recommended to be level-triggered.
FunIN.23	HX_EN	Handwheel enable signal	Inactive: Execute position control as defined by H05-00. Active: Execute position control based on handwheel signal in position mode	The corresponding terminal logic is recommended to be level-triggered.
FunIN.24	GEAR_SEL	Electronic gear ratio switchover	Inactive: Electronic gear ratio 1 Active: Electronic gear ratio 2	The corresponding terminal logic is recommended to be level-triggered.
FunIN.25	TOQDirSel	Torque reference direction	Inactive: Forward. Active: Reverse	The corresponding terminal logic is recommended to be level-triggered.
FunIN.26	SPDDirSel	Speed reference direction	Inactive: Forward. Active: Reverse	The corresponding terminal logic is recommended to be level-triggered.
FunIN.27	POSDirSel	Position reference direction	Inactive: Actual position reference direction same as the set direction Active: Actual position reference direction opposite to the set direction	The corresponding terminal logic is recommended to be level-triggered.
FunIN.28	PosInSen	Multi-position reference enable	Disabled: The reference is ineffective. Enabled: The reference is enabled.	The corresponding terminal logic is recommended to be level-triggered.
FunIN.29	XintFree	Interrupt positioning clear	Inactive: Disabled Active: Enabled	-
FunIN.31	HomeSwitch	Home switch	Inactive: The switch is not triggered Enabled: The switch is triggered.	The corresponding terminal logic must be level-triggered. It is recommended to assign this function to a high-speed DI terminal. If the logic is set to 2 (rising edge active), the servo drive forcibly changes it to 1 (active high). If the logic is set to 3 (falling edge active), the servo drive forcibly changes it to 0 (active low). If the logic is set to 4 (both rising edge and falling edge active), the servo drive forcibly changes it to 0 (low level active).
FunIN.32	HomingStart	Homing enable	Inactive: Disabled Active: Enabled	-

Code	Parameter Name	Function Name	Description	Remarks
FunIN.33	XintInhibit	Interrupt positioning inhibited	Active: Interrupt positioning inhibited. Inactive: Interrupt positioning allowed.	The corresponding terminal logic must be level-triggered. • If the logic is set to 2 (rising edge active), the servo drive forcibly changes it to 1 (active high). • If the logic is set to 3 (falling edge active), the servo drive forcibly changes it to 0 (active low). • If the logic is set to 4 (both rising edge and falling edge active), the servo drive forcibly changes it to 0 (low level active).
FunIN.34	Emergence Stop	Emergency stop	Enabled: Position lock is applied after stop at zero speed. Disabled: Current operating state is unaffected.	The corresponding terminal logic is recommended to be level-triggered.
FunIN.35	ClrPosErr	Position deviation cleared	Active: Clear the position deviation Inactive: Do not clear the position deviation	It is recommended to assign this function to DI8 or DI9.
FunIN.36	V_LmtSel	Internal speed limit source	Inactive: H07.19 used as positive/ negative internal speed limit Active: H07.20 used as positive/ negative internal speed limit	The corresponding terminal logic is recommended to be level-triggered.
FunIN.37	PulseInhibit	Pulse reference inhibited	When the position reference source is pulse reference (H05.00 = 0) in the position control mode: Inactive: Respond to pulse references Active: Not respond to pulse references	The corresponding terminal logic is recommended to be level-triggered.
FunIN.38	MultiBlockTrig	Axis control command write interrupted	When the position reference source is multi-position reference (H05.00 = 2) in the position control mode: Inactive: Not write commands Active: Write command and generate interrupt	The corresponding terminal logic is recommended to be level-triggered.
FunIN.39	MultiBlockWr	Axis control command write not interrupted	When the position reference source is multi-position reference (H05.00 = 2) in the position control mode: Inactive: Not write commands Active: Command written and interrupt not generated	The corresponding terminal logic is recommended to be level-triggered.
FunIN.40	ClrCmdOkAndArrOk	Command cleared and positioning completed	Inactive: Command not cleared and positioning completed Active: Command cleared and positioning completed	The corresponding terminal logic is recommended to be level-triggered.

Code	Parameter Name	Function Name	Description	Remarks
FunIN.41	HomeRecord	Present position as the home	Inactive: The switch is not triggered Active: Triggered	The corresponding terminal logic is recommended to be level-triggered.
		Desci	ription of DO signals	
FunOUT.1	S-RDY	Ready to switch on	The servo drive is ready to receive the S-ON signal. Enabled: The servo drive is ready. Disabled: The servo drive not ready.	-
FunOUT.2	TGON	Motor rotation output	Inactive. Absolute value of filtered motor speed is lower than the setpoint of H06.16. Active. Absolute value of filtered motor speed reaches the setpoint of H06.16.	-
FunOUT.3	ZERO	Zero speed signal	Inactive: Difference between motor speed feedback and reference value larger than H06.19 (Threshold of zero speed output signal) Active: The difference between the motor speed feedback and the reference value is within the threshold defined by H06.19.	-
FunOUT.4	V-CMP	Speed matching	Active when the absolute value of the difference between the motor speed and the speed reference lower than H06.17 (Threshold of V-Cmp signal) in the speed control mode	-
FunOUT.5	COIN	Positioning completed	Active when position deviation pulses reaching H05.21 (Threshold of positioning completion) in the position control mode	-
FunOUT.6	NEAR	Proximity	Active when position deviation pulses reaching H05.22 (Threshold of proximity) in the position control mode	-
FunOUT.7	C-LT	Torque limit	Confirming torque limit: Active: Servo drive torque reference reaching the torque limit value and restricted to this value Inactive: Servo drive torque reference not reaching the torque limit value	-
FunOUT.8	V-LT	Speed limit	Confirming speed limit in torque control: Active: Motor speed limited Inactive: Motor speed unlimited	-

Code	Parameter Name	Function Name	Description	Remarks
FunOUT.9	ВК	Brake output	Brake signal output: Active: Brake released Active: The power is off, the brake is	-
FunOUT.10	WARN	Warning output	released, and the motor can rotate. The warning output is active (conducted). (ON)	-
FunOUT.11	ALM	Fault output	Active upon fault event	-
FunOUT.12	ALMO1	Output 3-digit warning code	Output 3-digit warning code	-
FunOUT.13	ALMO2	Output 3-digit warning code	Output 3-digit warning code	-
FunOUT.14	ALMO3	Output 3-digit warning code	Output 3-digit warning code	-
FunOUT.15	Xintcoin	Interrupt positioning completed	Active: Interrupt positioning completed Invalid: Interruption fixed length not completed	-
FunOUT.16	HomeAttain	Homing is completed.	Homing state: Active: Homing completed in the position control mode Inactive: Homing not completed	-
FunOUT.17	ElecHome Attain	Electrical homing output	Electrical homing state: Active: Electrical homing completed Inactive: Electrical homing not completed	-
FunOUT.18	ToqReach	Torque Reach Output	Active: Absolute value of torque reference reached setpoint Inactive: Absolute value of torque reference smaller than setpoint	-
FunOUT.19	V-Arr	Speed reaches output	Active: Speed feedback reaches setpoint Inactive: Speed feedback smaller than setpoint	-
FunOUT.20	AngIntRdy	Angle auto-tuning output	Active: Angle auto-tuning completed Inactive: Angle auto-tuning not completed	-
FunOUT.21	DB	Dynamic braking output	Active: Dynamic brake relay opened Inactive: Dynamic braking relay closed	-
FunOUT.22	CmdOk	Internal reference output	Active: Internal reference completed Inactive: Internal reference not completed	-

Code	Parameter Name	Function Name	Description	Remarks
FunOUT.23	WrNextBlockEn	Write next block enabled	Active: Writing the next segment allowed. Inactive: Writing the next segment inhibited.	-
FunOUT.24	McOk	Motion control output	Active: Motion control done Inactive: Motion control not done	-

19.6 Display of Monitoring Parameters

- Group H0b: Displays parameters used to monitor the operating state of the servo drive.
- Set H02.32 (Default keypad display) properly. After the motor operates normally, the keypad switches from status display to parameter display. The parameter group number is H0b and the offset within the group is the setpoint of H02.32.
- For example, if H02.32 is set to 00 and the motor speed is not 0 rpm, the keypad displays the value of H0b.00.

Parameter	Name	Unit	Meaning	Example of Display
H0b.00	Motor speed actual value	rpm	Displays the actual value of the motor speed after round-off, which can be accurate to 1 rpm.	Display of 3000 rpm: 3000 000 -3000 rpm: -3000 000
H0b.01	Speed reference	rpm	Displays the present speed reference of the servo drive.	Display of 3000 rpm: 3000 cpm: - 3000 cpm:
H0b.02	Internal torque reference	0.10%	Displays the ratio of actual torque output of the motor to the rated torque of the motor.	Display of 100.0%: Display of -100.0%:

The following table describes the monitoring parameters in group H0b.

Parameter	Name	Unit	Meaning	Example of Display
H0b.03	Monitored DI status	-	Displays the optocoupler status of DI1 to DI9: Upper LED segments turned on: The optocoupler is switched off (indicated by "1"). Lower LED segments turned on: The optocoupler is switched on (indicated by "0"). The value of H0b.03 read in the software tool is a decimal.	For example, if DI1 is low level and DI2 to DI9 are high level, The corresponding binary value is "110011110", and the value of H0b.03 read in the software tool is 414. The keypad displays as follows: DI8 DI6 DI4 DI2 DI1DI9 DI7 DI5 DI3 DI1 DI1DI9 DI7 DI5 DI3 DI1
H0b.05	Monitored DO status	-	Displays the optocoupler status of DO1 to DO5: Upper LED segments turned on: The optocoupler is switched off (indicated by "1"). Lower LED segments turned on: The optocoupler is switched on (indicated by "0"). The value of H0b.05 read in the software tool is a decimal.	For example, if DO1 is low level and DO2 to DO5 are high level: then, the binary value is "11110". and the value of H0b.05 read in the software tool is 30. The keypad displays as follows: DO5 DO4 DO2 DO1
Н0Ь.07	Absolute position counter (32-bit decimal)	Reference unit	Displays current absolute position of the motor (reference unit).	Display of 1073741824 in reference unit:

Parameter	Name	Unit	Meaning	Example of Display
H0b.09	Mechanical angle (pulses starting from the home)	p	Indicates the current mechanical angle (p) of the motor. The value 0 indicates that the mechanical angle is 0°. Maximum value of H0b.09 for an incremental encoder: Number of encoder pulses per revolution x 4 - 1. For example, the maximum value of H0b.09 for a 2500-PPR incremental encoder is 9999. Maximum value of H0b.09 for an absolute encoder is 65535. The actual mechanical angle is calculated using the following formula: Actual mechanical angle = $\frac{H0B-09}{Max.H0B-09+1} \times 360.0^{\circ}$	Display of 10000 p:
H0b.10	Rotation angle (electrical angle)	0.1°	Displays current electrical angle of the motor.	Display of 360.0°:
H0b.11	Speed corresponding to the input position reference	rpm	Displays the speed corresponding to the position reference per control cycle of the servo drive.	Display of 3000 rpm: 3000 cpm: - 3000 cpm:
H0b.12	Average load rate	0.10%	Displays the ratio of the average load torque to the rated torque of the motor.	Display of 100.0%:
H0b.13	Input position reference counter (32-bit decimal)	Reference unit	Counts and displays the number of input position references.	Display of 1073741824 in reference unit:
H0b.15	Encoder position deviation counter (32- bit decimal)	Encoder unit	Encoder position deviation = Sum of input position references (encoder unit) – Sum of pulses fed back by the encoder (encoder unit)	Display of 10000 in encoder unit:

Parameter	Name	Unit	Meaning	Example of Display
H0b.17	Feedback pulse counter (32-bit decimal)	Encoder unit	Counts and displays the number of pulses fed back by the encoder (encoder unit).	Display of 1073741824 in encoder unit:
H0b.19	Total power-on time (32-bit decimal)	0.1s	Counts and displays the total power- on time of the servo drive.	Display of 429496729.5s:
H0b.24	RMS value of phase current	0.01 A	Displays the RMS value of the phase current of the servo motor.	Display of 4.60 A:
H0b.26	Bus voltage	0.1 V	Displays the DC bus voltage of the main circuit.	Display of 311.0 V rectified from 220 VAC: Display of 537.0 V rectified from 380 VAC:
H0b.27	Module temperature	°C	Displays the temperature of the power module inside the servo drive.	Display of 27°C:
H0b.33	Fault log	-	Used to select the previous fault to be viewed. 0: Present fault 1: Last fault 2: 2nd to last fault 9: 9th to last fault	0: Display of present fault:

Parameter	Name	Unit	Meaning	Example of Display
H0b.34	Fault code of the selected fault	-	Displays the code of the fault selected in H0b.33. When no fault occurs, the displayed value of H0b.34 is E000.0.	If H0b.33 is 0, and H0b.34 is E941.0, the current fault code is 941. Corresponding display:
H0b.35	Time stamp upon occurrence of the selected fault	S	Displays the total operating time of the servo drive when the fault displayed in H0b.34 occurred. When no fault occurs, the value of H0b.35 is 0.	If H0b.34 is E941.0 and H0b.35 is 107374182.4, the current fault code is 941 and the total operating time of the servo drive is 107374182.4s when the fault occurs.
H0b.37	Motor speed upon occurrence of the selected fault	rpm	Displays the servo motor speed when the fault displayed in H0b.34 occurred. When no fault occurs, the value of H0b.37 is 0.	Display of 3000 rpm: 3000 000 -3000 rpm: - 30000
H0b.38	Motor phase U current upon occurrence of the selected fault	0.01 A	Displays the RMS value of motor phase U winding current when the fault displayed in H0b.34 occurred. When no fault occurs, the value of H0b.38 is 0.	Display of 4.60 A:
H0b.39	Motor phase V current upon occurrence of the selected fault	0.01 A	Displays the RMS value of motor phase V winding current when the fault displayed in H0b.34 occurred. When no fault occurs, the value of H0b.39 is 0.	Display of 4.60 A:
H0b.40	Bus voltage upon occurrence of the selected fault	V	Displays the DC bus voltage of the main circuit when the fault displayed in H0b.34 occurred. When no fault occurs, the value of H0b.40 is 0.	Display of 311.0 V rectified from 220 VAC: Display of 537.0 V rectified from 380 VAC:

Parameter	Name	Unit	Meaning	Example of Display
H0b.41	DI status upon occurrence of the selected fault	-	Displays the high/low level status of DI1 to DI9 when the fault displayed in H0b.34 occurs. The method for determining the DI level status is the same as that of H0b.03. When no fault occurs, all DIs are displayed as low level in H0b.41 (indicated by the decimal value 0).	Display of H0b.41 = 414: DIS DI6 DI4 DI2 DI1 DI5 DI5 DI5 DI3 DI1 HighHigh $\frac{10}{2}$ $\frac{10}{2}$ HighHighHighHighLow 1 1 $\frac{1}{2}$ $\frac{10}{2}$ HighHighHighHighLow
H0b.42	DO status upon occurrence of the selected fault	-	Displays the high/low level status of DO1 to DO5 when the fault displayed in H0b.34 occurred. The method for determining the DO level status is the same as that of H0b.05. When no fault occurs, all DOs are displayed as low level in H0b.42 (indicated by the decimal value 0).	Display of H0b.42 = 15: DO4 D02 D05 D03 D01 D04 D02 D05 D03 D01 High High High High High Low 1 1 1 1 0
H0b.53	Position deviation counter (32-bit decimal)	Reference unit	Position deviation = Sum of input position references (reference unit) - Sum of pulses fed back by the encoder (reference unit)	Display of 10000 in reference unit:

Parameter	Name	Unit	Meaning	Example of Display
H0b.55	Motor speed actual value	0.1 rpm	Displays the actual value of the motor speed, which can be accurate to 0.1 RPM.	Display of 3000.0rpm:
H0b.64	Real-time input position reference counter	Reference unit	Displays the value of the position reference counter before being divided or multiplied by the electronic gear ratio. This value is independent of the servo drive status and the control mode.	Display of 1073741824 in reference unit:

19.7 Ordering

Table 19–4 Terminal accessory package list

Material Code	Parameter Name	Quantity
15210928	Plug-in terminal block-plug-spring clamp wiring-9P-black	1
19020818	Label-CV100-3D006-ECY-CV100 blank QR code (RoHS)	1
19021377	Label-servo drive-SV630PS2R8I-220V Input 2.8 A-SV630P pulse type servo drive terminal	1
19021600	Label-SV660PS2R8I-wiring warning	1
19033058	Bag-SIT8.840.054-40Z603GAZ-Ziplock bag for screws delivered with the 60 kW hybrid bus motor inverter	1
21020021	Plastic parts-plug wiring key-for use with servo drive power plug	1

If you need to purchase the terminal accessory package separately, see the following table for the material code of the accessory package for each model.

Table 19–5 Material code of the accessory package for each mod	-5 Material code of the accessory package for eac	h model
--	---	---------

Material Code	Parameter Name
98050331	Accessories (sale)-S6-C40-SV630P size A terminal accessory kit
98050332	Accessories (sale)-S6-C42-SV630P size B terminal accessory kit
98050333	Accessories (sale)-S6-C44-SV630P size C&D terminal accessory kit

Note

SV630P and SV630N products share the same terminal kit.

19.8 服务与支持

Downloads

More product manuals, leaflets, brochures, certificates, 2D/3D drawings and other information can be downloaded in the following ways:

Do keyword search under "Service and Support-After-sales Service" at <u>https://www.inovance.com</u>"".

Contact us

We are honored to have you as our client. You can submit basic information to us in the following way, so that we can reach you as soon as possible. We are committed to your privacy. We will never share your information with any third party.

Go to our official website (<u>https://www.inovance.com</u>), select "Service and Support-Contact Us", and submit your information.

After-sales service

If you have product quality problems and need after-sales service, or you need to purchase spare parts, you can get the after-sales service person in your region through the following way.

Go to our official website (<u>https://www.inovance.com</u>), select "Service and Support-After-sales Service", and submit the product category and your region.

Repair service

If a product is in trouble and needs to be repaired, you can check the maintenance instructions, submit the service request and check the service record in the following way.

Go to our official website (<u>https://www.inovance.com</u>), select "Service and Support-Repair", and submit the repair request.

Authentication

You can authenticate Inovance products in the following way:

Go to our official website (<u>https://www.inovance.com</u>), select "Service and Support-Authentication", and enter the 16-digit serial number.

FAQ

You can go through frequently asked questions about Inovance products in the following way: Go to our official website (<u>https://www.inovance.com</u>) and select "Service and Support-FAQ".

Feedback

You can submit your feedback in the following way:

Go to our official website (<u>https://www.inovance.com</u>), select "Service and Support-Feedback", and submit your feedback.

Forum

The forum provides high-quality courses for beginners and advanced learners. You are free to learn and share there. To get access to the forum:

Go to our official website (<u>https://www.inovance.com</u>) and select "Service and Support-Forum".

Copyright © Shenzhen Inovance Technology Co., Ltd.

19012296C00

Shenzhen Inovance Technology Co., Ltd.

www.inovance.com

Suzhou Inovance Technology Co., Ltd.

www.inovance.com

Add.: Inovance Headquarters Tower, High-tech Industrial Park,
Guanlan Street, Longhua New District, ShenzhenTel: (0755) 2979 9595Fax: (0755) 2961 9897

Add.: No. 16 Youxiang Road, Yuexi Town, Wuzhong District, Suzhou 215104, P.R. China Tel: (0512) 6637 6666 Fax: (0512) 6285 6720